沟谷型泥石流特征参数的等代面积递归精细求解

刘星宇, 朱立峰, 孙建伟, 贾煦, 刘向东, 黄虹霖, 程贤达, 孙亚柯, 胡超进, 张晓龙. 2024. 沟谷型泥石流特征参数的等代面积递归精细求解. 西北地质, 57(3): 272-284. doi: 10.12401/j.nwg.2023166
引用本文: 刘星宇, 朱立峰, 孙建伟, 贾煦, 刘向东, 黄虹霖, 程贤达, 孙亚柯, 胡超进, 张晓龙. 2024. 沟谷型泥石流特征参数的等代面积递归精细求解. 西北地质, 57(3): 272-284. doi: 10.12401/j.nwg.2023166
LIU Xingyu, ZHU Lifeng, SUN Jianwei, JIA Xu, LIU Xiangdong, HUANG Honglin, CHENG Xianda, SUN Yake, HU Chaojin, ZHANG Xiaolong. 2024. Precise Calculation for Characteristic Parameters of Valley-type Debris Flow Using a Methed of Recursive Equivalent Area Substitution. Northwestern Geology, 57(3): 272-284. doi: 10.12401/j.nwg.2023166
Citation: LIU Xingyu, ZHU Lifeng, SUN Jianwei, JIA Xu, LIU Xiangdong, HUANG Honglin, CHENG Xianda, SUN Yake, HU Chaojin, ZHANG Xiaolong. 2024. Precise Calculation for Characteristic Parameters of Valley-type Debris Flow Using a Methed of Recursive Equivalent Area Substitution. Northwestern Geology, 57(3): 272-284. doi: 10.12401/j.nwg.2023166

沟谷型泥石流特征参数的等代面积递归精细求解

  • 基金项目: 中国地质调查局地质调查项目“熊耳山–伏牛山矿集区生态修复支撑调查”(ZD20220218)。
详细信息
    作者简介: 刘星宇(1987−),男,硕士,工程师,主要从事地质灾害方面工作。E–mail:1538311361@qq.com
    通讯作者: 朱立峰(1973−),男,正高级工程师,长期从事地质灾害机理与防治研究。E–mail:397871699@qq.com
  • 中图分类号: P642.23

Precise Calculation for Characteristic Parameters of Valley-type Debris Flow Using a Methed of Recursive Equivalent Area Substitution

More Information
  • 为解决“沟谷型”泥石流在不规则断面处特征参数的精细求解问题,笔者以曼宁公式为基础,建立“等代”面积递归逼近的数学模型,实现了最深泥位、流体速度、威胁范围的求解计算,其结果比较符合实际。利用该模型在豫西某泥石流受威胁对象段任取10个断面进行研究分析:①计算出10年一遇、20年一遇、50年一遇、100年一遇等降水概率工况下最深泥位、流速、行洪断面大小,研究其随雨强大小的演变规律。②定量分析了各断面泄洪能力强弱。③结合泥石流强度判定标准对所选区域进行危险度分区,划分了极高危险区、高危险区、中危险区、低危险区。该模型不仅可以为预测泥石流各项指标提供基本参数,而且可为灾害防治提供科学依据。研究成果对泥石流的精细化防治方面具有重要支撑作用。

  • 加载中
  • 图 1  研究区位置及地质背景图

    Figure 1. 

    图 2  泥石流发育形态特征图和量测断面位置图

    Figure 2. 

    图 3  AA`断面数学模型构建示意图

    Figure 3. 

    图 4  数学模型中角度和断面面积函数关系图

    Figure 4. 

    图 5  模型递归计算示意图

    Figure 5. 

    图 6  行洪断面和雨强关系图

    Figure 6. 

    图 7  流速、最深泥位和雨强关系图

    Figure 7. 

    图 8  AA`断面100年一遇降水工况下泥位深度分区示意图

    Figure 8. 

    图 9  各降水强度下测量断面区域危险度分区图

    Figure 9. 

    图 10  各断面淹没区、高位区淹没宽度占压其行洪总宽度比例

    Figure 10. 

    表 1  AA`断面测量数据表

    Table 1.  The table of measurement data for AA` profiles

    点号A1A2A3A4A5A6A7A8A9A10
    X3770586377059337706013770608377062937706353770638377066937707153770735
    Y533751533752533754533755533758533759533759533765533772533776
    H1069106910681062106310631064106710681071
    下载: 导出CSV

    表 2  不同雨强条件下各断面的泥位、流速计算表

    Table 2.  Calculation table for mud level and flow velocity of each profiles under various rain conditions

    降水概率断面名称A-A`B-B`C-C`D-D`E-E`F-F`G-G`H-H`I-I`J-J`
    100年一遇最深泥位(m)3.956.036.118.486.454.457.054.975.285.38
    流速(m/s)1.681.391.541.371.371.441.341.481.421.46
    断面面积(m2189224229195246249287395460481
    50年一遇最深泥位(m)3.625.545.618.066.174.576.724.564.564.94
    流速(m/s)1.351.301.411.201.251.261.301.371.211.38
    断面面积(m2117190194160218284236333402406
    20年一遇最深泥位(m)3.235.254.997.515.513.995.984.064.064.39
    流速(m/s)1.301.251.231.201.201.101.181.251.051.26
    断面面积(m293145153124159228188264319320
    10年一遇最深泥位(m)2.974.834.606.915.073.675.503.743.744.04
    流速(m/s)1.261.181.111.761.130.991.101.150.931.18
    断面面积(m278123130105135193159224271271
    下载: 导出CSV

    表 3  泥石流强度判定准则

    Table 3.  Judgment criteria for debris flow intensity

    泥石流强度泥深H(m)关系泥深H与最大流速V的乘积(m2/s)
    H≥2.5V*H≥2.5
    0.5<H≤2.50.5<V*H≤2.5
    0<H≤0.50<V*H≤0.5
    下载: 导出CSV

    表 4  模型递归的最终角度以及面积误差表

    Table 4.  Final angle and area error table for model iterations

    断面名称A-A`B-B`C-C`D-D`E-E`F-F`G-G`H-H`I-I`J-J`
    100年一遇α1(°)86.5784.973753838370.8888.1488.2487.7
    α2(°)47.9645.2385.0574.44748785.51512783.17
    CAD测量实际面积(m2175214237202244278279380501468
    模型求解的理论面积(m2189224229195246249287395460481
    面积误差(%)64.73.53.56.12.134.183
    断面名称A-A`B-B`C-C`D-D`E-E`F-F`G-G`H-H`I-I`J-J`
    50年一遇α1(°)86.5784.97375382836788.1488.587.7
    α2(°)47.9645.2385.0574.44748783512783.17
    CAD测量实际面积(m2116175199157202265251332392409
    模型求解的理论面积(m2117190194160218284236333402406
    面积误差(%)0.908.422.612.008.027.305.660.222.640.77
    断面名称A-A`B-B`C-C`D-D`E-E`F-F`G-G`H-H`I-I`J-J`
    20年一遇α1(°)86.5784375382846788.1488.587.7
    α2(°)47.9645.2385.057273.538783512783.17
    CAD测量实际面积(m296154153119162215184282312338
    模型求解的理论面积(m293145153124159228188264319320
    面积误差(%)3.525.600.284.211.985.662.046.392.135.10
    断面名称A-A`B-B`C-C`D-D`E-E`F-F`G-G`H-H`I-I`J-J`
    10年一遇α1(°)86.5784375382846788.1488.587.7
    α2(°)47.9645.2385.057273.538783512783.17
    CAD测量实际面积(m28512512599130179146246262294
    模型求解的理论面积(m278123130105135193159224271271
    面积误差(%)7.222.074.036.163.787.408.719.043.487.86
    下载: 导出CSV
  • [1]

    柴春岭, 陈守煜. 模糊优选神经网络模型在泥石流平均流速预测中应用研究[J]. 大连理工大学学报, 2008, 48 ((6): 887-891

    CHAI Chunling, CHEN Shouyu. Research on application of fuzzy optimization neural network model to debris flow average velocity forecasting[J]. Journal of Dalian University of Technology, 2008, 48 ((6): 887-891.

    [2]

    常士骠, 张苏民. 工程地质手册(第五版)[M]. 北京: 中国建筑工业出版社, 2018,691

    CHANG Shibiao, ZHANG Sumin. Geological Engineering Handbook(The fifth Edition)[M]. Beijing: China Construction Industry Press, 2018,691.

    [3]

    丛凯, 李瑞冬, 毕远宏. 基于FLO-2D模型的泥石流治理工程效益评价[J]. 西北地质, 2019, 52(3): 209-216

    CONG Kai, LI Ruidong, BI Yuanhong. Benefit Evaluation of Debris Flow Control Engineering Based on the FLO-2D Model[J]. Northwestern Geology, 2019, 52(3): 209-216.

    [4]

    杜榕桓, 李鸿琏, 唐邦兴, 等. 三十年来的中国泥石流研究[J]. 自然灾害学报, 1995(01): 64-73

    DU Ronghuan, LI Honglian, TANG Bangxing, et al. Research on debris flow for thirty years in China[J]. Journal of Natural Disasters, 1995(01): 64-73.

    [5]

    高东光. 桥涵水文[M]. 北京: 人民交通出版社, 2005: 76-87

    GAO Dongguang. Hydrology and Hydraulics for Bridge Engineering[M]. Beijing: China Communications Press, 2005: 76-87.

    [6]

    韩征, 徐林荣, 苏志满, 等. 基于流域形态完整系数的泥石流容重计算方法[J]. 水文地质工程地质, 2012, 39(2): 100-105

    HAN Zheng, XU Linrong, SU Zhiman, et al. Research on the method for calculating the bulk density of debris flow based on the integrity coefficient of watershed morphology[J]. Hydrogeology&Engineering Geology, 2012, 39(2): 100-105.

    [7]

    黄崇福. 自然灾害基本定义的探讨[J]. 自然灾害学报, 2009, 18(5): 41-50 doi: 10.3969/j.issn.1004-4574.2009.05.007

    HUANG Chongfu. A discussion on basic definition of natural disaster[J]. Journal of Natural Disasters, 2009, 18(5): 41-50. doi: 10.3969/j.issn.1004-4574.2009.05.007

    [8]

    康志成, 李焯芬, 马蔼乃, 等. 中国泥石流研究[M]. 北京: 科学出版社, 2004

    KANG Zhicheng, LI Chuofen, MA Ainai, et al. Research on debris flow in China[M]. Beijing: Science Press, 2004.

    [9]

    刘波, 胡卸文, 何坤, 等. 西藏洛隆县巴曲冰湖溃决型泥石流演进过程模拟研究[J]. 水文地质工程地质, 2021, 48(5): 150-160

    LIU Bo, HU Xiewen, HE Kun, et al. Characteristics and evolution process simulation of the Baqu gully debris flow triggered by ice-lake outburst in Luolong County of Tibet, China[J]. Hydrogeology&Engineering Geology, 2021, 48(5): 150-160.

    [10]

    刘星宇, 刘向东, 赵浩, 等. 豫西某金矿矿渣转化为泥石流物源的危险性评价[J]. 中国地质灾害与防治学报, 2022, 33(5): 29-39

    LIU Xingyu, LIU Xiangdong, ZHAO Hao, et al. Risk assessment of source of debris flow from a gold slag heap in western Henan[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(5): 29-39.

    [11]

    倪化勇, 唐川. 中国泥石流起动物理模拟试验研究进展[J]. 水科学进展, 2014, 25(4): 606-613

    NI Huayong, TANG Chuan. Advances in the physical simulation experimeng on debris flow initiation in China[J]. Advance in Water Science, 2014, 25(4): 606-613.

    [12]

    唐亚明, 武立, 冯凡, 等. 泥石流风险减缓措施及经济决策—以山西吉县城北沟为例[J]. 西北地质, 2021, 54(4): 227-238

    TANG Yaming, WU Li, FENG Fan, et al. Risk Mitigation Measures and Economic Decisions on Debris Flow -Taking Beigou of Jixian County, Shanxi Province as an Example[J]. Northwestern Geology, 2021, 54(4): 227-238.

    [13]

    唐川, 周钜乾, 朱静等. 泥石流堆积扇危险度分区评价的数值模拟研究[J]. 灾害学, 1994(04): 7-13

    TANG Chuan, ZHOU Juqian, ZHU Jing, et al. A Study on the risk zoning debris flow on alluvial fans by applying technology of numerical simulation[J]. Journal of Catastrophology, 1994(4): 7-13.

    [14]

    王喜安, 陈剑刚, 陈华勇, 等. 考虑浆体黏度的泥石流流速计算方法[J]. 长江科学院院报, 2020, 37(4): 56-61

    WANG Xi`an, CHEN Jiangang, CHEN Huayong, et al. Calculation of Debris Flow Velocity in Consideration of Viscosity of Slurry[J]. Journal of Yangtze River Scientific Research Institute, 2020, 37(4): 56-61.

    [15]

    韦方强, 胡凯衡. 泥石流流速研究现状与发展方向[J]. 山地学报, 2009, 27(5): 545-550 doi: 10.3969/j.issn.1008-2786.2009.05.005

    WEI Fangqiang,HU Kaiheng, Review and Trends on Debris Flow Velocity Research[J]. Jounal of Mountain Science, 2009, 27(5): 545-550. doi: 10.3969/j.issn.1008-2786.2009.05.005

    [16]

    徐黎明, 王清, 陈剑平, 等. 基于BP神经网络的泥石流平均流速预测[J]. 吉林大学学报(地球科学版), 2013, 43(1): 186-191

    XU Liming, WANG Qing, CHEN Jianping, et al. Forcast for Average Velocity of Debris Flow Based on BP Neural Network[J]. Journal of Jilin University(Earth Science Edition), 2013, 43(1): 186-191.

    [17]

    徐士彬, 钱德玲, 姚兰飞, 等. 基于结构两相流模型计算泥石流对路基的冲击力[J]. 合肥工业大学学报(自然科学版), 2018, 41(3): 373-376+394

    XU Shibin, QIAN Deling, YAO Lanfei, et al. Calculation of impact force of debris flow on subgrade based on the model of conceptual two phase flow[J]. Journal of HeFei University of technology( natural science edition), 2018, 41(3): 373-376+394.

    [18]

    杨晓宇. 合作市砂子沟泥石流形成条件及危险度评价[J]. 河北地质大学学报, 2018, 41(3): 37-42

    YANG Xiaoyu. Forming Conditions and Risk Assessment on Debris Flow of Shazigou in the Hezuo City[J]. Journal of Hebei GEO University, 2018, 41(3): 37-42.

    [19]

    于国强, 张茂省, 王根龙, 等. 支持向量机和BP神经网络在泥石流平均流速预测模型中的比较与应用[J]. 水利学报, 2012, 43(S2): 105-110 doi: 10.3969/j.issn.0559-9350.2012.z2.019

    YU Guoqiang, ZHANG Maosheng, WANG Genglong, et al. Application and comparison of prediction models of support vector machines and back-propagation artificial neural network for debris flow average velocity[J]. Journal of Hydraulic Engineering, 2012, 43(S2): 105-110. doi: 10.3969/j.issn.0559-9350.2012.z2.019

    [20]

    朱立峰, 赵成, 于国强等. 三眼峪特大泥石流堆积特征[J]. 西北地质, 2011, 44(3): 30-37

    ZHU Lifeng, ZHAO Cheng, YU Guoqiang, et al. Accumulation Characteristics of Sanyanyu Extremely Big Debris Flow[J]. Northwestern Geology, 2011, 44(3): 30-37.

    [21]

    张罗号, 张红武, 张锦方, 等. 泥石流流速计算与模型设计方法[J]. 人民黄河, 2015, 37(4): 18-24

    ZHANG Luohao, ZHANG Hongwu, ZHANG Jingfang, et al. Calculation Method of Debris Flow Velocity and Debris Flow Model Design[J]. Yellow River, 2015, 37(4): 18-24.

    [22]

    中国科学院水利部成都山地灾害与环境研究所. 中国泥石流[M]. 北京: 商务印书馆, 2000

    Institute of Mountain Hazards and Environment, CAS. China debris flow[M]. Beijing: The Commercial Press, 2000.

    [23]

    ASCH, TH. W. J. VAN, TANG, C. , ALKEMA, D. , et al. An integrated model to assess critical rainfall thresholds for run-out distances of debris flows. [J]. Natural Hazards, 2014, 70(1): 299-311. doi: 10.1007/s11069-013-0810-z

    [24]

    Iverson, Richard M. The physics of debris flows[J]. Reviews of Geophysics, 1997, 35(3): 245-296. doi: 10.1029/97RG00426

  • 加载中

(10)

(4)

计量
  • 文章访问数:  303
  • PDF下载数:  187
  • 施引文献:  0
出版历程
收稿日期:  2023-06-08
修回日期:  2023-08-22
录用日期:  2023-08-23
刊出日期:  2024-06-20

目录