基于实景三维高分辨率地质剖面测量关键技术研究

王俊锋, 过磊, 李彬, 焦永清. 2025. 基于实景三维高分辨率地质剖面测量关键技术研究. 西北地质, 58(1): 282-290. doi: 10.12401/j.nwg.2023187
引用本文: 王俊锋, 过磊, 李彬, 焦永清. 2025. 基于实景三维高分辨率地质剖面测量关键技术研究. 西北地质, 58(1): 282-290. doi: 10.12401/j.nwg.2023187
WANG Junfeng, GUO Lei, LI Bin, JIAO Yongqing. 2025. Research on Key Technologies of Real 3d High-Resolution Geological Profile Survey. Northwestern Geology, 58(1): 282-290. doi: 10.12401/j.nwg.2023187
Citation: WANG Junfeng, GUO Lei, LI Bin, JIAO Yongqing. 2025. Research on Key Technologies of Real 3d High-Resolution Geological Profile Survey. Northwestern Geology, 58(1): 282-290. doi: 10.12401/j.nwg.2023187

基于实景三维高分辨率地质剖面测量关键技术研究

  • 基金项目: 甘肃省教育厅创新基金项目(2022A-244)、“问题地图”制图系统误差研究,中国地质调查局项目“西北地区自然资源综合调查”(DD20211393-1),甘肃省教育科学“十四五”规划2021年度课题(GS[2021]GHB1833),甘肃省职业教育教学改革研究(2021gszyjy-27),甘肃省教育厅2022年大学生创新创业训练计划项目(S202212836004)联合资助。
详细信息
    作者简介: 王俊锋(1981−),男,高级工程师,硕士,主要遥感地质工作。E−mail:wangmao4585@163.com
    通讯作者: 过磊(1982−),男,高级工程师,硕士,主要从事基础地质工作。E−mail:guolei198209@139.com。
  • 中图分类号: P234,P283.4,P56

Research on Key Technologies of Real 3d High-Resolution Geological Profile Survey

More Information
  • 地质剖面是地质研究的基本手段之一,随着实景三维技术快速发展,实景三维建模技术已逐渐应用于地质技术领域。笔者以数字相机、智能手机、无人机、多源遥感影像等可广泛获取的资源为基础对典型地质剖面进行实景三维模型获取和三维剖面测量研究分析,并引入投影方法和制图综合技术进行剖面测量、制图工作。与传统剖面相比,本研究地质剖面测量技术、测量成果具有严格的数学基础,工作成果具有明显的高精度、高效率等特征。因此,基于本研究实景三维地质剖面测量技术具较好的应用前景。

  • 加载中
  • 图 1  剖面实景三维建模及处理流程

    Figure 1. 

    图 2  常见地质剖面实景三维采集工具

    Figure 2. 

    图 3  实景三维产状测量图

    Figure 3. 

    图 4  实景三维剖面投影方式

    Figure 4. 

    图 5  典型地区地质剖面实景三维

    Figure 5. 

    图 6  新疆乌苏东图津河组实景三维制图综合剖面

    Figure 6. 

    表 1  实景三维与罗盘产状测量对比

    Table 1.  Comparison of real 3D and compass attitude measurement

    序号建模方法实景三维 罗盘测量 差值
    倾向倾角倾向倾角倾向倾角
    1 单反相机
    近景摄影
    建模
    113° 44° 118° 41° −5°
    2 134° 74° 133° 77° −3°
    3 121° 45° 124° 50° −3° −5°
    4 106° 57° 113° 51° −7°
    5 109° 59° 102° 61° −2°
    6 125° 41° 114° 47° 11° −6°
    1 无人机摄影
    建模(图5f
    189° 88° 187° 84°
    2 182° 87° 181° 79° −1°
    3 358° 84° 81° −3°
    4 189° 87° 192° 86° −3°
    5 275° 54° 279° 54° −4°
    下载: 导出CSV

    表 2  制图比例与分辨率

    Table 2.  Mapping scale and resolution

    制图比例分辨率(m)制图比例分辨率(m)
    1∶500.0051∶5000.05
    1∶1000.011∶10000.1
    1∶2500.0251∶20000.2
    下载: 导出CSV
  • [1]

    蔡小超, 唐红涛. 运用倾斜摄影测量技术精细提取新疆皮山县地质构造定量参数[J]. 地震研究, 2022, 45(03): 468-478

    CAI Xiaochao, TANG Hongtao. Precise Extraction of Quantitative Parameters of the Geological Structure in Pishan County, Xinjiang Using Oblique Photogrammetry[J]. Journal of Seismological Research, 2022, 45(03): 468-478.

    [2]

    常晓艳. 无人机倾斜摄影测量技术在地灾监测中的应用[D]. 秦皇岛: 燕山大学, 2021

    CHANG Xiaoyan. Application of UAV Tift photogrammetry technology in Geological Hazard Monitoring[D]. Qinhuangdao: Yanshan University, 2021.

    [3]

    崔玉福, 刘质加, 王靖. 数字孪生卫星技术与工程实践[J]. 航天器工程, 2021, 30(06): 62-69

    CUI Yufu, LIU Zhijia, WANG Jing. Digital Twin satallite Technology and Its Engineering Practice[J]. Spacecraft Engineering, 2021, 30(06): 62-69.

    [4]

    段修梅. 基于1∶1万地形数据更新1∶5万DEM的方法研究[D]. 长沙: 中南大学, 2012

    DUAN Xiumei. Updating method of 1∶50000 scale DEM Based on 1∶10000 scale terrain data[D]. Changsha: Central South University, 2012.

    [5]

    胡运海. 近景摄影测量技术在滑坡监测中的运用[D]. 成都: 成都理工大学, 2012

    HU Yunhai. The application of close-range photogrammetry in Landslide monitoring Take the landslide in Phoenix Mountain, Leigu Town, Beichuan County for example[D]. Chengdu: Chengdu University of Technology, 2012.

    [6]

    贾俊, 李志忠, 郭小鹏, 等. 多源遥感技术在降雨诱发勉县地质灾害调查中的应用[J]. 西北地质, 2023, 56(03): 268-280

    JIA Jun, LI Zhizhong, GUO XiaoPeng, et al. Application of Multi–source Remote Sensing Technology on Investigation of Geological Disasters Induced by Rainfall in Mian County[J]. North-western Geology, 2023, 56(03): 268-280.

    [7]

    李靖涵. 海底地貌自动制图综合算法研究[D]. 郑州: 战略支援部队信息工程大学, 2018

    LI Jinghan. Research on Automated Cartographic Generalization of Submarine Relief[D]. Zhengzhou: Information Engineering University, 2018.

    [8]

    李林, 朱立峰, 李政国等. 复杂断裂构造条件下城市地质三维建模方法研究[J]. 西北地质, 2022, 55(04): 133-139

    LI Ling, ZHU Lifeng, LI Zhengguo, et al. Technology Research on the Constructing of Urban Geological 3D Model in Condition of Complex Faults[J]. North-western Geology, 2022, 55(04): 133-139.

    [9]

    李玲, 王俊锋, 王龙杰, 等. RTK方法在地质剖面测量中的应用[J]. 陕西地质, 2018, 36(01): 95-98

    LI Ling, WANG Junfeng, WANG Longjie, et al. Application of RTK Method in Geological Profile Survey[J]. Geology of Shaanxi, 2018, 36(01): 95-98.

    [10]

    李煜. 基于无人机与摄影测量的不同尺度地质结构面精细识别[D]. 南京: 南京大学, 2017

    LI Yu. Fine Recognition of Geological Structure Surface on Different Scales by UAV and Photogrammetry[D]. Nanjing: Nanjing University, 2017.

    [11]

    梁京涛, 铁永波, 赵聪, 等. 基于贴近摄影测量技术的高位崩塌早期识别技术方法研究[J]. 中国地质调查, 2020, 7(05): 107-113

    LIANG Jingtao, TIE Yongbo, ZHAO Cong, et al. Technology and method research on the early detection of high-level collapse based on the nap-of-the-object photography[J]. Geological Survey of China, 2020, 7(05): 107-113.

    [12]

    刘波, 刘晓红, 朱颖. 无级比例尺 GIS 技术中制图要素分级探讨[C].海洋测绘综合性学术研讨会论文集. 2008.

    LIU Bo, LIU Xiaohong, ZHU Ying. A Discussion on the Grading of Mapping Elements in the GIS Technology with Continuous Scale[C].Comprehensive Academic Conference on Marine Surveying and Mapping. 2008.

    [13]

    刘立, 陈宏宇, 刘娟, 等. 地质灾害隐患三维一张图构建方法[J]. 测绘工程, 2022, 31(05): 46-53+60

    LIU Li, CHEN Hongyu, LIU Juan, et al. Research on the method of constructing a three-dimensional map of geological disasters[J]. Engineering of Surveying and Mapping, 2022, 31(05): 46-53+60.

    [14]

    刘帅, 陈建华, 王峰, 等. 基于无人机倾斜摄影的数字露头实景三维模型构建[J]. 地质科学, 2022, 57(03): 945-957

    LIU Shuai, CHEN Jianhua, WANG Feng, et al. Construction of a 3D model of digital outcrop real scene based on UAV oblique photography[J]. Chinese Journal of Geology(Scientia Geologica Sinica), 2022, 57(03): 945-957.

    [15]

    卢立吉, 王凤艳, 王明常, 等. 基于误差理论的产状测量精度评定[J]. 世界地质, 2016, 35(02): 567-574 doi: 10.3969/j.issn.1004-5589.2016.02.030

    LU Liji, WANG Fengyan, WANG Mingchang, et al. Evaluation on precision of occurrence measurement based on theory of errors[J]. GLOBAL GEOLOGY, 2016, 35(02): 567-574. doi: 10.3969/j.issn.1004-5589.2016.02.030

    [16]

    马建雄, 明镜, 郭微. 无人机倾斜摄影构造地质剖面解译[J]. 测绘通报, 2022(S2): 167-169+184

    MA Jianxiong, Ming Jing, GUO We. Interpretation of tectonic geological profiles based on UAV oblique photography[J]. Bulletin of Surveying and Mapping, 2022(S2): 167-169+184.

    [17]

    曲平, 王铁军, 梁文光. 地理信息数据库缩编方法的探讨[J]. 测绘与空间地理信息, 2012, 35(06): 75-76+79

    QU Ping, WANG Tiejun, LIANG Wenguang. Research on the Methods of Geoinformation Database Reduction[J]. Geomatics & Spatial Information Technology, 2012, 35(06): 75-76+79.

    [18]

    万荧, 邹进贵, 孟丽媛. 近景摄影测量在地质观测中的应用研究[J]. 测绘通报, 2016(S2): 250-253

    WAN Ying, ZOU Jingui, MENG Liyuan. Application of close-range photogrammetry in geological observations [J]. Bulletin of Surveying and Mapping, 2016(S2): 250-253.

    [19]

    王俊锋, 白宗亮, 田琮, 等. Google Earth在地质解译中的应用[J]. 新疆地质, 2014, 32(01): 136-140

    WANG Junfeng, BAI Zongliang, TIAN Cong, et al. The Application of Google Earth in Geological Interpretation[J]. Xinjiang Geology, 2014, 32(01): 136-140.

    [20]

    王莫. 对古建筑现状立面图表现形式的探讨[J]. 中国文物科学研究, 2015(01): 74-77 doi: 10.3969/j.issn.1674-9677.2015.01.021

    WANG Mo. A Discussion of Appearance Methods for Elevations Plan of HistoricalArchitecture's Current Situation[J]. China Cultural Heritage Scientific Research, 2015(01): 74-77. doi: 10.3969/j.issn.1674-9677.2015.01.021

    [21]

    闫博, 袁红旗, 袁康, 等. 无人机在地质工作中的应用[J]. 地质科学, 2020, 55(04): 1327-1339

    Yan Bo, Yuan Hongqi, Yuan Kang et al. Application of UAV in geological work. Chinese Journal of Geology, 2020.55(4): 1327-1339.

    [22]

    印森林, 谭媛元, 张磊, 等. 基于无人机倾斜摄影的三维露头地质建模: 以山西吕梁市坪头乡剖面为例[J]. 古地理学报, 2018, 20(05): 909-924

    YIN Senlin, TAN Yuanyuan, ZHANG Lei, et al. 3D outcrop geological modeling based on UAV oblique photography data: A case study of Pingtouxiang section in Lüliang City, Shanxi Province[J]. Journal of Palaeogeography(Chinese Edition), 2018, 20(05): 909-924.

    [23]

    张天继, 李永军, 王晓刚, 等. 西天山伊什基里克山一带东图津河组的确立[J]. 新疆地质, 2006(01): 13-15+99

    ZHANG Tianji, LI YongJun, WANG Xiaogang, et al. Fossil Envidence for the Dongtujinhe Formation of Yishenjilike Mountain, Westen TianShan[J]. Xinjiang Geology, 2006(01): 13-15+99.

    [24]

    赵丽宁, 赵德鹏. 数字海洋地理要素无级比例尺自动综合方法[J]. 大连海事大学学报, 2001(01): 106-109

    ZHAO Lining, ZHAO Depeng. A study on the method of geo-spatial information automatic generalization in Digital Ocean[J]. Journal of Dalian Maritime University, 2001(01): 106-109.

    [25]

    郑明, 宋扬, 唐菊兴, 等. 青藏高原高海拔—难进入地区无人机地质调查试验研究与应用展望[J]. 地质论评, 2022, 68(04): 1423-1438

    ZHENG Ming, SONG Yang, TANG Juxing, et al. Groundbreaking flying test of the UAV-Based geological survey in high-elevation and hard-to-reach areas of the Qinghai—Xizang(Tibet) Plateau and its application prospect[J]. Geological Review, 2022, 68(04): 1423-1438.

    [26]

    朱鹏先, 项巧敏. 空间直线与平面的交点[J]. 数学学习与研究, 2021(13): 149-150.

  • 加载中

(6)

(2)

计量
  • 文章访问数:  107
  • PDF下载数:  11
  • 施引文献:  0
出版历程
收稿日期:  2022-11-04
修回日期:  2023-08-01
录用日期:  2023-10-12
刊出日期:  2025-02-20

目录