鄂尔多斯盆地东北缘烧变岩工程地质效应

袁士豪, 孙强, 耿济世, 王少飞, 胡鑫, 陈凯. 2025. 鄂尔多斯盆地东北缘烧变岩工程地质效应. 西北地质, 58(5): 192-203. doi: 10.12401/j.nwg.2025075
引用本文: 袁士豪, 孙强, 耿济世, 王少飞, 胡鑫, 陈凯. 2025. 鄂尔多斯盆地东北缘烧变岩工程地质效应. 西北地质, 58(5): 192-203. doi: 10.12401/j.nwg.2025075
YUAN Shihao, SUN Qiang, GENG Jishi, WANG Shaofei, HU Xin, CHEN Kai. 2025. Engineering Geological Effects of Burnt Rocks in the Northeastern Margin of Ordos Basin. Northwestern Geology, 58(5): 192-203. doi: 10.12401/j.nwg.2025075
Citation: YUAN Shihao, SUN Qiang, GENG Jishi, WANG Shaofei, HU Xin, CHEN Kai. 2025. Engineering Geological Effects of Burnt Rocks in the Northeastern Margin of Ordos Basin. Northwestern Geology, 58(5): 192-203. doi: 10.12401/j.nwg.2025075

鄂尔多斯盆地东北缘烧变岩工程地质效应

  • 基金项目: 国家自然科学基金项目"富油煤富油性地质控制机理及原位开发地质基础"(42330808)资助。
详细信息
    作者简介: 袁士豪(1999–),男,博士研究生,从事富油煤热解研究工作。E-mail:yuanshihao2414@163.com
    通讯作者: 孙强(1981–),男,教授,博士生导师,煤矿工程地质与灾害防治教学与研究。E−mail:sunqiang04@cumt.edu.cn
  • 中图分类号: P642.2;TD323

Engineering Geological Effects of Burnt Rocks in the Northeastern Margin of Ordos Basin

More Information
  • 烧变岩是由煤层自燃对周围岩体高温烘烤形成,在中国西北地区(新疆、宁夏、陕西、甘肃、内蒙古等)煤田多有分布。笔者以鄂尔多斯盆地东北缘的烧变岩为研究对象,通过野外地质调查与实测以及资料收集,研究了神木、府谷、保德–河曲等黄河沿线等地及准格尔旗的烧变岩形成模式和工程地质效应。研究表明:烧变岩可划分为烘烤岩、烘变岩、烧结岩、烧熔岩4种类型;在煤层自燃高温烘烤后,烧变岩的微观结构与矿物成分与原岩相比发生显著变化,孔洞裂隙发育,强度下降,渗透性与导水性增强;岩体结构由层状变为碎裂状,岩体质量降低,并成为矿区重要的地下水储存空间。岩体受煤层自燃影响,承载力降低,烧变岩上部烧空区使边坡产生卸荷作用,在岩体内形成贯通节理面及软弱接触面,在降雨、冻融及地表水入渗下诱发边坡失稳,产生地质灾害;烧变岩区地下水位较低致使地表植被稀疏,生态脆弱。本次研究从形成机制方面和工程地质条件阐述了烧变岩诱发的工程地质和环境效应,主要体现在烧变岩区边坡崩塌失稳、地面塌陷与地裂缝、矿井水害、植被退化等方面,为烧变岩区工程活动和灾害防治提供了理论和实践参考。

  • 加载中
  • 图 1  研究区位置图

    Figure 1. 

    图 2  地层分布与烧变岩分布范围示意图

    Figure 2. 

    图 3  烧变岩分类及其特征

    Figure 3. 

    图 4  野外出露烧变岩岩体

    Figure 4. 

    图 5  烧变岩形成机制与地质环境效应

    Figure 5. 

    图 6  烧变岩的工程地质条件

    Figure 6. 

    图 7  瓷窑塔滑坡

    Figure 7. 

    图 8  烧变岩诱发滑坡机理示意图

    Figure 8. 

    Figure 9. 

    图 10  巴楞峁崩塌(a)、浪湾崩塌(b)、李家畔崩塌(c)

    Figure 10. 

    图 11  烧变岩诱发崩塌机理图

    Figure 11. 

    图 12  烧变岩诱发崩塌数值模拟

    Figure 12. 

    图 13  活鸡兔井田地裂缝(a) 、李家畔地裂缝(b)

    Figure 13. 

    图 14  烧变岩诱发地裂缝机理图

    Figure 14. 

    图 15  研究区矿井水害分布

    Figure 15. 

    图 16  烧变岩区植被分布(a)与煤层燃烧释放烟气(b)

    Figure 16. 

  • [1]

    陈彬. 中国西北地区侏罗系中烧变岩的特征, 形成时代及地质意义[D]. 成都: 成都理工大学, 2021.

    CHEN Bin. Characteristics, ages and geological significance of the Jurassic combustion metamorphic rocks in northwestern China[D]. Chengdu: Chengdu University of Technology, 2021.

    [2]

    陈凯, 王文科, 商跃瀚, 等. 生态脆弱矿区烧变岩研究现状及展望[J]. 中国矿业, 2020, 293): 171176.

    CHEN Kai, WANG Wenke, SHANG Yuehan, et al. Study status and outlook on burnt rock in the ecologically vunlnerable coal-mining areas[J]. China Mining Magazine, 2020, 293): 171176.

    [3]

    范立民. 论保水采煤问题[J]. 煤田地质与勘探, 2005, 335): 5053.

    FAN Limin. Disscussing on coal mining under water-containing condition[J]. Coal Geology & Exploration, 2005, 335): 5053.

    [4]

    范立民. 生态脆弱区烧变岩研究现状及方向[J]. 西北地质, 2010, 433): 5765. doi: 10.3969/j.issn.1009-6248.2010.03.008

    FAN Limin. Research Status and Research Directions of Burnt Rocks in Vulnerable Ecological Region[J]. Northwestern Geology, 2010, 433): 5765. doi: 10.3969/j.issn.1009-6248.2010.03.008

    [5]

    郭守泉, 宋业杰. 榆神矿区浅埋煤层多重水体下大采高综采水害影响评价[J]. 煤矿开采, 2018, 236): 117121.

    GUO Shouquan, SONG Yejie. Evaluation of Water Disaster Influence of Fully Mechanized Ming with Multiply Water Body in Shallow of Yushen Mine Area[J]. Coal Mining and Technology, 2018, 236): 117121.

    [6]

    冯旭亮, 汪啸东, 罗姣, 等. 鄂尔多斯盆地地热和氦气资源远景: 来自居里面深度的证据[J]. 西北地质, 2025, 583): 2232. doi: 10.12401/j.nwg.2024114

    FENG Xuliang, WANG Xiaodong, LUO Jiao, et al. Geothermal and Helium Resource Prospects in the Ordos Basin: Insight from the Curie Point Depths[J]. Northwestern Geology, 2025, 583): 2232. doi: 10.12401/j.nwg.2024114

    [7]

    弓汶琪, 弓虎军, 王苏里, 等. 鄂尔多斯盆地东南部延长组中期物源分析及其对秦岭造山带隆升作用的指示[J]. 西北地质, 2025, 581): 118134. doi: 10.12401/j.nwg.2023134

    GONG Wenqi, GONG Hujun, WANG Suli, et al. Provenance Analysis of Middle Yanchang Formation in the Southeastern Ordos Basin and Its Indications for the Uplift of the Qinling Orogenic Belt[J]. Northwestern Geology, 2025, 581): 118134. doi: 10.12401/j.nwg.2023134

    [8]

    胡鑫, 孙强, 晏长根, 等. 陕北烧变岩水-岩作用的劣化特性[J]. 煤田地质与勘探, 2023, 514): 7684. doi: 10.12363/issn.1001-1986.22.06.0496

    HU Xin, SUN Qiang, YAN Changgen, et al. Deterioration characteristics of water-rock interaction on combustion metamorphic rocks in northern Shaanxi[J]. Coal Geology & Exploration, 2023, 514): 7684. doi: 10.12363/issn.1001-1986.22.06.0496

    [9]

    侯恩科, 陈培亨. 神府煤田煤层自燃研究[J]. 西安科技大学学报, 1993, (2): 137142.

    HOU Enke CHEN Peiheng. Study on spontaneous combustion of coal seams in shenfu coal field[J]. Journal of Xi’an University of Science and Technology, 1993, (2): 137142.

    [10]

    黄雷, 刘池洋. 鄂尔多斯盆地北部地区延安组煤层自燃烧变产物及其特征[J]. 地质学报, 2014, 889): 17531761.

    HUANG Lei, LIU Chiyang. Products of combustion of the Yan’an formation coal seam and their characteristics in the Northeastern Ordos Basin[J]. Acta Geologica Scinca, 2014, 889): 17531761.

    [11]

    黄雷, 刘池洋. 烧变岩岩石学及稀土元素地球化学特征[J]. 地球科学(中国地质大学学报), 2008, 334): 515522.

    HUANG Lei, LIU Chiyang. Petrologic and REE Geochemical Characters of Burnt Rocks[J]. Earth Science-Journal of China University of Geosciences, 2008, 334): 515522.

    [12]

    黄雷. 鄂尔多斯盆地北部延安组烧变岩特征及其形成环境[D]. 西安: 西北大学, 2008.

    HUANG Lei. Characters and forming conditions of burnt rocks in Yan’an formation of Northern Ordos Basin[D]. Xi’an: Northwest University, 2008.

    [13]

    李云峰, 李金荣, 侯光才, 等. 从水文地球化学角度研究鄂尔多斯盆地南区白垩系地下水的排泄途径[J]. 西北地质, 2004, 373): 9195. doi: 10.3969/j.issn.1009-6248.2004.03.015

    LI Yunfeng, LI Jinrong, HOU Guangcai, et al. Study on Cretaceous groundwater discharge in the southern parts of ordos basin as viewed from hydrogeochemistry[J]. Northwestern geology, 2004, 373): 9195. doi: 10.3969/j.issn.1009-6248.2004.03.015

    [14]

    令伟伟. 准噶尔盆地东部火烧山地区平地泉组方沸石特征及成因分析[D]. 西安: 西北大学, 2017.

    LING Weiwei. Occurrence and origin analysis of analcimein pingdiquan formation, Huoshaoshan Area, EasternJungar Basin, Xinjiang, China[D]. Xi’an: Northwest University, 2017.

    [15]

    刘池洋, 赵红格, 桂小军, 等. 鄂尔多斯盆地演化-改造的时空坐标及其成藏(矿)响应[J]. 地质学报, 2006, 805): 617638. doi: 10.3321/j.issn:0001-5717.2006.05.001

    LIU Chiyang, ZHAO Hongge, GUI Xiaojun, et al. Space-time coordinate of the evolution and reformation and mineralization response in Ordos basin[J]. Acta Geologica Sinica, 2006, 805): 617638. doi: 10.3321/j.issn:0001-5717.2006.05.001

    [16]

    苗彦平, 姬中奎, 李军, 等. 待采工作面上覆烧变岩注浆帷幕建造技术[J]. 煤矿安全, 2019, 507): 108111.

    MIAO Yanping, JI Zhongkui, LI Jun, et al. Construction Technology of Grouting Curtain for Overburden Burnt Rock in Waiting Mining Face[J]. Safety in Coal Mines, 2019, 507): 108111.

    [17]

    邱海军, 崔鹏, 胡胜, 等. 陕北黄土高原不同地貌类型区黄土滑坡频率分布[J]. 地球科学, 2016, 412): 343350.

    QIU Haijun, CUI Peng, HU Sheng, et al. Size-Frequency Distribution of Landslides in Different Landforms on the Loess Plateau of Northern Shaanxi[J]. Earth Science, 2016, 412): 343350.

    [18]

    尚桂林, 蒋新民. 神木北部侏罗纪煤层自燃因素及其烧变特征[J]. 中国煤炭地质, 1990, 21): 2529.

    [19]

    时潜, 陈彬. 中国北方煤层自燃产物——烧变岩的研究意义[J]. 科技创新导报, 2017, 1432): 5860.

    [20]

    宋业杰, 甘志超. 榆神矿区烧变岩水害防治技术[J]. 煤矿安全, 2019, 508): 9296.

    SONG Yejie, GAN Zhichao. Water Hazard Treatment for Burnt Rock Aquifer in Yushen Mining Area[J]. Safety in Coal Mines, 2019, 508): 9296.

    [21]

    孙亚军, 张梦飞, 高尚, 等. 典型高强度开采矿区保水采煤关键技术与实践[J]. 煤炭学报, 2017, 421): 5665.

    SUN Yajun, ZHANG Mengfei, GAO Shang, et al. Water-preserved mining technology and practice in typical high intensity mining area of China[J]. Journal of China Coal Society, 2017, 421): 5665.

    [22]

    孙云博, 孙文植, 焦振华. 陕北烧变岩的工程地质特征[J]. 三峡大学学报(自然科学版), 2019, 41S1): 7173.

    SUN Yunbo, SUN Wenzhi, JIAO Zhenhua. Engineering Geological Characteristics of Burnt Rock in Northern Shanxi[J]. Journal of China Three Gorges University, 2019, 41S1): 7173.

    [23]

    孙涛, 雷晶超, 刘阳, 等. 鄂尔多斯盆地西南缘镇原地区洛河组沉积环境对铀成矿的制约[J]. 西北地质, 2024, 576): 199217. doi: 10.12401/j.nwg.2024077

    SUN Tao, LEI Jingchao, LIU Yang, et al. The Constraints of the Depositional Environment of the Luohe Formation on Uranium Mineralization in the Zhenyuan Area of the Southwestern Ordos Basin[J]. Northwestern Geology, 2024, 576): 199217. doi: 10.12401/j.nwg.2024077

    [24]

    田华, 李新鹏, 韩流, 等. 黑山露天矿浅部火烧区边坡稳定性研究[J]. 煤矿安全, 2019, 1133): 191210.

    TIAN Hua, LI Xinpeng, HAN Liu, et al. Study on Slope Stability of Shallow Buried Area in Heishan Surface Mine[J]. Safety in Coal Mines, 2019, 1133): 191210.

    [25]

    铁连军, 李恒娟, 李旭日, 等. 试论鄂尔多斯盆地地层划分与对比[J]. 石化技术, 2015, 223): 115.

    TIE Lianjun, LI Hengjuan, LI Xuri, et al. Stratigraphic division and comparison in the Ordos Basin[J]. Petrochemical Industry Technology, 2015, 223): 115.

    [26]

    王碧清, 姬中奎, 郑永飞, 等. 火烧区完整烧变岩断面的帷幕注浆技术[J]. 煤炭技术, 2019, 384): 99102.

    WANG Biqing, JI Zhongkui, ZHENG Yongfei, et al. Curtain Grouting Technology for Complete Burnt Rock Section in Burnt Rock Area[J]. Coal Technology, 2019, 384): 99102.

    [27]

    王双明, 黄庆享, 范立民, 等. 生态脆弱矿区含(隔)水层特征及保水开采分区研究[J]. 煤炭学报, 2010, 351): 714.

    WANG Shuangming, HUANG Qingxiang, FAN Linong, et al. Study onoverburden aquclude and water protection mining regionazation in the ecological fragile mining area[J]. Journal of China Coal Society, 2010, 351): 714.

    [28]

    王双明, 孙强, 袁士豪, 等. 论煤-水-土多资源协调开发[J]. 西北地质, 2024, 575): 110.

    WANG Shuangming, SUN Qiang, YUAN Shihao, et al. On the coordinated development of coal-water-soil multiple resources[J]. Northwestern Geology, 2024, 575): 110.

    [29]

    杨磊, 杨斯亮, 车晓阳. 红柳林井田烧变岩富水性分区与水害防治措施[J]. 中国煤炭地质, 2022, 342): 4347+70.

    YANG Lei, YANG Siliang, CHE Xiaoyang. Burnt rocks water yield property zoning and water hazard control measures in Hongliulin Minefield[J]. Coal Geology of China, 2022, 342): 4347+70.

    [30]

    杨时元, 许绍群, 杨芳洁. 新疆烧变岩开发天然轻集料初探[J]. 砖瓦世界, 2008, (10): 4142. doi: 10.3969/j.issn.1002-9885.2008.10.016

    [31]

    业渝光, 邬象隆, 刁少波, 等. 塔里木盆地库车河烧变岩的形成年龄[J]. 海洋地质与第四纪地质, 1998, 184): 116120.

    YE Yuguang, WU Xianglong, DIAO Shaobo, et al. Formation ages of burned metamorphic rocks from the Kuqa River Section Tarim Basin[J]. Marine Geology & Quaternary Geology, 1998, 184): 116120.

    [32]

    赵振宇, 郭彦如, 王艳, 等. 鄂尔多斯盆地构造演化及古地理特征研究进展[J]. 特种油气藏, 2012, 195): 1520+151. doi: 10.3969/j.issn.1006-6535.2012.05.004

    ZHAO Zhenyu, GUO Yanru, WANG Yan, et al. Study progress in tectonic evolution and paleogeography of Ordos Basin[J]. Special Oil & Gas Reservoirs, 2012, 195): 1520+151. doi: 10.3969/j.issn.1006-6535.2012.05.004

    [33]

    翟勤, 王英, 姬亚东. 何家塔井田烧变岩水赋存特征及其防治[J]. 煤炭技术, 2017, 3612): 156158.

    ZHAI Qin, WANG Ying, JI Yadong. Hejiata Coal Burnt Rock Water Occurrence Characteristics and Prevention[J]. Coal Technology, 2017, 3612): 156158.

    [34]

    翟小伟, 张辛亥, 王亚超. 古拉本煤田火灾烧变岩固体废料充填新技术研究与应用[J]. 矿业安全与环保, 2010, 371): 2729. doi: 10.3969/j.issn.1008-4495.2010.01.010

    [35]

    Eijk P V, Leenman P, Wibisono I, et al. Regeneration and restoration of degraded peat swamp forest in Berbak NP, Jambi, Sumatra, Indonesia[J]. Malayan Nature Journal, 2009, 613): 223241.

    [36]

    Grapes R, Korzhova S, Sokol E, et al. Paragenesis of unusual Fe-cordierite (sekaninaite)-bearing paralava and clinker from the Kuznetsk coal basin, Siberia, Russia[J]. Contributions to Mineralogy and Petrology, 2011, 162: 253273. doi: 10.1007/s00410-010-0593-0

    [37]

    Heffern E L, Coates D A. Geologic history of natural coal-bed fires, Powder River Basin, USA[J]. International Journal of Coal Geology, 2004, 59: 2547. doi: 10.1016/j.coal.2003.07.002

    [38]

    Khtar S, Yang X, Pirajno F. Sandstone type uranium deposits in the ordos Basin, northwest China: A case study and an overview[J]. Journal of Asian Earth Science, 2017, 146: 367382. doi: 10.1016/j.jseaes.2017.05.028

    [39]

    Novikov I S, Sokol E V, Travin A V, et al. Signature of Cenozoic orogenic movements in combustion metamorphic rocks: mineralogy and geochronology (example of the Salair-Kuznetsk Basin transition)[J]. Russian Geology and Geophysics, 2008, 496): 378396. doi: 10.1016/j.rgg.2007.11.011

    [40]

    Yuan Yong, Liu Zhiheng, Zhu Cheng, et al. The effect of burnt rock on inclined shaft in shallow coal seam and its control technology[J]. Energy Science and Engineering, 2019, 75): 18821895. doi: 10.1002/ese3.398

  • 加载中

(16)

计量
  • 文章访问数:  59
  • PDF下载数:  9
  • 施引文献:  0
出版历程
收稿日期:  2025-04-01
修回日期:  2025-05-16
录用日期:  2025-05-18
刊出日期:  2025-10-20

目录