Tectono–Magmatic Evolution of the Neo–Tethys Belt in Pakistan and Related Mineralization of Major Metal Mineral Deposits
-
摘要:
巴基斯坦在大地构造位置上处于印度、欧亚和阿拉伯三大板块的汇聚带,正同时发生着大陆碰撞和大洋俯冲作用,是研究地球系统深部圈层相互作用与成矿效应的绝佳天然实验室。但是,目前对于巴基斯坦构造演化与成矿作用的研究还不系统,对于巴基斯坦的大型–超大型矿床形成的背景和机制仍不清楚。笔者针对巴基斯坦不同类型的优势矿种开展了深入解剖和对比研究,系统梳理最新研究进展,围绕巴基斯坦新特提斯构造–岩浆演化与成矿作用响应的关键科学问题,分析铜矿、铬铁矿、铅锌矿以及碳酸岩有关的稀土矿床等重要金属成矿类型形成的构造环境以及与区域重大地质事件的耦合关系,总结巴基斯坦区域成矿规律,为资源潜力分析和境内外找矿勘查提供依据。
Abstract:Pakistan is located in the convergent zone of the India, Eurasian and Arabian plates, an important part of the Tethys tectonic domain. It is an excellent natural laboratory for the study of deep earth system interactions and mineralization effects, as both continental collision and oceanic subduction occur in Pakistan. However, the study of tectonic evolution and mineralization in Pakistan is still not systematic, and the background and mechanism of formation of some large and super–large ore deposits in Pakistan are still unclear. The authors and collaborating team have conducted in–depth anatomical and comparative studies on different types of dominant mineral deposits in Pakistan. In this paper, the resent research progress are summarized systematically. Focusing on the key scientific issues of tectonic-magmatic evolution and mineralization response in the Neo–Tethys belt, we have analyzed the tectonic setting of the formation of major metal mineralization types such as copper, chromite, lead-zinc and carbonatite–related REE deposits and the coupling relationship with major regional geological events. The study of regional mineralization regularities in Pakistan will provide a basis for resource potential analysis and mineral exploration both domestic and abroad.
-
Key words:
- Neo–Tethys /
- magmatism /
- chromite /
- porphyry Cu–Au deposits /
- carbonatite /
- Pakistan
-
-
图 1 特提斯构造域主要缝合带分布及巴基斯坦所处位置示意图(据吴福元等,2020修)
Figure 1.
图 2 巴基斯坦大地构造简图(A)及典型矿床矿床分布图(B)(据Kazmi et al.,1982;吕鹏瑞等,2016修)
Figure 2.
图 3 查盖地区主要斑岩型矿床(点)分布及年代学(据Perelló et al.,2008修)
Figure 3.
图 4 查盖火山岩浆岩带主要岩浆事件及成矿时代(据Perelló et al.,2008修)
Figure 4.
图 7 穆斯林巴赫铬铁矿床和吉佳尔铬铁矿中铬尖晶石三价离子所占比率图(A)和Cr#–Mg#图解(B)(罗布莎铬铁矿床数据引自洪俊,2011)
Figure 7.
图 8 巴基斯坦胡兹达尔–拉斯贝拉地质简图(据Song et al.,2019修)
Figure 8.
图 9 胡兹达尔–拉斯贝拉地区铅锌硫化物矿床成矿构造示意图(据Large,1980; Ahsanet al.,1999;张辉善,2021)
Figure 9.
-
[1] 白文吉, 杨经绥, 方青松, 等. 西藏罗布莎蛇绿岩的Os-Ir-Ru合金及其中玻安岩质包体的研究[J]. 地质学报, 2005, 79(6): 814-822 doi: 10.3321/j.issn:0001-5717.2005.06.010
BAI Wenji, YANG Jingsui, FANG Qingsong, et al. A Study on Os-Ir-Ru Alloy and Boninitic Inclusion in the Luobusa Ophiolite, Tibet[J]. Acta Geologica Sinica, 2005, 79(6): 814-822. doi: 10.3321/j.issn:0001-5717.2005.06.010
[2] 鲍佩声. 再论蛇绿岩中豆荚状铬铁矿的成因-质疑岩石/熔体反应成矿说[J]. 地质通报, 2009, 28 (12): 1742-1761
BAO Peisheng. Further discussion on the genesis of the podiform chromite deposits in the ophiolites: questioning about the rock/melt interaction metallogeny[J]. Geologcal Bulletin of China, 2009, 28 (12): 1742-1761.
[3] 洪俊, 姚文光, 张晶, 等. 新特提斯缝合带中段豆荚状铬铁矿成矿规律对比研究[J]. 地质学报, 2015a, 89(9): 11618-1628.
HONG Jun, YAO Wenguang, ZHANG Jing, et al. Comparative Study of Metallogenic Regularities of Chromite Deposits in the Middle of the Neotethys Suture Zone[J]. Acta Geologica Sinica, 2015a, 89(9): 1618-1628.
[4] 洪俊, 姚文光, 计文化, 等. 巴基斯坦基性-超基性岩铬尖晶石矿物化学及铬铁矿找矿潜力分析[J]. 新疆地质, 2015b, 33(2): 251-257
HONG Jun, YAO Wenguang, JI Wenhua, et al. Mineral Chemistry of picotites from mafic-ultramafic complexes of Pakistan and the prospecting potential[J]. Xinjiang Geology, 2015b, 33(2): 251-257.
[5] 洪俊. 巴基斯坦构造-岩浆演化与金属成矿作用研究[D]. 北京. 中国地质科学院, 2021.
HONG Jun. Study on the tectono-magmatic evolution and related mineralization of Pakistan [D]. Beijing: Chinese Academy of Geological Sciences, 2021.
[6] 洪俊. 西藏罗布莎铬铁矿床铬尖晶石对比研究及成矿演化探讨[D]. 北京: 中国地质大学(北京), 2011.
HONG Jun. Chromium spinel contrast research and metallogenic evolution of the Luobusha chromite depist, Tibet[D]. Beijing: China University of Geosciences (Beijing), 2011.
[7] 吕鹏瑞, 姚文光, 张海迪, 等. 巴基斯坦贾盖火山岩浆岩带斑岩型铜-金矿床地质特征、成矿作用及找矿潜力[J]. 地质学报, 2015, 89(9): 1629-1642 doi: 10.3969/j.issn.0001-5717.2015.09.007
LÜ Pengrui, YAO Wenguang, ZHANG Haidi, et al. Geological Features, Mineralization and Ore-Prospecting Potential of Porphyry Cu-Au Deposits in the Chagai Volcanoplutonic Belt, Pakistan[J]. Acta Geologica Sinica, 2015, 89(9): 1629-1642. doi: 10.3969/j.issn.0001-5717.2015.09.007
[8] 吕鹏瑞, 姚文光, 张辉善, 等. 特提斯成矿域中新世斑岩铜矿岩石成因、源区、构造演化及其成矿作用过程[J]. 地质学报, 2020, 94(8): 2291-2310 doi: 10.19762/j.cnki.dizhixuebao.2020044
LÜ Pengrui, YAO Wenguang, ZHANG Huishan, et al. Petrogenesis, source, tectonic evolution and mineralization process of the Miocene porphyry Cu deposits in the Tethyan metallogenic domain[J]. Acta Geologica Sinica, 2020, 94(8): 2291-2310. doi: 10.19762/j.cnki.dizhixuebao.2020044
[9] 吕鹏瑞, 姚文光, 张海迪, 等. 巴基斯坦成矿地质背景、主要金属矿产类型及其特征[J]. 地质科技情报, 2016, 35(04): 150-157
LÜ Pengrui, YAO Wenguang, ZHANG Haidi, et al. Metallogenic setting, genetic types and geological features of main metallic deposits in Pakistan[J]. Bulletin of Geological Science and Technology, 2016, 35(04): 150-157.
[10] 吕鹏瑞, 姚文光, 张辉善, 等. 巴基斯坦及中国邻区构造单元划分及其演化[J]. 西北地质, 2017, 50(3): 126-139 doi: 10.3969/j.issn.1009-6248.2017.03.014
LÜ Pengrui, YAO Wenguang, ZHANG Huishan, et al. Tectonic Unit Division and Geological Evolution of Pakistan and Its Adjacent Regions[J]. Northwestern Geology, 2017, 50(3): 126-139. doi: 10.3969/j.issn.1009-6248.2017.03.014
[11] 王希斌, 周详, 郝梓国. 西藏罗布莎铬铁矿床的进一步找矿意见和建议[J]. 地质通报, 2010, 29(1): 105-114 doi: 10.3969/j.issn.1671-2552.2010.01.013
WANG Xibin, ZHOU Xiang, HAO Ziguo. Some opinions on further exploration for chromite deposits in the Luobusha area, Tibet, China [J]. Geologcal Bulletin of China, 2010, 29(1): 105-114. doi: 10.3969/j.issn.1671-2552.2010.01.013
[12] 王瑞, 朱弟成, 王青, 等. 特提斯造山带斑岩成矿作用[J]. 中国科学: 地球科学, 2020, 50(12): 1919-1946
WANG Rui, ZHU Dicheng, WANG Qing, et al. Porphyry mineralization in the Tethyan orogen[J]. Science China Earth Sciences, 2020, 50(12): 1919-1946.
[13] 吴福元, 万博, 赵亮, 等. 特提斯地球动力学[J]. 岩石学报, 2020, 36(6): 1627–1674.
WU Fuyuan, WAN Bo, ZHAO Liang, et al. Tethyan geodynamics[J]. Acta Petrologica Sinica, 2020, 36(6): 1627– 1674.
[14] 熊发挥, 杨经绥, 巴登珠, 等. 西藏罗布莎不同类型铬铁矿的特征及成因模式讨论[J]. 岩石学报, 2014, 30(8): 2137-2163
XIONG Fahui, YANG Jingsui, BA Dengzhu, et al. Different type of chromitite and genetic model from Luobusa ophiolite, Tibet[J]. Acta Petrologica Sinica, 2014, 30(8): 2137-2163.
[15] 熊发挥, 杨经绥, 刘钊. 豆荚状铬铁矿多阶段形成过程的讨论[J]. 中国地质, 2013, 40(3): 820-840.
XIONG Fahui, YANG Jingsui, LIU Zhao. Multi-satge formation of the podiform chromitite[J]. Geology in China, 2013, 40(3): 820-839.
[16] 杨经绥, 徐向珍, 李源, 等. 西藏雅鲁藏布江缝合带的普兰地幔橄榄岩中发现金刚石: 蛇绿岩型金刚石分类的提出[J]. 岩石学报, 2011, 27(11): 3171-3178
YANG Jingsui, XU Xiangzhen, LI Yuan, et al. Diamonds recovered from peridotite of the Purang ophiolite in the Yarlung-Zangbo suture of Tibet: A proposal for a new type of diamond occurrence [J]. Acta Petrologica Sinica, 2011, 27(11): 3171-3178.
[17] 张洪瑞, 侯增谦.大陆碰撞带成矿作用: 年轻碰撞造山带对比研究[J].中国科学: 地球科学, 2018, 48(12): 1629–1654.
ZHANG Hongrui, HOU Zengqian. Metallogenesis within continental sollision zones: comparisons of modern collisional orogens[J]. Scientia Sinica (Terrae), 2018, 48(12): 1629–1654.
[18] 张洪瑞, 侯增谦, 杨志明, 等. 特提斯成矿域主要金属矿床类型与成矿过程[J]. 矿床地质, 2010, 29: 113-133 doi: 10.3969/j.issn.0258-7106.2010.01.011
ZHANG Hongrui, HOU Zengqian, YANG Zhiming, et al. Metallogenesis and geodynamics of Tethyan metallogenic domain: A review[J]. Mineral Deposits, 2010, 29(1): 113-133 doi: 10.3969/j.issn.0258-7106.2010.01.011
[19] 张洪瑞, 侯增谦, 贾敬伍, 等. 巴基斯坦穆斯林巴赫铬铁矿矿床[J]. 矿床地质, 2013, 32 (5): 1072-1074 doi: 10.16111/j.0258-7106.2013.05.019
ZHANG Hongrui, HOU Zengqian, JIA Jingwu, et al. Muslim Bagh Chromite Deposit in Pakistan [J]. Mineral Deposits, 2013, 32 (5): 1072-1074. doi: 10.16111/j.0258-7106.2013.05.019
[20] 张辉善. 新特提斯构造域中东段沉积岩容矿铅锌成矿作用: 以青海多才玛和巴基斯坦杜达矿床为例[D]. 合肥. 中国科学技术大学, 2021.
ZHANG Huishan. Mineralization of Sediment-hosted Lead-Zinc Deposits in the Middle-East Segment of the Neo-Tethys Tectonic Domain: Examples from the Duocaima Deposit in Qinghai, China and the Duddar Deposit in Pakistan [D].Hefei: University of Science and Technology of China, 2021.
[21] Agard P, Omrani J, Jolivet L. Zagros orogeny: a subduction-dominated process [J]. Geological Magazine, 2011, 148: 692-725.
[22] Aghazadeh M, Hou Z Q, Badrzadeh Z, et al. Temporal–spatial distribution and tectonic setting of porphyry copper deposits in Iran: constraints from zircon U–Pb and molybdenite Re–Os geochronology [J]. Ore Geology Reviews, 2015, 70: 385-406. doi: 10.1016/j.oregeorev.2015.03.003
[23] Ahmad I, Hamidullah S, Jehan N. Petrology of the Shewa–Shahbaz Garhi complex, Mardan North Pakistan [J]. Geological Bulletin University of Peshawar, 1990, 23: 135-159.
[24] Ahmad I, Khan S, Lapen T, et al. Isotopic ages for alkaline igneous rocks, including a 26 Ma ignimbrite, from the Peshawar plain of northern Pakistan and their tectonic implications[J]. Journal of Asian Earth Sciences, 2013, 62: 414-424. doi: 10.1016/j.jseaes.2012.10.025
[25] Ahsan S N, Mallick K A. Geology and genesis of barite Deposits of Lasbela and Khuzdar districts, Balochistan, Pakistan [J]. Resource Geology, 1999, 49(2): 105-111. doi: 10.1111/j.1751-3928.1999.tb00036.x
[26] Ahsan S, Qureshi I. Mineral/rock resources of Lasbela and Khuzdar Districts [J]. Geological Bulletin University of Peshawar, 1997, 30: 41-51.
[27] Arai S, Abe N. Podiform chromitite in the arc mantle: Chromitite xenoliths from the Takashima alkali basalt Southwest Japan arc [J]. Mineral Deposit, 1994, 29: 434-438. doi: 10.1007/BF01886963
[28] Arif M, Qasim J. Petrotectonic significance of the chemistry of chromite in the ultramafic-mafic complexes of Pakistan [J]. Journal of Asian Sciences, 2006, 27(5): 628-646.
[29] Bell K, Simonetti A. Source of parental melts to carbonatites–critical isotopic constraints [J]. Mineralogy & Petrology, 2010, 98(1): 77–89.
[30] Bortolotti V, Principi G. Tethyan ophiolites and Pangea break- up [J]. Island Arc, 2005, 14: 442–470. doi: 10.1111/j.1440-1738.2005.00478.x
[31] Burg J P. Geology of the onshore Makran accretionary wedge: Synthesis and tectonic interpretation [J]. Earth-Sciences Reviews, 2018, 22: 197–215.
[32] Butt K A, Arif A Z, Ahmed J, et al. Chemistry and petrography of the Sillai Patti carbonatite complex, North Pakistan [J]. Geological Bulletin University of Peshawar, 1989, 22: 197–215.
[33] Coward M P, Butler R W H, Khan M A, et al. The tectonic history and its implications for Himalayan structure [J]. Journal of the Geological Society, London, 1987, 144: 377–391. doi: 10.1144/gsjgs.144.3.0377
[34] Defant M J, Drummond M S. Derivation of some modern arc magmas by melting of young subducted lithosphere [J]. Nature, 1990, 347: 662–665. doi: 10.1038/347662a0
[35] Dick H J B, Bullen T. Chromain spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas [J]. Contributions to Mineralogy and Petrology, 1984, 86, 54-76. doi: 10.1007/BF00373711
[36] Ding N, Qasim M, Jadoon I A K, et al. The India–Asia collision in north Pakistan: Insight from the U–Pb detrital zircon provenance of Cenozoic foreland basin [J]. Earth and Planetary Science Letters, 2016, 455: 49–61. doi: 10.1016/j.jpgl.2016.09.003
[37] DiPietro J A, Pogue K R. Tectonostratigraphic subdivisions of the Himalaya: a view from the West [J]. Tectonics, 2004, 23, TC5001.
[38] Feng M, Song W L, Kynicky J, et al. Primary rare earth element enrichment in carbonatites: Evidence from melt inclusions in Ulgii Khiid carbonatite, Mongolia [J]. Ore Geology Reviews, 2020, 117, 103294. doi: 10.1016/j.oregeorev.2019.103294
[39] Fu F Q, McInnes B I A, Evans N J, et al. Thermal and exhumation history of the Parra Koh porphyry Cu-Au deposit, Pakistan: Thermochronology and inverse numerical modeling[C]. Geological Society of America-Society of Economic Geologists Joint Annual Meeting (Salt Lake City, 2005), 2006, CD-ROM:1
[40] Gweltaz M, Herve B, Stephane G. The south Ladakh ophiolites (NW Himalaya, India): an intra-oceanic tholeiitic arc origin with implication for the closure of the Neo-Tethys [J]. Chemical Geology, 2004, 203(3-4): 207-303.
[41] Hong J, Ji W H, Yang X Y, et al. Origin of a Miocene alkaline–carbonatite complex in the Dunkeldik area of Pamir, Tajikistan: Petrology, geochemistry, LA–ICP–MS zircon U–Pb dating, and Hf isotope analysis [J]. Ore Geology Reviews, 2019, 107: 820-837. doi: 10.1016/j.oregeorev.2019.03.009
[42] Hong J, Tahseenullah K, Li W Y, et al. SHRIMP U–Pb ages, mineralogy, and geochemistry of carbonatite–alkaline complexes of the Sillai Patti and Koga areas, NW Pakistan: Implications for petrogenesis and REE mineralization [J]. Ore Geology Reviews, 2021, S0169-1368(21)00573-4.
[43] Hoskin P, Schaltegger U. The composition of zircon and igneous and metamorphic petrogenesis [J]. Reviews in Mineralogy and Geochemistry, 2003, 53: 27–62. doi: 10.2113/0530027
[44] Hou Z Q, Tian S H, Yuan Z X, et al. The Himalayan collision zone carbonatites in western Sichuan, SW China: petrogenesis, mantle source and tectonic implication [J]. Earth and Planetary Science Letters, 2006, 244: 234–250. doi: 10.1016/j.jpgl.2006.01.052
[45] Hou Z Q, Tian S H, Xie Y L, et al. The Himalayan Mianning–Dechang REE belt associated with carbonatite–alkaline complexes, eastern Indo-Asian collision zone, SW China [J]. Ore Geology Reviews, 2009, 36: 65–89. doi: 10.1016/j.oregeorev.2009.03.001
[46] Hou Z, Zhang H, Pan X, et al. Porphyry Cu (–Mo–Au) deposits related to melting of thickened mafic lower crust: examples from the eastern Tethyan metallogenic domain[J]. Ore Geology Reviews, 2011, 39 (1), 21–45.
[47] Hou Z Q, Yang Z M, Lu Y J, et al. A genetic linkage between subduction and collision-related porphyry Cu deposits in continental collision zones [J]. Geology, 2015, 43(3): 247–250
[48] Hou Z Q, Liu Y, Tian S H, et al. Formation of carbonatite related giant rare-earth-element deposits by the recycling of marine sediments [J]. Scientific Reports, 2015, 5: 10231. doi: 10.1038/srep10231
[49] Hou Z Q, Zhang H R. Geodynamics and metallogeny of the eastern Tethyan metallogenic domain [J]. Ore Geology Reviews, 2015, 70: 346-384. doi: 10.1016/j.oregeorev.2014.10.026
[50] Hussain A, Mughal M N, Haq I, et al. Geological Map of the Garhi Hibibullah Area, District Mansehra and Parts of Muzaffarabad District, AJK (sheet no. 43 F/7) [M]. Quetta: Geological Survey of Pakistan, 2004.
[51] Husain V, Khan H, Germann K. et al. Geochemical investigations of stratabound gunga barite deposits of khuzdar (balochistan), Pakistan [J]. Resource Geology, 2002, 52(1): 49-58. doi: 10.1111/j.1751-3928.2002.tb00116.x
[52] Hussain A, Zhao K D, Arif M, et al. Geochronology, mineral chemistry and genesis of REE mineralization in alkaline rocks from the Kohistan Island Arc, Pakistan [J]. Ore Geology Reviews, 2020, 126: 103749 doi: 10.1016/j.oregeorev.2020.103749
[53] Jia Y H, Liu Y. Factors controlling the generation and diversity of giant carbonatite-related rare earth element deposits: Insights from the Mianning–Dechang belt [J]. Ore Geology Reviews, 2020, 121: 103472. doi: 10.1016/j.oregeorev.2020.103472
[54] Kakar M I, Andrew C K, Khalid M, et al. Petrology of the mantle rocks from the Muslim Bagh Ophiolite, Balochistan, Pakistan [J]. Journal of Himalayan Earth Sciences, 2013, 46(2), 101-112.
[55] Kakar M I, Andrew C K, Khalid M, et al. Supra-subduction zone tectonic setting of the Muslim Bagh Ophiolite, northwestern Pakistan: Insights from geochemistry and petrology [J]. Lithos, 2014, 202-203: 190 -206. doi: 10.1016/j.lithos.2014.05.029
[56] Kanazawa Y, Kamitani M. Rear earth minerals and resources in the world [J]. Journal of Alloys and Compounds, 2006, 408-412: 1339-1343. doi: 10.1016/j.jallcom.2005.04.033
[57] Kazmi A H, Rana R A. Tectonic map of Pakistan[M]. Quetta: Geological Survey of Pakistan, 1982.
[58] Kempe D R C, Jan M Q. An alkaline igneous province in the North-West Frontier Province, West Pakistan[J]. Geological Magazine, 1970, 107: 395–398. doi: 10.1017/S0016756800056260
[59] Kempe D R C, Jan M Q. The Peshawar plain alkaline igneous province, NW Pakistan [J]. Geological Bulletin University of Peshawar, 1980, 13: 71–77.
[60] Khattak N U, Akram M, Ali N, et al. Recognition of the time and level of emplacement of the Sillai Patti carbonatite complex, Malakand Division, Northwest Pakistan: Constraints from fission-track dating[J]. Russian Geology and Geophysics, 2012, 53(8), 736–744.
[61] Large D E. Geological parameters associated with sediment-hosted submarine exhalative Pb-Zn deposits: an empirical model for mineral exploration [J]. Geologisches Jahrbueh, 1980, 40: 59-129.
[62] Lydon J W. Report on an examination of Zn-Pb-Ba deposits of the Lasbela-Khuzdar belt, Balochistan, Pakistan[R]. United Nations Development Programme, 1989.
[63] Le Bas M J, Mian I, Rex D C. Age and nature of carbonatites emplacement in North Pakistan [J]. Geologische Rundschau, 1987, 76 (2): 317–323. doi: 10.1007/BF01821077
[64] Ling M X, Liu Y L, Williams I S, et al. Formation of the world’s largest REE deposit through protracted fluxing of carbonatite by subduction-derived fluids [J]. Scientific Reports, 2013, 3: 1–8.
[65] Liu Y, Hou Z Q. A synthesis of mineralization styles with an integrated genetic model of carbonatite-syenite-hosted REE deposits in the Cenozoic Mianning-Dechang REE metallogenic belt, the eastern Tibetan Plateau, southwestern China [J]. Journal of Asian Earth Sciences, 2017, 137: 35–79. doi: 10.1016/j.jseaes.2017.01.010
[66] Mehrab K, Andrew C K, Khalid M. Formation and tectonic evolution of the Cretaceous-Jurassic Muslim Bagh ophiolitic tectonic setting of ophiolites [J]. Journal of Earth Sciences, 2007, 31: 112-127.
[67] Metcalfe I. Gondwanaland dispersion, Asian accretion and evolution of eastern Tethys [J]. Australian Journal of Earth Sciences, 1996, 43: 605–623. doi: 10.1080/08120099608728282
[68] Metcalfe I. Gondwana dispersion and Asian accretion: tectonic and palaeogeo-graphic evolution of eastern Tethys [J]. Journal of Asian Earth Sciences, 2013, 66: 1–33. doi: 10.1016/j.jseaes.2012.12.020
[69] Mian I, Le Bas M J. Feldspar solid solution series in fenites from Loe–Shilman carbonatite complex, NW Pakistan [J]. Geological Bulletin University of Peshawar, 1988, 21: 71–83.
[70] Mouthereau F, Lacombe O, Verges J. Building the Zagros collisional orogen: timing, strain distribution and the dynamics of Arabia/Eurasia plate convergence [J]. Tectonophysics, 2012, 532: 27-60.
[71] Negredo A M, Replumaz A, Villaseñor A, et al. Modeling the evolution of continental subduction processes in the Pamir–Hindu Kush region [J]. Earth and Planetary Science Letters, 2007, 259(1–2): 212–225.
[72] Nelson D R, Chivas A R, Chappell B W. Geochemical and isotopic systematics in carbonatite and implications for the evolution of ocean-island sources [J]. Geochimica et Cosmochimica Acta, 1988, 52: 1–17. doi: 10.1016/0016-7037(88)90051-8
[73] Nicholson K N, Khan M, Mahmood K. Geochemistry of the Chagai–Raskoh arc, Pakistan: Complex arc dynamics spanning the Cretaceous to the Quaternary [J]. Lithos, 2010, 118 (3–4): 338-348.
[74] Palin R M, Treloar P J, Searle M P, et al. U-Pb monazite ages from the Pakistan Himalaya record pre-Himalayan Ordovician orogeny and Permian continental breakup [J]. GSA Bulletin, 2018, 130 (11-12): 2047–2061.
[75] Pearce J A, Lippard S J, Roberts S. Characteristics and tectonic significance of supra-subduction zone ophiolites[J]. Geological Society, London, Special Publications, 1984, 16: 77-94. doi: 10.1144/GSL.SP.1984.016.01.06
[76] Perelló J, Razique A, Schloderer J, et al. The Chagai porphyry copper belt, Baluchistan province, Pakistan [J]. Economic Geology, 2008, 103(8): 1583–1612. doi: 10.2113/gsecongeo.103.8.1583
[77] Powell C M A. Speculative tectonic history of Pakistan and surroundings[J]. In: Farah A, Dejong K A, eds. Geodynamics of Pakistan [M]. Quetta: Geological Survey of Pakistan, 1979, 5-24.
[78] Ravikant V, Tanpan P, Dipankar D. Chromites from the Nidar ophiolite and Karzok complex, Transhimalaya, eastern Ladakh: their magmatic evolution [J]. Journal of Asian Earth Sciences, 2004, 24: 177-184. doi: 10.1016/j.jseaes.2003.10.005
[79] Rehman H U, Seno T, Yamamoto H, et al. Timing of collision of the Kohistan-Ladakh Arc with India and Asia: Debate [J]. Island Arc, 2011, 20 (3): 308-328. doi: 10.1111/j.1440-1738.2011.00774.x
[80] Richards J P, Şengör A M C. Did Paleo-Tethyan anoxia kill arc magma fertility for porphyry copper formation?[J]. Geology, 2017, 45(7): 591–594.
[81] Richards J P, Spell T, Remeh E, et al. High Sr/Y magmas reflect arc maturity, high magmatic water content, and porphyry Cu-Mo-Au potential: an example from the Tethyan arcs of Central and Eastern Iran and Western Pakistan [J]. Economic Geology, 2012, 107: 295-332. doi: 10.2113/econgeo.107.2.295
[82] Richards J P. Tectonic, magmatic, and metallogenic evolution of the tethyan orogen: From subduction to collision [J]. Ore Geology Reviews, 2015, 70: 323–345. doi: 10.1016/j.oregeorev.2014.11.009
[83] Rollinson H, Adetunji J. The geochemistry and oxidation state of podiform chromitites from the mantle section of the Oman ophiolite: A review[J]. Gondwana Research. 2015, 27(2): 543–554.
[84] Sengör A.M.C., Natal’in B.A., Paleotectonics of Asia: Fragments of a synthesis, In: The Tectonic Evolution of Asia[M]. Cambridge: Cambridge University Press, 1996.
[85] Siddiqui R H, Khan M A, Jan M Q. Geochemistry and petrogenesis of the Miocene alkaline and sub-alkaline volcanic rocks from the Chagai arc, Baluchistan, Pakistan: implications for porphyry Cu-Mo-Au deposits [J]. Journal of Himalayan Earth Sciences, 2007, 40: 1-23.
[86] Sillitoe R H. Porphyry copper systems[J]. Economic Geology, 2010, 105(1): 3–41. doi: 10.2113/gsecongeo.105.1.3
[87] Simonetti A, Bell K, Viladkar S G. Isotopic data from the Amba Dongar carbonatite complex, west–central India: evidence for an enriched mantle source [J]. Chemical Geology, 1995, 122: 185-198. doi: 10.1016/0009-2541(95)00004-6
[88] Song Y C, Liu Y C, Hou Z Q, et al. Sediment-hosted Pb–Zn deposits in the Tethyan domain from China to Iran: Characteristics, tectonic setting, and ore controls [J]. Gondwana Research, 2019, 75: 249-281. doi: 10.1016/j.gr.2019.05.005
[89] Sorkhabi R, Heydari E. Asia out of Tethys: Foreword preface[J]. Tectonophysics, 2008, 451(1~ 4): 171-3178.
[90] Thayer T P. Chromite segregation as petrogenetic indicators[J]. Geological Society of South Africa Special Publication, 1970, 1: 380~390.
[91] Thorkelson D J, Breitsprecher K. Partial melting of slab window margins: Genesis of adakitic and non-adakitic magmas [J]. Lithos, 2005, 79: 25–41. doi: 10.1016/j.lithos.2004.04.049
[92] Wilke F D H, O’Brien P J, Gerdes A. The multistage exhumation history of the Kaghan Valley UHP series, NW Himalaya, Pakistan, from U-Pb and 40Ar/39Ar ages [J]. European Journal of Mineralogy, 2010, 22: 703–719 doi: 10.1127/0935-1221/2010/0022-2051
[93] Woolley A R, Kjarsgaard B A. Paragenetic types of carbonatite as indicated by the diversity and relative abundances of associated silicate rocks: evidence from a global database [J]. Canadian Mineralogist, 2008, 46: 741–752. doi: 10.3749/canmin.46.4.741
[94] Xiong Y Q. Emplacement of Bela and Musilm Bagh ophiolites and significance of India-Asia collision in western Pakistan [D]. Houston: University of Houston, 2011: 1-175.
[95] Xu C, Kynicky J, Chakhmouradian A R, et al. Trace-element modeling of the magmatic evolution of rare earth-rich carbonatite from the Miaoya deposit, central China [J]. Lithos, 2010, 118: 145–155. doi: 10.1016/j.lithos.2010.04.003
[96] Yang K F, Fan H R, Franco P, et al. The Bayan Obo (China) giant REE accumulation conundrum elucidated by intense magmatic differentiation of carbonatite [J]. Geology, 2019, 47(12): 1198-1202. doi: 10.1130/G46674.1
[97] Yang X Y, Lai X D, Pirajno F, et al. Genesis of the Bayan Obo Fe-REE-Nb formation in Inner Mongolia, north China craton: a perspective review [J]. Precambrian Research, 2016, 288: 39–71.
[98] Yang X Y, Sun W D, Zhang Y X, et al. Geochemical constraints on the genesis of the Bayan Obo Fe-Nb-REE deposit in Inner Mongolia, China [J]. Geochimica et Cosmochimica Acta, 2009, 73: 1417–1435. doi: 10.1016/j.gca.2008.12.003
[99] Yang Z M, Goldfarb R, Chang Z S. Generation of postcollisional porphyry copper deposits in southern Tibet triggered by subduction of the Indian continental plate [J]. Economic Geology, 2016, S19, 279–300.
[100] Zhou M F, Robinson P T, Malpas J, et al. Podiform chromitites in the Luobusa ophiolite (Southern Tibet): implications for mantle–melt interaction and chromite segregation [J]. Journal of Petrology, 1996, 37, 3-21. doi: 10.1093/petrology/37.1.3
[101] Zhou M F, Robinson P T. Origin and tectonic environment of podiform chromite deposits [J]. Economic Geology, 1997, 92: 259-262. doi: 10.2113/gsecongeo.92.2.259
[102] Zhou M F, Robinson P T, Malpas J, et al. REE and PGE geochemical constraints on the formation of dunites in the Luobusa ophiolite, southern Tibet [J]. Journal of Petrology, 2005, 46 (3) : 615-639.
-