-
摘要:
泥石流运动过程中拦挡坝的拦挡作用是泥流防治研究中的一项重要议题。本研究引入侵蚀速率概念,建立了含有拦挡坝的泥流连续介质模型,阐明了拦挡坝拦挡作用对泥流运动行为和动力过程的影响。结果表明,泥流撞击拦挡坝发生漫坝时,拦挡坝遭受了逐渐加速泥流巨大的影响。拦挡坝发挥出拦截和拦挡双重功效:一方面,使得泥流灾害体横向扩展增强,纵向延伸减弱,滑移距离减少,降低了泥流的致灾范围;另一方面,降低了泥流侵蚀夹带作用,减少了泥流灾害体质量,使得灾害体面积和体积分别下降2.48%和3.63%。同时,使泥流偏离流动方向,泥流运动的平均速度下降10.62%,缓解了泥流的冲击力,削减了灾害体16.17%的致灾能量,进一步降低了泥流的致灾强度和致灾规模。引入基底地形和侵蚀速率的数值模型为泥石流动力机制提供理论支持,也为泥流防治提供技术指导。
Abstract:The blocking effect during debris flow movement is an important topic in in the study of debris flow prevention. In this study, the concept of erosion rate is introduced, established a continuous model of debris flow including blocking dam, and clarified the effect of the dam on debris flow movement behavior and dynamic process. The results show that the planned mitigation works would suffer tremendous impact caused by the accelerating debris. The blocking dams perform the dual function of intercepting and blocking, the blocking dam plays a dual role of interception and blocking, which makes the lateral extension of the debris flow disaster body enhanced, the vertical extension weakened, and the slip distance reduced, reducing the debris flow disaster scope. On the other hand, it reduces the erosion entrainment effect of debris flow, reduces the mass of disaster body, and decreases the area and volume of disaster body by 2.48% and 3.63% respectively; meanwhile, it deviates the flow direction, decreases the average velocity of mudflow movement by 10.62%, alleviates the impact force of debris flow, reduces the disaster energy of disaster body by 16.17%, and further decreases the disaster intensity and scale. The numerical model introduced by basement topography and erosion rates provides theoretical support for debris flow dynamics mechanisms and technical guidance for debris flow prevention.
-
Key words:
- debris flow /
- blocking dam /
- dynamical mechanisms /
- disaster energy
-
-
[1] 陆鹏源, 侯天兴, 杨兴国, 等. 滑坡冲击铲刮效应物理模型试验及机制探讨[J]. 岩石力学与工程学报, 2016, 35(6): 1225-1232
LU Yuanpeng, HOU Tianxing, YANG Xingguo, et al. Physical modeling test for entrainment effect of landslides and the related mechanism discussion[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(6): 1225-1232.
[2] 马建全, 吴钶桥, 李识博, 等. 黄土高原淤地坝溃决型泥石流易发性评价[J]. 科学技术与工程, 2022, 22(17): 6869-6879
MA Jianquan, WU Keqiao, LI Shibo, et al. Evaluation on the Susceptibility of Debris Flows Induced by Check-dam Outburst in Loess Plateau[J]. Science Technology and Engineering, 2022, 22(17): 6869-6879.
[3] 王玉峰, 程谦恭, 林棋文, 等. 青藏高原古高速远程滑坡沉积学特征研究[J]. 地学前缘, 2021, 28(02): 106-124
WANG Yufeng, CHENG Qiangong, LIN Qiwen, et al. Observations on the sedimentary structure of prehistoric rock ava- lanches on the Tibetan PlateauChina[J]. Earth Science Frontiers, 2021, 28(2): 106-124
[4] 于国强, 张茂省, 胡炜. 天水市“7.25”群发性山洪地质灾害发育特征及成因分析[J]. 西北地质, 2014, 47(3): 185-191
YU Guogiang, ZHANG Maosheng, HU Wei. Analysis on the Development Characteristics and Hydrodynamic Conditions for the Massive Debris Flow in Tianshui[J]. Northwestern Geology, 2014, 47(3): 185-191
[5] Chen H, Dadson S, Chi YG. Recent rainfall-induced landslides and debris flow in northern Taiwan[J]. Geomorphology, 2006, 77: 112–125. doi: 10.1016/j.geomorph.2006.01.002
[6] Chen H, Lee CF. A dynamic model for rainfall-induced landslides on natural slopes[J]. Geomorphology, 2003, 51: 269 –288. doi: 10.1016/S0169-555X(02)00224-6
[7] Chen H, Lee, CF. Numerical simulation of debris flows[J]. Canadian Geotechnical Journal, 2000, 37: 146 –160. doi: 10.1139/t99-089
[8] Crosta GB, Chen H, Lee CF. Replay of the 1987 Val Pola Landslide, Italian Alps[J]. Geomorphology, 2004,60, Nos 1–2,127–146
[9] Erlichson H. A mass-change model for the estimation of debris-flow runout, a second discussion: Conditions for the application of the rocket equation[J]. J. Geol. 1991, 99, 633–634.
[10] Fannin RJ, Wise MP. An empirical-statistical model for debris flow travel distance [J]. Can. Geotech. J. 2001, 38, No. 5, 982–994.
[11] Gray JMNT, Wieland M, Hutter K. Gravity-driven free surface flow of granular avalanches over complex basal topography[J]. Proc. R. Soc. London, Ser. 1999, A455, 1841–1874.
[12] Hungr O. Momentum transfer and friction in the debris of rock avalanche: discussion[J]. Can. Geotech. J. 1990, 27, 697.
[13] Jakob M. Debris-flow hazard analysis. In: Jakob M, Hungr O (eds) Debris-flow hazards and related phenomena[J]. Praxis-Springer, Berlin, 2005, 411–443.
[14] Koch T, Greve R, Hutter K. Unconfined flow of granular avalanches along a partly curved surface. II[J]. Experiments and numerical computations. Proc. R. Soc. London, Ser. 1994, A 445, 415–435.
-