Engineering Geological Property of Loess and Cause of Spatial and Temporal Distribution of Landslide Geo-Hazards in Yili Valley
-
摘要:
黄土滑坡是伊犁谷地最为典型的地质灾害之一。为揭示伊犁谷地黄土滑坡地质灾害时空分布的成因,针对伊犁谷地不同区域采集了121件黄土原状样品开展物理力学性质试验,并分析伊犁谷地滑坡地质灾害发育特征与时空分布规律,研究伊犁黄土工程地质性质与滑坡地质灾害时空分布规律的相关性。研究表明,伊犁谷地滑坡在空间上主要分布于黄土发育的中低山区与山前黄土丘陵区,集中分布在伊犁谷地东南部,时间上,主要集中发育在每年的4~5月融雪期;较大的细颗粒含量与天然含水率以及低抗剪强度是空间上伊犁谷地东南部黄土滑坡发育的根本原因;黄土的低渗透性、反复冻融作用造成表部黄土劣化与强度降低是导致伊犁谷地4~5月融雪期浅表层黄土滑坡灾害发育的主要因素。笔者研究可为伊犁谷地黄土滑坡地质灾害的成因机制研究与防治提供参考。
Abstract:The Loess landslide is one of the most typical geo-hazards in Yili valley, Xinjiang. In order to reveal the causes of spatial and temporal distribution of loess landslides in Yili Valley, 121 undisturbed loess samples have been collected from different areas in Yili Valley and carried out physical and mechanical properties tests, and the development characteristics and spatial and temporal distribution of landslide geo-hazards in Yili Valley were analyzed, and then the correlation between the engineering geological properties of loess in Yili valley and the spatial and temporal distribution of landslide geo-hazards was studied. The results show that landslides in Yili Valley are mainly distributed in the middle and low mountain areas and the loess hilly areas in front of mountains, and are concentrated in the southeast of the Yili Valley; high fine particle content, high natural water content and low shear strength are the essential causes of loess landslide development in the southeastern of the Yili Valley; the low permeability of loess, and the deterioration and strength reduction of surface loess caused by repeated freeze-thaw are the main factors which lead to the development of shallow loess landslides in the snowmelt period from April to May in Yili Valley. The studies in this paper can provide reference for the research on the mechanism and prevention of the loess landslide geo-hazards in Yili Valley.
-
-
表 1 伊犁谷地滑坡体厚度分类表
Table 1. Classification of landslide thickness in Yili valley
滑坡厚度 (m) 浅层
<10 m中层
10 m≤h<25 m深层
25 m≤h<50 m超深层
>50 m合计 数量统计 (处) 1088 113 34 9 1244 比例 (%) 87.46 9.08 2.73 0.72 100.00 表 2 伊犁谷地滑坡地质灾害在行政单元上的分布数量
Table 2. Quantity of landslide geo-hazards in Yili valley Based on administrative units
行政单元 新源 巩留 尼勒克 特克斯 伊宁县 霍城 昭苏 察布查 伊宁市 合计 滑坡数量(处) 1169 546 378 123 79 51 50 48 18 2462 占比 47.48 22.18 15.35 5.00 3.21 2.07 2.03 1.95 0.73 100 表 3 伊犁谷地黄土的液塑限及塑性指数
Table 3. Liquid limit, plastic limit and plastic index of loess in Yili valley
指标 霍城县 伊宁县 察县 巩留县 尼勒克县 新源县 特克斯县 昭苏县 液限(%) 25.7 28.04 22.45 36.42 33.03 32.35 30.76 32.5 塑限(%) 13.44 7.44 6.89 2.88 10.18 7.17 12.81 12.99 塑性指数 12.26 20.6 15.56 33.54 22.85 25.18 17.95 19.51 表 4 伊犁谷地黄土的压缩指数、湿陷系数与渗透系数
Table 4. Compression index and coefficient of collapsibility and permeability
指标 霍城 伊宁 察县 巩留 尼勒克 新源 特克斯 昭苏 压缩指数 0.136 0.149 0.151 0.178 0.212 0.243 0.185 0.268 湿陷系数(%) 0.0032 0.0057 0.0041 0.077 0.047 0.05 0.023 0.0106 渗透系数(cm/s) 3.00E-07 2.00E-07 3.50E-07 6.50E-08 7.00E-08 4.50E-08 8.00E-08 8.00E-08 表 5 伊犁谷地黄土直剪强度
Table 5. Direct shear strength of loess in Yili valley
指标 霍城县 伊宁县 察县 巩留县 尼勒克县 新源县 特克斯县 昭苏县 100 kPa直剪强度 120.26 112.7 97.01 90.17 83.34 76.66 84.01 74.18 200 kPa直剪强度 191.26 156.37 145.39 141.34 132.79 132.48 139.24 125.87 400 kPa直剪强度 266.41 261.75 250.52 248.46 238.3 236.26 247.14 227.65 表 6 伊犁谷地黄土三轴剪切强度
Table 6. Triaxial shear strength of loess in Yili Valley
指标 霍城县 伊宁县 察县 巩留县 尼勒克县 新源县 特克斯县 昭苏县 100 kPa直剪强度 460.01 433.44 260.27 346.74 183.55 182.56 248.37 145.69 200 kPa直剪强度 754.85 536.55 535.8 491.97 373.97 318.38 435.88 262.63 400 kPa直剪强度 885.65 884.47 798.93 763.85 715.8 675.42 728.85 649.93 表 7 伊犁谷地不同区域黄土内聚力与内摩擦角
Table 7. Cohesion and internal friction angle of loess in different regions of Yili Valley
指标 霍城县 伊宁县 察县 巩留县 尼勒克县 新源县 特克斯县 昭苏县 粘聚力C(kPa) 18.32 25.38 23.91 29.79 31.91 34.97 28.1 31.22 内摩擦角φ(°) 34.14 29.65 27.02 25.67 23.02 19.08 27.32 28.37 -
[1] 安海堂, 刘平 . 新疆伊犁地区黄土滑坡成因及影响因素分析[J]. 地质灾害与环境保护,2010 ,21 (3 ):22 −25 .AN Haitang, LIU Ping . Genesis and influencing factors of loess landslides in Yili region in Xinjiang[J]. Journal of Geological Hazards and Environment Preservation,2010 ,21 (3 ):22 −25 .[2] 曹小红, 孟和, 尚彦军, 等 . 伊犁谷地黄土滑坡发育分布规律及成因[J]. 新疆地质,2020 ,38 (3 ):405 −411 .CAO Xiaohong, MENG He, SHANG Yanjun, et al . The development and distribution of loess landslides in Yili valley and its causes[J]. Xinjiang Geology,2020 ,38 (3 ):405 −411 .[3] 计文化, 王永和, 杨博, 等 . 西北地区地质、资源、环境与社会经济概貌[J]. 西北地质,2022 ,55 (3 ):15 −27 .JI Wenhua, WANG Yonghe, YANG Bo, et al . Overview of geology, resources, environment and social economy in northwest China[J]. Northwestern Geology,2022 ,55 (3 ):15 −27 .[4] 李越, 宋友桂, 宗秀兰, 等 . 伊犁盆地北部山麓黄土粒度端元指示的粉尘堆积过程[J]. 地理学报,2019 ,74 (1 ):162 −177 .LI Yue, SONG Yougui, ZONG Xiulan, et al . Dust accumulation processes of piedmont loess indicated by grain-size end members in northern Yili Basin[J]. Acta Geographica Sinica,2019 ,74 (1 ):162 −177 .[5] 梁世川, 乔华, 吕东, 等 . 伊犁谷地地质灾害分布特征及主控因素分析[J]. 干旱区地理,2023 ,46 (6 ):880 −888 .LIANG Shichuan, QIAO Hua, LV Dong, et al . Study on distribution characteristics and main controlling factors of geohazards in Ili Valley[J]. Arid Land Geography,2023 ,46 (6 ):880 −888 .[6] 毛伟, 如黑艳·木合买尔, 贺强 . 新疆伊犁谷地滑坡地质灾害形成机制及防治措施[J]. 西部资源,2018 (3 ):131 −134 .MAO Wei, RU Heiyan, HE Qiang . Formation mechanism and prevention measures of landslide geological disaster in Yili Valley, Xinjiang[J]. Western Resources,2018 (3 ):131 −134 .[7] 米文静, 张爱军, 郭敏霞 . 伊犁黄土湿陷变形特性研究[J]. 江西农业学报,2019 ,31 (12 ):49 −53 .MI Wenjing, ZHANG Aijun, GUO Minxia . Study on collapsible deformation characteristics of Yili loess[J]. Acta Agriculturae Jiangxi,2019 ,31 (12 ):49 −53 .[8] 莫腾飞, 郭敏霞, 娄宗科, 等 . 含水率变化对伊犁黄土变形和剪切特性的影响[J]. 中国农村水利水电,2018 (4 ):87 −94 .MO Tengfei, GUO Minxia, LOU Zongke, et al . The effect of moisture content on deformation and shearing characteristics of Ili loess[J]. China Rural Water and Hydropower,2018 (4 ):87 −94 .[9] 倪万魁, 师华强 . 冻融循环作用对黄土微结构和强度的影响[J]. 冰川冻土,2014 ,36 (4 ):922 −927 .NI Wankui, SHI Huaqiang . Influence of freezing-thawing cycles on micro-structure and shear strength of loess[J]. Journal of Glaciology and Geocryology,2014 ,36 (4 ):922 −927 .[10] 牛丽思, 张爱军, 赵佳敏, 等 . 易溶盐含量对伊犁原状黄土力学特性的影响规律[J]. 岩土工程学报,2020a ,42 (9 ):1705 −1714 .NIU Lisi, ZHANG Aijun, ZHAO Jiamin, et al . Influences of soluble salt content on mechanical properties of Ili undisturbed loess[J]. Chinese Journal of Geotechnical Engineering,2020a ,42 (9 ):1705 −1714 .[11] 牛丽思, 张爱军, 王毓国, 等 . 高易溶盐非饱和伊犁原状黄土的临界状态特性[J]. 岩土力学,2020b ,41 (8 ):2647 −2658 .NIU Lisi, ZHANG Aijun, WANG Yuguo, et al . Critical state characteristics of high soluble salt unsaturated undisturbed Ili loess[J]. Rock and Soil Mechanics,2020b ,41 (8 ):2647 −2658 .[12] 孙萍萍, 张茂省, 贾俊, 等 . 中国西部黄土区地质灾害调查研究进展[J]. 西北地质,2022 ,55 (3 ):96 −107 .SUN Pingping, ZHANG Maosheng, JIA Jun, et al . Geo-hazards research and investigation in the loess regions of western China[J]. Northwestern Geology,2022 ,55 (3 ):96 −107 .[13] 王毓国, 张爱军, 赵庆玉, 等 . 易溶盐含量对伊犁黄土持水特性的影响研究[J]. 岩土工程学报,2018 ,40 (增刊1 ):212 −217 .WANG Yuguo, ZHANG Aijun, ZHAO Qingyu, et al . Effect of soluble salt content on water-holding characteristics of Ili loess[J]. Chinese Journal of Geotechnical Engineering,2018 ,40 (Supp.1 ):212 −217 .[14] 王念秦, 姚勇 . 季节冻土区冻融期黄土滑坡基本特征与机理[J]. 防灾减灾工程学报,2008 ,28 (2 ):163 −166 .WANG Nianqin, YAO Yong . Characteristics and mechanism of landslides in loess during freezing and thawing periods in seasonally frozen ground regions[J]. Journal of Disaster Prevention and Mitigation Engineering,2008 ,28 (2 ):163 −166 .[15] 新疆维吾尔自治区地质环境监测院. 新疆伊犁谷地滑坡成灾规律研究报告[R]. 乌鲁木齐, 2014. [16] 叶玮, 靳鹤龄, 赵兴有, 等 . 新疆伊犁地区黄土的粒度特征与物质来源[J]. 干旱区地理,1998 ,21 (12 ):1 −8 .YE Wei, JIN Heling, ZHAO Xingyou, et al . Depositional features and material sources of loess in Yili region, Xinjiang[J]. Arid Land Geography,1998 ,21 (12 ):1 −8 .[17] 叶玮 . 新疆伊犁地区自然环境特点与黄土形成条件[J]. 干旱区地理,1999 ,22 (3 ):9 −16 .YE Wei . Characteristics of physical environment and conditions of loess formation in Yili area, Xinjiang[J]. Arid Land Geography,1999 ,22 (3 ):9 −16 .[18] 尹光华, 王兰民, 袁中夏, 等 . 新疆伊犁黄土的物性指标、动力学特性与滑坡[J]. 干旱区地理,2009 ,32 (6 ):899 −905 .YIN Guanghua, WANG Lanmin, YUAN Zhongxia, et al . Physical index, dynamic property and landslide of Yili loess[J]. Arid Land Geography,2009 ,32 (6 ):899 −905 .[19] 张爱军, 邢义川, 胡新丽, 等 . 伊犁黄土强烈自重湿陷性的影响因素分析[J]. 岩土工程学报,2016 ,38 (增刊2 ):117 −122 .ZHANG Aijun, XING Yichuan, HU Xinli, et al . Influence factors of strong self-weight collapsibility of Ili loess[J]. Chinese Journal of Geotechnical Engineering,2016 ,38 (Supp.2 ):117 −122 .[20] 张爱军, 王毓国, 邢义川, 等 . 伊犁黄土总吸力和基质吸力土水特征曲线拟合模型[J]. 岩土工程学报,2019 ,41 (6 ):1040 −1049 .ZHANG Aijun, WANG Yuguo, XING Yichuan, et al . Fitting models for soil-water characteristic curve of total and matrix suctions of Yili loess[J]. Chinese Journal of Geotechnical Engineering,2019 ,41 (6 ):1040 −1049 .[21] 张婉, 张爱军, 陈佳玫, 等 . 含水率和密度对伊犁黄土湿陷系数的影响[J]. 西北农林科技大学学报(自然科学版),2017 ,45 (5 ):211 −220 .ZHANG Wan, ZHANG Aijun, CHEN Jiamei, et al . Effect of moisture content and density on collapsibility coefficient of Yili loess[J]. Journal of Northwest A& F University (Nat. Sci. Ed.),2017 ,45 (5 ):211 −220 .[22] 张向飞, 陈莉, 曹华文, 等 . 中国新疆–中亚大地构造单元划分及演化简述[J]. 西北地质,2023 ,56 (4 ):1 −39 .ZHANG Xiangfei, CHEN Li, CAO Huawen, et al . Division of tectonic units and their evolutions within xinjiang, china to central asia[J]. Northwestern Geology,2023 ,56 (4 ):1 −39 .[23] Chamberlain E J, Gow A J . Effect of freezing and thawing on the permeability and structure of soils[J]. Engineering Geology,1979 ,13 (4 ):73 −92 .[24] doi: 10.1016/0013-7952(93)90018-8Govi M, Pasuto A, Silvano S, et al . An example of a low-temperature-triggered landslide[J]. Engineering Geology,1993 ,36 (1−2 ):53 −65 .[25] doi: 10.1139/t99-118Harris C, Lewkowicz A G . An Analysis of the Stability of Thawing Slopes, Ellesmere Island, Nunavut, Canada[J]. Canadian Geotechnical Journal,2000 ,37 :449 −462 .[26] Li T L, Li P, Wang H. Forming mechanism of landslides in the seasonal frozen loess region in China [J]. Springer International Publishing, 2014, 41−51. [27] Zimmie T F, La Plante C. The effect of freeze-thaw cycles on the permeability of a fine grained soils [C]//Proceedings of 22nd Mid-Atlantic Industrial Waste Conference. Philadelphia, PA: Drexel University, 1990: 580−593. -