U-Pb Dating, Hf-isotopic Characteristics and Tectonic Implications of Granite, Alichur Dome, Southern Pamir, Tajikistan
-
摘要:
南帕米尔地区分布一系列受拆离断层控制,于印度–欧亚大陆碰撞过程中形成的穹隆构造,穹隆核部以晚中生代花岗岩和高级变质岩为主,并有少量新生代花岗质侵入岩。为阐明穹隆有关花岗岩的侵位背景和构造意义,笔者通过LA-MC-ICP锆石U-Pb定年测试获得侵位到穹隆拆离断层韧性剪切带中的花岗岩和占穹隆体积主体的核部白垩纪花岗岩年龄,分别为(19.3±0.4)Ma和(111.7±0.8)Ma。结合帕米尔地区和南帕米尔穹隆构造已有研究成果,笔者认为锆石Hf同位素特征反映南帕米尔地区晚中生代花岗岩是含有亏损地壳熔融作用的结果。新生代花岗岩形成于构造减压导致的中下地壳部分熔融作用,宏观上可能形成于印度板块碰撞俯冲过程中的减速调整阶段。
Abstract:Cenozoic domes separated by detachments and formed during the India-Eurasian collision, are commonly distributed in the southern Pamir. The core complex of these domes are made up of high-grade metamorphic rocks and granite. The granite mainly formed during the Late Mesozoic and minor of them formed during the Cenozoic. The granite samples gathered along the detachments and from the granite comprising the bulk Alichur dome are measured by on the LA-MC-ICP U-Pb zircon dating. The formation times of the granite are (19.30±0.36) Ma and (111.7±0.8) Ma. Hf-isotopic characteristics of zircon demonstrate the granite formed by partial melting of crust. The Cenozoic granite is probably closely associated with the structural decompression caused by the extensional decollement of the domes.
-
-
图 1 帕米尔地区构造地质简图(a)和Alichur穹隆构造地质图(b)(据Stübner et al.,2013b修改)
Figure 1.
表 1 南帕米尔阿里秋穹隆花岗岩LA-MC-ICPMS锆石原位U-Pb测试数据统计表
Table 1. LA-MC-ICPMS in-situ analysis of zircon U-Pb isotopic data of the granitic rocks from the Alichur dome
分析
点号含量(10−6) Th/U 同位素比值 表观年龄(Ma) Th U 207Pb/235U ±1σ 206Pb/238U ±1σ 208Pb/232Th ±1σ 207Pb/235U ±1σ 206Pb/238U ±1σ 208Pb/232Th ±1σ NP0301 143.8 218.79 0.66 0.01924 0.00617 0.00306 0.00020 0.00175 0.00035 19.3 6.15 19.7 1.27 35.4 7.09 NP0303 74.3 1073.54 0.07 0.01875 0.00151 0.00287 0.00010 0.00076 0.00080 18.9 1.50 18.5 0.67 15.3 16.17 NP0305 242.0 1273.30 0.19 0.01868 0.00147 0.00289 0.00010 0.00110 0.00023 18.8 1.47 18.6 0.67 22.2 4.71 NP0306 105.8 399.03 0.27 0.01982 0.00494 0.00299 0.00017 0.00066 0.00062 19.9 4.92 19.3 1.06 13.3 12.54 NP0307 474.1 1537.50 0.31 0.02046 0.00138 0.00305 0.00011 0.00113 0.00017 20.6 1.37 19.6 0.68 22.9 3.37 NP0308 416.4 814.53 0.51 0.01909 0.00219 0.00300 0.00013 0.00125 0.00016 19.2 2.18 19.3 0.80 25.3 3.13 NP0309 160.3 373.64 0.43 0.02008 0.00468 0.00302 0.00019 0.00094 0.00050 20.2 4.66 19.4 1.25 19.0 10.00 NP0311 93.1 5043.10 0.02 0.01862 0.00096 0.00282 0.00009 0.00446 0.00116 18.7 0.96 18.2 0.59 90.0 23.32 NP0312 273.3 1000.64 0.27 0.01915 0.00185 0.00303 0.00011 0.00180 0.00023 19.3 1.84 19.5 0.73 36.4 4.74 NP0314 125.3 214.46 0.58 0.02058 0.00635 0.00317 0.00023 0.00033 0.00048 20.7 6.32 20.4 1.46 6.6 9.63 NP0315 118.0 188.78 0.62 0.02032 0.00798 0.00299 0.00021 0.00095 0.00048 20.4 7.95 19.2 1.35 19.2 9.66 NP0316 143.2 1130.85 0.13 0.02051 0.00157 0.00311 0.00011 0.00077 0.00034 20.6 1.56 20.0 0.71 15.5 6.82 NP0317 153.1 211.37 0.72 0.02003 0.00869 0.00308 0.00022 0.00061 0.00047 20.1 8.65 19.8 1.39 12.4 9.44 NP0319 114.2 620.13 0.18 0.01979 0.00314 0.00299 0.00016 0.00107 0.00059 19.9 3.12 19.2 1.01 21.5 11.96 NP0321 122.4 342.71 0.36 0.01900 0.00438 0.00298 0.00017 0.00122 0.00047 19.1 4.36 19.2 1.08 24.6 9.57 NP0322 312.4 1203.89 0.26 0.02029 0.00166 0.00308 0.00012 0.00163 0.00020 20.4 1.66 19.8 0.74 32.8 4.08 NP0323 353.8 884.27 0.40 0.01995 0.00185 0.00300 0.00011 0.00108 0.00016 20.1 1.84 19.3 0.74 21.9 3.18 NP0324 247.9 438.90 0.56 0.01879 0.00401 0.00310 0.00016 0.00106 0.00023 18.9 3.99 20.0 1.03 21.3 4.61 NP0325 104.3 395.11 0.26 0.01962 0.00401 0.00298 0.00017 0.00153 0.00051 19.7 4.00 19.2 1.09 31.0 10.30 NP0326 513.0 879.07 0.58 0.01956 0.00220 0.00304 0.00013 0.00121 0.00013 19.7 2.19 19.5 0.81 24.3 2.60 NP0327 213.9 1486.34 0.14 0.02058 0.00172 0.00310 0.00012 0.00130 0.00030 20.7 1.71 19.9 0.78 26.3 5.97 NP0328 111.5 246.43 0.45 0.01994 0.00945 0.00300 0.00025 0.00193 0.00070 20.0 9.41 19.3 1.58 39.0 14.14 NP0330 113.6 390.17 0.29 0.02005 0.00729 0.00322 0.00025 0.00030 0.00097 20.2 7.26 20.7 1.58 6.1 19.55 NP0402 57.9 2654.42 0.02 0.12643 0.00510 0.0173 0.0005 0.00058 0.00166 120.9 4.6 110.7 3.3 11.7 33.5 NP0403 171.0 269.53 0.63 0.39155 0.02198 0.0512 0.0017 0.02486 0.00131 335.5 16.0 321.8 10.3 496.4 25.9 NP0405 412.3 724.18 0.57 0.82503 0.02686 0.0977 0.0028 0.02909 0.00111 610.8 14.9 600.8 16.3 579.5 21.8 NP0406 101.7 1267.19 0.08 0.15105 0.00707 0.0207 0.0007 0.01285 0.00162 142.8 6.2 132.2 4.2 258.1 32.3 NP0407 37.6 1524.64 0.02 0.11813 0.00478 0.0175 0.0005 0.00206 0.00274 113.4 4.3 111.6 3.3 41.5 55.3 NP0408 77.4 2529.12 0.03 0.12049 0.00430 0.0174 0.0005 0.00800 0.00135 115.5 3.9 110.9 3.2 161.1 27.1 NP0409 52.9 3352.01 0.02 0.11700 0.00379 0.0171 0.0005 0.00561 0.00200 112.4 3.5 109.1 3.0 113.2 40.2 NP0410 104.3 4012.15 0.03 0.11850 0.00400 0.0175 0.0005 0.00658 0.00120 113.7 3.6 112.0 3.1 132.6 24.1 NP0411 59.7 3293.66 0.02 0.11706 0.00375 0.0177 0.0005 0.00676 0.00132 112.4 3.4 112.8 3.1 136.1 26.5 NP0413 162.2 436.98 0.37 0.70484 0.02512 0.0872 0.0026 0.02872 0.00143 541.7 15.0 539.2 15.2 572.3 28.1 NP0414 67.5 1492.78 0.05 0.12044 0.00474 0.0176 0.0005 0.00713 0.00160 115.5 4.3 112.6 3.3 143.7 32.1 NP0415 70.0 1037.48 0.07 0.12457 0.00607 0.0177 0.0006 0.00495 0.00148 119.2 5.5 113.2 3.6 99.8 29.8 NP0416 81.5 1462.34 0.06 0.12392 0.00455 0.0176 0.0005 0.00631 0.00113 118.6 4.1 112.4 3.2 127.1 22.7 NP0417 51.1 1906.82 0.03 0.11629 0.00449 0.0175 0.0005 0.00441 0.00170 111.7 4.1 111.6 3.3 89.0 34.2 NP0418 85.2 3397.08 0.03 0.11352 0.00366 0.0174 0.0005 0.00435 0.00119 109.2 3.3 111.3 3.1 87.7 24.0 NP0419 78.5 251.13 0.31 0.11288 0.00346 0.0174 0.0005 0.00766 0.00113 108.6 3.2 111.2 3.1 154.1 22.7 NP0420 251.1 255.73 0.98 1.25702 0.04523 0.1377 0.0042 0.04214 0.00162 826.6 20.4 831.7 23.6 834.2 31.5 NP0421 93.1 4868.35 0.02 0.11638 0.00365 0.0175 0.0005 0.00725 0.00111 111.8 3.3 111.6 3.1 145.9 22.3 NP0422 38.1 1223.48 0.03 0.11991 0.00622 0.0175 0.0006 0.00117 0.00210 115.0 5.6 112.0 3.7 23.7 42.4 NP0424 70.9 852.63 0.08 0.12380 0.00808 0.0178 0.0007 0.00404 0.00151 118.5 7.3 113.6 4.3 81.4 30.4 NP0425 116.7 135.35 0.86 0.72411 0.03842 0.0913 0.0031 0.02536 0.00158 553.1 22.6 563.0 18.1 506.2 31.1 NP0426 223.5 495.14 0.45 1.28393 0.03913 0.1380 0.0040 0.03992 0.00152 838.6 17.4 833.5 22.5 791.1 29.5 NP0427 42.5 1101.99 0.04 0.12908 0.01095 0.0210 0.0009 0.00672 0.00484 123.3 9.9 134.2 5.5 135.4 97.2 NP0428 36.1 2083.96 0.02 0.12043 0.00983 0.0175 0.0007 0.02813 0.01335 115.5 8.9 111.8 4.2 560.8 262.4 NP0429 72.7 4401.50 0.02 0.06997 0.02132 0.0111 0.0008 0.04031 0.03220 68.7 20.2 71.3 4.9 798.8 625.7 NP0430 29.2 2307.17 0.01 0.11104 0.01823 0.0174 0.0008 − 0.05540 0.04297 106.9 16.7 111.1 5.3 ****** 919.5 表 2 南帕米尔阿里秋穹隆花岗岩LA-MC-ICPMS锆石原位Lu-Hf同位素测试数据统计表
Table 2. LA-MC -ICPMS in-situ analysis of zircon Lu-Hf isotopic compositions of the granitic rocks from the Alichur dome
样点 t(Ma) 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf ±2σ εHf(t) ±1σ TM1(Ga) ±1σ TM2(Ga) ±1σ Hf-NP0301 19.7 0.013835 0.000476 0.282585 0.000026 −6.2 0.9 0.933 0.037 1.493 0.037 Hf-NP0303 18.9 0.013484 0.000423 0.282658 0.000044 −3.6 1.5 0.830 0.061 1.329 0.061 Hf-NP0305 18.8 0.018061 0.000593 0.282655 0.000031 −3.7 1.1 0.837 0.044 1.335 0.044 Hf-NP0306 19.3 0.014554 0.000500 0.282677 0.000029 −2.9 1.0 0.805 0.040 1.286 0.040 Hf-NP0307 19.6 0.022387 0.000757 0.282745 0.000033 −0.5 1.2 0.714 0.047 1.132 0.047 Hf-NP0308 19.3 0.016693 0.000539 0.282641 0.000031 −4.2 1.1 0.855 0.043 1.365 0.043 Hf-NP0309 19.4 0.021724 0.000784 0.282696 0.000028 −2.3 1.0 0.785 0.039 1.244 0.039 Hf-NP0311 18.2 0.026357 0.000993 0.282687 0.000011 −2.6 0.4 0.801 0.016 1.264 0.016 Hf-NP0312 19.5 0.028432 0.001018 0.282701 0.000029 −2.1 1.0 0.782 0.042 1.232 0.042 Hf-NP0314 20.4 0.019871 0.000711 0.282657 0.000014 −3.6 0.5 0.837 0.019 1.330 0.019 Hf-NP0315 19.2 0.009878 0.000339 0.282643 0.000028 −4.1 1.0 0.848 0.038 1.361 0.038 Hf-NP0316 20.0 0.005533 0.000200 0.282630 0.000024 −4.6 0.8 0.863 0.033 1.391 0.033 Hf-NP0317 19.8 0.020546 0.000749 0.282664 0.000030 −3.4 1.0 0.828 0.042 1.315 0.042 Hf-NP0319 19.2 0.011475 0.000420 0.282679 0.000026 −2.9 0.9 0.801 0.036 1.282 0.036 Hf-NP0321 19.2 0.010760 0.000401 0.282630 0.000028 −4.6 1.0 0.867 0.039 1.390 0.039 Hf-NP0322 19.8 0.009521 0.000336 0.282591 0.000026 −6.0 0.9 0.920 0.036 1.478 0.036 Hf-NP0323 19.3 0.030648 0.001102 0.282693 0.000026 −2.4 0.9 0.795 0.036 1.251 0.036 Hf-NP0324 20.0 0.016524 0.000586 0.282647 0.000031 −4.0 1.1 0.848 0.043 1.352 0.043 Hf-NP0325 19.2 0.011486 0.000436 0.282671 0.000024 −3.2 0.8 0.811 0.033 1.299 0.033 Hf-NP0326 19.5 0.025873 0.000898 0.282644 0.000029 −4.1 1.0 0.860 0.041 1.360 0.041 Hf-NP0327 19.9 0.032599 0.001179 0.282693 0.000026 −2.4 0.9 0.796 0.036 1.249 0.036 Hf-NP0328 19.3 0.014380 0.000508 0.282753 0.000026 −0.2 0.9 0.698 0.036 1.114 0.036 Hf-NP0330 20.7 0.010649 0.000385 0.282629 0.000025 −4.6 0.9 0.869 0.034 1.393 0.034 Hf-NP0402 110.7 0.009428 0.000422 0.281634 0.000040 −37.8 1.4 2.234 0.054 3.541 0.054 Hf-NP0403 321.8 0.033497 0.001303 0.282266 0.000028 −11.1 1.0 1.404 0.040 2.030 0.040 Hf-NP0405 600.8 0.019334 0.000761 0.282540 0.000024 4.7 0.8 1.002 0.033 1.243 0.033 Hf-NP0406 132.2 0.012261 0.000446 0.282382 0.000027 −10.9 0.9 1.212 0.037 1.876 0.037 Hf-NP0407 111.6 0.016362 0.000665 0.282352 0.000025 −12.4 0.9 1.261 0.035 1.956 0.035 Hf-NP0408 110.9 0.010549 0.000445 0.282450 0.000022 −9.0 0.8 1.118 0.030 1.738 0.030 Hf-NP0409 109.1 0.011997 0.000513 0.281952 0.000043 −26.7 1.5 1.806 0.058 2.845 0.058 Hf-NP0410 112.0 0.052777 0.002021 0.282493 0.000023 −7.6 0.8 1.105 0.033 1.649 0.033 Hf-NP0411 112.8 0.012904 0.000532 0.282024 0.000028 −24.0 1.0 1.709 0.039 2.685 0.039 Hf-NP0413 541.7 0.008217 0.000373 0.282127 0.000025 −11.0 0.9 1.561 0.035 2.191 0.035 Hf-NP0414 112.6 0.012957 0.000487 0.282341 0.000023 −12.8 0.8 1.271 0.032 1.981 0.032 Hf-NP0415 113.2 0.018810 0.000726 0.282372 0.000024 −11.7 0.9 1.235 0.034 1.912 0.034 Hf-NP0416 112.4 0.036871 0.001403 0.282448 0.000024 −9.1 0.9 1.150 0.035 1.746 0.035 Hf-NP0417 111.6 0.024663 0.000937 0.282196 0.000042 −18.0 1.5 1.488 0.059 2.305 0.059 Hf-NP0418 111.3 0.029875 0.001134 0.282364 0.000024 −12.1 0.8 1.260 0.033 1.932 0.033 Hf-NP0419 111.2 0.034272 0.001311 0.282408 0.000021 −10.5 0.8 1.204 0.030 1.836 0.030 Hf-NP0420 831.7 0.020417 0.000968 0.281814 0.000028 −16.1 1.0 2.018 0.038 2.721 0.038 Hf-NP0421 111.6 0.026561 0.001049 0.282380 0.000023 −11.5 0.8 1.235 0.032 1.897 0.032 Hf-NP0422 112.0 0.027846 0.001096 0.282494 0.000025 −7.5 0.9 1.076 0.035 1.643 0.035 Hf-NP0424 113.6 0.020349 0.000780 0.282405 0.000024 −10.5 0.8 1.191 0.033 1.838 0.033 Hf-NP0425 553.1 0.018401 0.000755 0.282477 0.000024 1.5 0.8 1.090 0.033 1.414 0.033 Hf-NP0426 833.5 0.013424 0.000569 0.282360 0.000021 3.5 0.7 1.247 0.029 1.500 0.029 Hf-NP0427 134.2 0.019654 0.000760 0.282362 0.000024 −11.6 0.8 1.251 0.034 1.922 0.034 Hf-NP0428 111.8 0.019300 0.000752 0.282281 0.000034 −15.0 1.2 1.363 0.047 2.116 0.047 Hf-NP0429 71.3 0.038764 0.001422 0.282434 0.000029 −10.5 1.0 1.171 0.041 1.801 0.041 Hf-NP0430 111.1 0.025280 0.000969 0.282389 0.000031 −11.2 1.1 1.220 0.044 1.876 0.044 注:本次实验采用91500作标样,所测样品锆石的Hf同位素成分用标样进行校正;表中锆石Hf同位素成分的计算参数为:λ(176Lu)=1.867×10−11a−1,球粒陨石176Lu/177Hf = 0.0332 ,176Hf/177Hf =0.282 772(Blichert-Toft et al.,1997);亏损地幔176Lu/177Hf =0.0384 ,176Hf/177Hf =0.28325 (Griffin et al.,2000)。 -
[1] 范堡程, 孟广路, 刘明义, 等. 塔吉克斯坦成矿单元划分及其特征[J]. 地质科技情报, 2017, 36(2): 168−175.
FAN Baocheng, MENG Guanglu, LIU Mingyi, et al. Division and Features of the Metallogenic Units in Tajikistan[J]. Geological Science and Technology Information,2017,36(2):168−175.
[2] 范堡程, 张晶, 孟广路, 等. 帕米尔构造结锂矿资源潜力评价——基于1∶100万地球化学调查[J]. 西北地质, 2022, 55(1): 156−166.
FAN Baocheng, ZHANG Jing, MENG Guanglu, et al. An Assessment of Lithium Resource Potentiality in Pamir Syntax: Based on 1: 1 million Scale of Geochemical Survey[J]. Northwestern Geology,2022,55(1):156−166.
[3] 范堡程, 张晶, 孟广路, 等. 地球化学块体理论在塔吉克斯坦金资源潜力预测中的应用[J]. 西北地质, 2020, 53(1): 138−145.
FAN Baocheng, ZHANG Jing, MENG Guanglu, et al. Application of Geochemical Blocks Theory in the Prediction of Gold Resource Potential in Tajikistan[J]. Northwestern Geology,2020,53(1):138−145.
[4] 洪俊, 计文化, 张海迪, 等. 帕米尔地区穆尔尕布辉长岩-闪长岩的成因: 锆石U-Pb年龄、Hf同位素及岩石地球化学证据[J]. 中国地质, 2017, 44(4): 722−736. doi: 10.12029/gc20170406
HONG Jun, JI Wenhua, ZHANG Haidi, et al. Petrogenesis of Murgab gabrro-diorite from Pamir: Evidence from zircon U-Pb dating, Hf isotopes and lithogeochemistry[J]. Geology in China,2017,44(4):722−736. doi: 10.12029/gc20170406
[5] 侯可军, 李延河, 邹天人, 等. LA-MC-ICP-MS锆石Hf同位素的分析方法及地质应用[J]. 岩石学报, 2007, 23(10): 2595−2604.
HOU Kejun,LI Yanhe,ZOU Tianren,et al. Laser ablation-MC-ICP-MS technique for Hf isotope microanalysis of zircon and its geological appications[J]. Acta Petrologica Sinica,2007,23(10):2595−2604.
[6] 李艳广, 汪双双, 刘民武, 等. 斜锆石LA-ICP-MS U-Pb定年方法及应用[J]. 地质学报, 2015, 89(12): 2400−2418.
LI Yanguang,WANG Shuangshuang,LIU Minwu,et al. U-Pb Dating Study of Baddeleyite by LA-ICP-MS:Technique and Application[J]. Acta Geologica Sinica,2015,89(12):2400−2418.
[7] 李艳广, 靳梦琪, 汪双双, 等. LA-ICP-MS U-Pb定年技术相关问题探讨[J]. 西北地质, 2023, 56(4): 274−282. doi: 10.12401/j.nwg.2023104
LI Yanguang, JIN Mengqi, WANG Shuangshuang, et al. Exploration of Issues Related to the LA–ICP–MS U–Pb Dating Technique[J]. Northwestern Geology,2023,56(4):274−282. doi: 10.12401/j.nwg.2023104
[8] 吕鹏瑞, 姚文光, 张辉善, 等. 巴基斯坦及中国邻区构造单元划分及其演化[J]. 西北地质, 2017, 50(3): 126−139. doi: 10.3969/j.issn.1009-6248.2017.03.014
LÜ Pengrui, YAO Wenguang, ZHANG Huishan, et al. Tectonic Unit Division and Geological Evolution of Pakistan and Its Adjacent Regions[J]. Northwestern Geology,2017,50(3):126−139. doi: 10.3969/j.issn.1009-6248.2017.03.014
[9] 吴福元, 刘志超, 刘小驰, 等. 喜马拉雅淡色花岗岩[J]. 岩石学报, 2015, 31(1): 1−36.
WU Fuyuan,LIU Zhichao,LIU Xiaochi,et al. Himalayan leucogranite: Petrogenesis and implications to orogenesis and plateau uplift[J]. Acta Petrologica Sinica,2015,31(1):1−36.
[10] 张海迪, 吕鹏瑞, 罗彦军, 等. 塔吉克斯坦帕米尔地区构造单元划分及其特征[J]. 地质与勘探, 2019, 55(01): 135−144.
ZHANG Haidi,LÜ Pengrui,LUO Yanjun,et al. Tectonic Unit Division of the Pamir Area in Tajikistan and its Geological Characteristics[J]. Geology and Exploration,2019,55(01):135−144.
[11] Blichert-Toft J, Albarède F. The Lu-Hf Isotope Geochemistry of Chondrites and the Evolution of the Mantle-Crust System[J]. Earth and Planetary Science Letters,1997,148(1−2):243−258.
[12] Griffin W L, Pearson N J, Belousova E A, et al. The Hf isotope composition of cratonic mantle: LA-ICPMS analysis of zircon megacrysts in kimberlites[J]. Geochimica et Cosmochimica Acta, 2000, 64, 133–147.
[13] Hubbard M S, Grew E S, Hodges K V, et al. Neogene cooling andexhumation of upper-amphibolite facies ‘‘whiteschists’’ in the southwest Pamir Mountains, Tajikistan[J]. Tectonophysics, 1999, 305: 325 – 337.
[14] Meng E, Liu F L, Liu P H, et al. Petrogenesis and tectonic significance of Paleoproterozoic meta-mafic rocks from central Liaodong Peninsula, northeast China: Evidencefrom zircon U-Pb dating and in situ Lu-Hf isotopes, and whole-rock geochemistry[J]. Precambrian Research,2014,247:92−109. doi: 10.1016/j.precamres.2014.03.017
[15] Ludwig K R. ISOPLOT 3.0: A Geochronological Toolkit for Microsoft Excel[A]. Berkeley Geochronology Center, California, Berkeley, 2003.
[16] Schmidt J, Hacker B R, Ratschbacher L, et al. Cenozoic deep crust in the Pamir [J]. Earth and Planetary Science Letters, 2011, 312, 411–421. doi: 10.1016/j.jpgl.2011.10.034.
[17] Schwab M, et al. (2004), Assembly of the Pamirs: Age and origin of magmatic belts from the southern Tien Shan to the southern Pamirs and their relation to Tibet. [J] Tectonics, 23, TC4002. doi:10.1029/2003TC001583.
[18] Sippl C, Schurr B, Tympel J, et al. Geometry of the Pamir–Hindu Kush intermediate-depth earthquakes zone from local seismic data[J]. Journal of Geophysical Research-Atmospheres, 2013,118, 1438–1457.
[19] Smit M A, Hacker B R, Ratschbacher L. Lu–Hf geochronol-ogy constrains slow burial of crust in active orogens: The Pamir gneiss domes[A]. European Mineral Confonrence, 2012, 1, EMC2012-706.
[20] Smit M A, Ratschbacher L, Kooijman E, et al. arly evolution of the Pamir deep crust from Lu-Hf and U-Pb geochronology and garnet thermometry[J]. Geology,2014,42(12):1047−1050. doi: 10.1130/G35878.1
[21] Stübner K, Ratschbacher L, Rutte D, et al. The giant Shakhdaramigmatitic gneiss dome, Pamir, India–Asia collision zone: 1. Geometry and kinematics[J]. Tectonics,2013a,32:948−979. doi: 10.1002/tect.20057
[22] Stübner K, Ratschbacher L, Weise C, et al. The giant Shakhdaramigmatitic gneiss dome, Pamir, India–Asia collision zone: 2 Timing of dome formation[J]. Tectonics,2013b,32:1401−1431.
[23] Tapponnier P, Mattauer M, Proust F, et al. Mesozoic ophiolites, sutures, and large-scale tectonic movements in Afghanistan[J]. Earth and Planetary Science Letters,1981,52:355−371. doi: 10.1016/0012-821X(81)90189-8
[24] Yin A, Harrison T M. Geologic evolution of the Himalayan–Tibet orogen [J]. Annual Review of Earth and Planetary Sciences, 2000, 28, 211–280.
[25] Van Achterbergh E, Ryan C G, Jackson S E, et al. Data reduction software for LA-ICP-MS[A]. In: Sylvester P J (Ed.). Laser-Ablation-ICP MS in the Earth Sciences: Principles and Applications[M]. Mineralogical Society of Canada Short Course Series 29, 2001: 239–243.
-