Research on Location and Prediction Technology of Fluorite Deposits in Shallow Desert Coverage Area
-
摘要:
北山地区是中国西北部重要的萤石成矿带,区内成矿地质条件优越,但地处戈壁荒漠,受浅覆盖层影响,地表仅可观察到极少量露头,需开展综合地球物理研究为区域成矿潜力及覆盖区下方矿脉赋存空间进行定位预测研究。以北山成矿带东段花石头山地区为示范,采用高精度磁法、激电中梯、地面伽马能谱测量、便携式X射线荧光分析及音频大地电磁测深等技术手段进行综合探测,其中面积性激电和磁法工作可有效识别隐伏赋矿空间分布,地面伽马能谱测量、便携式X射线荧光分析约束赋矿空间的矿化异常,音频大地电磁测深构建了隐伏萤石矿赋存位置深部结构模型,并通过工程验证方法组合的有效性。本研究建立了综合地质-地球物理定位预测技术方法组合,可为北山成矿带及戈壁荒漠浅覆盖区萤石矿定位预测提供理论和技术支持。
Abstract:The Beishan region, located in the northwest of China, is a significant fluorite metallogenic belt. Despite favorable metallogenic geological conditions in the area, the Gobi Desert's shallow cover layers result in minimal outcrops at the surface. Therefore, comprehensive geophysical studies are necessary to explore the regional metallogenetic potentiality and locate mineral veins beneath the cover layers. An example of this exploration is the Huashitou area in the eastern segment of the Beishan metallogenic belt. A combination of high-precision magnetic, induced polarization-resistivity, ground gamma-ray spectrometry, portable X-ray fluorescence analysis, and audio-magnetotelluric (AMT) survey was used for comprehensive exploration. The area-based induced polarization and magnetic methods effectively identified the distribution of hidden mineral-bearing spaces, while ground gamma-ray spectrometry and portable X-ray fluorescence analysis constrained the mineralization anomalies of deposit spaces. The AMT survey established a deep structure model of the occurrence of concealed fluorite deposits, and its validity was evaluated through engineering verification methods. This study establishes a comprehensive geological-geophysical location prediction technique and method combination that can provide theoretical and technical support for the positioning and prediction of fluorite deposits in the Beishan metallogenic belt and shallow cover areas in the Gobi Desert.
-
-
表 1 花石头山工作区磁性参数统计表
Table 1. The magnetic parameter s of the rocks and ores in Huashitoushan working area
岩性 标本数
(个)磁化强度SI(10−6) 区间 平均值 蚀变碎裂岩 10 1~5 3.34 萤石矿脉 15 0~5 1.06 花岗岩 10 36~179 81.3 灰黑色砂岩 16 3~20 8.7 表 2 花石头山工作区电性参数统计表
Table 2. The electrical parameters of the rocks and ores in Huashitoushan working area
序号 岩(矿)石
名称标本数
(个)ρ(Ω·m) η(%) 最小值 最高值 平均值 最小值 最高值 平均值 1 石英砂岩 5 4722 9398 7037 0.895 2.276 1.74 2 石英脉 5 1978 10712 5598 0.306 1.426 0.77 3 构造角砾岩 5 5403.3 5403.3 5403.3 1.02 2.82 1.82 4 蚀变岩 5 6822.0 16830.5 11223.3 0.75 1.70 1.12 5 第四系 20 3 52 18.72 -
[1] 蔡军涛, 陈小斌. 大地电磁资料精细处理和二维反演解释技术 研究(二)——反演数据极化模式选择[J]. 地球物理学报, 2020, 53(11): 2703−2714.
CAI Juntao,CHEN Xiaobin. Refined techniques for data processing and two- dimensional inversion in magnetotelluric Ⅱ: Which data polarization mode should be used in 2D inversion[J]. Chinese Journal of Geophysics,2020,53(11):2703−2714.
[2] 陈化奇, 李永庆. 岩屑测量方法在干旱荒漠区的找矿效果—以贺兰山北段嘎拉斯台白钨矿的发现为例[J]. 物探与化探, 2019, 43(1): 55−63.
CHEN Huaqi, LI Yongqing. The prospecting effect of rock debris measurement method in arid desert area: Exemplified by the discovery of the Galasitai scheelite deposit in northern Helan mountain[J]. Geophysical and Geochemical Exploration,2019,43(1):55−63.
[3] 陈伟军, 郝情情, 褚少雄, 等. 甚低频电磁法在隐伏金属矿床定位预测中的应用——以大兴安岭西南段铜多金属矿点为例[J]. 地质与勘探, 2017, 53(3): 528−532.
CHEN Weijun, HAO Qingqing, CHU Shaoxiong, et al. Application of Very Low Frequency Electromagnetic Method to Positioning of Concealed Metal Deposits: An Example of Copper Polymetallic Ore Occurrences in the Southwest Greater Hinggan Mountains[J]. Geology and Exploration,2017,53(3):528−532.
[4] 陈耀, 张成, 张青, 等. 内蒙古北山成矿带月牙山–老硐沟地区金多金属矿床成矿预测[J]. 西北地质, 2023, 56(2): 151−162.
CHEN Yao, ZHANG Cheng, ZHANG Qing, et al. Metallogenic Regularity and Prospecting Prediction of Gold Polymetallic Deposits in Yueyashan-Laodonggou Area of Beishan Metallogenic Belt, Inner Mongolia[J]. Northwestern Geology,2023,56(2):151−162.
[5] 成秋明. 覆盖区矿产综合预测思路与方法[J]. 地球科学:中国地质大学学报, 2012, 37(6): 1109−1125.
CHENG Qiu ming. Ideas and methods for mineral resources integrated prediction in covered areas[J]. Earth Science:Journal of China University of Geosciences,2012,37(6):1109−1125.
[6] 段吉学, 刘江. 综合物化探在内蒙萤石多金属矿普查中的应用研究[J]. 西北地质, 2019, 52(3): 265−274.
DUAN Jixue, LIU Jiang. Application of Comprehensive Physical and Chemical Exploration Method for Prospecting Fluorite Polymetallic Deposit in Inner Mongolia[J]. Northwestern Geology,2019,52(3):265−274.
[7] 方乙, 张寿庭, 邹灏, 等. VLF和AMT在内蒙古小四家萤石矿勘察中的应用[J]. 物探与化探, 2013a, 37(5): 800−803.
FANG Yi,ZHANG Shouting,ZOU Hao,et al. The application of VLF and AMT to the exploration of fluorite deposit[J]. Geophysical and Geochemical Exploration,2013a,37(5):800−803.
[8] 方乙, 邹灏, 王光凯, 等. 甚低频电磁法在萤石矿床勘查中的应用——以内蒙古林西俄力木台萤石矿为例[J]. 桂林理工大学学报, 2013b, 33(2): 246−251.
FANG Yi, ZOU Hao, WANG Guangkai, et al. Application of VLF-EM in Fluorite Deposit Exploration—A Case Study of Elimutai Fluorite Deposit in Linxi, Inner Mongolia[J]. Journal of Guilin University of Technology,2013b,33(2):246−251.
[9] 方乙, 张寿庭, 邹灏, 等. 浅覆盖区萤石矿综合勘查方法研究——以内蒙古林西赛波萝沟门萤石矿为例[J]. 成都理工大学学报(自然科学版), 2014, 41(1): 94−101.
FANG Yi, ZHANG Shouting, ZOU Hao, et al. Comprehensive exploration method for fluorite deposits in grasslands covered area: A case study of the Saiboluogoumen fluorite deposit in Linxi, Inner Mongolia, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition),2014,41(1):94−101.
[10] 高峰, 张寿庭, 邹灏, 等. 地面伽马能谱测量在内蒙古林西地区萤石矿找矿中的应用[J]. 物探与化探, 2013, 37(2): 206−211.
GAO Feng,ZHANG Shouting,ZOU Hao,et al. The application of field gamma ray spectrometry to the prospecting for fluorite deposits in Linxi area of Inner Mongolia[J]. Geophysical and Geochemical Exploration,2013,37(2):206−211.
[11] 龚胜平, 陆桂福, 席明杰, 等. 干旱荒漠区综合物化探方法寻找铜多金属矿[J]. 物探与化探, 2021, 45(1): 1−10.
GONG Shengping, LU Guifu, XI Mingjie, et al. The application of integrated geophysical and geochemical methods to the prospecting of copper polymetallic deposits in the arid desert area[J]. Geophysical and Geochemical Exploration,2021,45(1):1−10.
[12] 霍明宇, 卢克学, 佀先丽, 等. 内蒙古北山造山带东段虎头山北地区地质构造特征及铜金找矿方向探讨[J]. 矿产勘查, 2020, 11(10): 2117−2125.
HUO Mingyu, LU Kexue, QI Xianli, et al. Geological structural features and copper-gold prospecting direction of the northern Hutoushan in the eastern section of the Beishan Orogenic Belt, Inner Mongolia[J]. Mineral Exploration,2020,11(10):2117−2125.
[13] 李敬, 张寿庭, 商朋强, 等. 萤石资源现状及战略性价值分析[J]. 矿产保护与利用, 2019, 39(6): 62−68.
LI Jing, ZHANG Shouting, SHANG Pengqiang, et al. Present Situation and Analysis of Strategic Value of Fluorite[J]. Resource Conservation and Utilization of Mineral Resources,2019,39(6):62−68.
[14] 栗克坤, 陈新立, 商朋强, 等. 物化探综合信息找矿方法在萤石矿找矿中的应用[J]. 中国地质调查, 2019, 6(6): 98−104.
LI Kekun, CHEN Xinli, SHANG Pengqiang, et al. Application of the prospecting method of geophysical and geochemical integrated information in the exploration of fluorite deposits[J]. Geological Survey of China,2019,6(6):98−104.
[15] 栗克坤, 商朋强, 韩志坤, 等. 闽北邵武地区萤石矿综合信息找矿方法研究[J]. 地球学报, 2022, 43(3): 404−410.
LI Kekun, SHANG Pengqiang, HAN Zhikun, et al. Comprehensive Information Prospecting Method for Fluorite Deposits in Shaowu Area, Northern Fujian Province[J]. Acta Geoscientica Sinica,2022,43(3):404−410.
[16] 李欣宇, 邹灏, 张强, 等. 便携式X荧光元素分析法在浅覆盖区萤石矿勘查中的应用与分析——以内蒙古乌力吉敖包萤石矿为例[J]. 物探化探计算技术, 2018, 40(5): 681−688.
LI Xinyu, ZOU Hao, ZHANG Qiang, et al. Application and analysis of portable X-ray fluorescence analyzer on fluorite exploration in shallow cover area[J]. Computing Techniques for Geophysical and Geochemical Exploration,2018,40(5):681−688.
[17] 刘诚, 孙彪, 魏立勇, 等. 综合电法勘探在西秦岭寨上金矿的应用研究[J]. 地质与勘探, 2020, 56(6): 1226-1237.
LIU Cheng,SUN Biao,WEI Liyong,et al. Application of the integrated electrical method to exploration in the Zhaishang gold deposit,West Qinling[J]. Geology and Exploration,2020,56(6): 1226 -1237.
[18] 刘诚, 李含, 孙彪, 等. 西秦岭寨上金矿综合地球物理研究[J]. 地质论评, 2022, 68(2): 658−672.
LIU Cheng, LI Han, SUN Biao, et al. Comprehensive geophysical study of Zhaishang Gold deposit, West Qinling[J]. Geological Review,2022,68(2):658−672.
[19] 孟贵祥, 吕庆田, 严加永, 等. “穿透性”探测技术在覆盖区地质矿产调查中的应用研究[J]. 地球学报, 2019, 40(5): 637−650.
MENG Guixiang, LV Qingtian, YAN Jiayong, et al. The Research and Application of Explorational Technology of “Penetrating” to Geology and Mineral Investigation in Overburden Area[J]. Acta Geoscientica Sinica,2019,40(5):637−650.
[20] 孟贵祥, 邓震, 祁光, 等. 新疆东准噶尔成矿带浅覆盖区地质填图效果——以杜热一带浅覆盖区基岩地质填图为例[J]. 地质通报, 2022, 41(2−3): 374−387.
MENG Guixiang, DENG Zhen, QI Guang, et al. Effect of geological mapping in shallow overburden area of East Junggar, Xinjiang Province: A case of bedrock geological mapping in the Dure shallow overburden area[J]. Geological Bulletin of China,2022,41(2−3):374−387.
[21] 牛亚卓, 宋博, 周俊林, 等. 中亚造山带北山南部下泥盆统火山—沉积地层的岩相、时代及古地理意义[J]. 地质学报, 2020, 94(2): 615−633.
NIU Yazhuo, SONG Bo, ZHOU Junlin, et al. Lithofacies and chronology of volcano-sedimentary sequence in the southern Beishan Region, Central Asian Orogenic Belt and its paleogeographical implication[J]. Acta Geologica Sinica,2020,94(2):615−633.
[22] 戚志鹏, 李貅, 钱建兵, 等. 电法联合解释在覆盖区矿产勘查中的应用[J]. 地球科学: 中国地质大学学报, 2012, 37(6): 1199−1208.
QI Zhieng, LI Xiu, QIAN Jianbing, et al. Application of electrical joint interpretation method in mineral exploration of coverage areas[J]. Earth Science:Journal of China University of Geosciences,2012,37(6):1199−1208.
[23] 唐利, 张寿庭, 王亮, 等. 浅覆盖区隐伏萤石矿找矿预测: 以内蒙古赤峰俄力木台为例[J]. 地学前缘, 2021, 28(3): 208−220.
TANG Li, ZHANG Shouting, WANG Liang, et al. Exploration of concealed fluorite deposit in shallow overburden areas: A case study in Elimutai, Inner Mongolia, China[J]. Earth Science Frontiers,2021,28(3):208−220.
[24] 王吉平, 商朋强, 熊先孝, 等. 中国萤石矿床成矿规律[J]. 中国地质, 2015, 42(1): 18−32.
WANG Jiping,SHANG Pengqiang,XIONG Xianxiao,et al. Metallogenic regularities of fluorite deposits in China[J]. Geology in China,2015,42(1):18−32.
[25] 王刚, 方慧, 仇根根, 等. 安庆—贵池矿集区及邻区深部电性结构研究[J]. 中国地质, 2019, 46(4): 795−806.
WANG Gang, FANG Hui, QIU Gengen, et al. The deep electrical structure across Anqing-Guichi ore concentration area[J]. Geology in China,2019,46(4):795−806.
[26] 王猛, 黄俭合. 综合物探方法在萤石矿勘查中的应用[J]. 中国煤炭地质, 2018, 30(S1): 118−124.
WANG Meng, HUANG Jianhe. Application of Integrated Geophysical Prospecting in Fluorite Orebody Exploration[J]. Coal Geology of China,2018,30(S1):118−124.
[27] 王小红, 杨建国, 王磊, 等. 地质物化探综合方法在甘肃北山红柳沟铜镍矿的应用[J]. 西北地质, 2023, 56(6): 254−261.
WANG Xiaohong, YANG Jianguo, WANG Lei, et al. The Application Effect of Geological Geophysical and Geochemical Exploration Comprehensive Method in Hongliugou Copper–Nickel Deposit, Beishan, Gansu Province[J]. Northwestern Geology,2023,56(6):254−261.
[28] 王自国, 朱培元. 中央企业萤石矿战略布局思考[J]. 中国矿业, 2020, 29(6): 8−11.
WANG Ziguo, ZHU Peiyuan. Strategic layout of fluorite mine in state-owned enterprises[J]. China Mining Magazine,2020,29(6):8−11.
[29] 夏炳卫, 曹华文, 裴秋明, 等. VLF-EM和EH4在浅覆盖区萤石矿床勘查中的应用——以林西水头萤石矿区为例[J]. 桂林理工大学学报, 2016, 36(2): 228−233.
XIA Bingwei, CAO Huawen, PEI Qiuming, et al. Exploration of fluorite deposit by the combination of VLF-EM and EH4 on shallow-covered area: A case study of the Shuitou deposit[J]. Journal of Guilin University of Technology,2016,36(2):228−233.
[30] 严加永, 孟贵祥, 吕庆田, 等. 综合地球物理在荒漠覆盖区隐伏矿床预测与定位中的应用: 以新疆拉伊克勒克铜多金属矿床为例[J]. 地球物理学报, 2021, 64(11): 4117−4133.
YAN Jiayong, MENG Guixiang, LV Qingtian, et al. Prediction and location of concealed deposits in desert gobi coverage areas using Integrated geophysics: An example of the Layikeleke copper polymetallic deposit in Xinjiang, Northwest China[J]. Chinese Journal of Geophysics,2021,64(11):4117−4133.
[31] 杨建国, 王磊, 王小红, 等. 内蒙古北山额济纳旗小红山钒钛磁铁矿床SHRIMP锆石U-Pb定年及其意义[J]. 地质通报, 2015, 34(9): 1699−1705.
YANG Jianguo, WANG Lei, WANG Xiaohong, et al. SHRIMP zircon U-Pb dating of the Xiaohongshan vanadium-titanium magnetite deposit, Ejin Banner, Beishan, Inner Mongolia, and its geological implications[J]. Geological Bulletin of China,2015,34(9):1699−1705.
[32] 杨合群, 李英, 杨建国, 等. 北山造山带的基本成矿特征[J]. 西北地质, 2006, 39(2): 78−95.
YANG Hequn, LI Ying, YANG Jianguo, et al. Main Metallogenic Characteristics in the Beishan Orogen[J]. Northwestern Geology,2006,39(2):78−95.
[33] 于汪, 王猛, 商朋强, 等. 地面高精度磁法在萤石矿勘查中的应用[J]. 地质学刊, 2019, 43(3): 428−433.
YU Wang, WANG Meng, SHANG Pengqiang, et al. Application of high-accuracy ground magnetic survey to the exploration of fluorite deposits[J]. Journal of Geology,2019,43(3):428−433.
[34] 张参辉, 李水平, 白德胜, 等. 时间域激电法在浅覆盖区萤石矿勘查中的应用——以河南省方城县铁炉萤石矿床为例[J]. 地质与勘探, 2022, 58(2): 369−380.
ZHANG Canhui,LI Shuiping,BAI Desheng,et al. Application of the time-domain IP method to the exploration of concealed fluorite deposits: A case study of the Tielu fluorite deposit in Fangcheng County,Henan Province[J]. Geology and Exploration,2022,58(2):369−380.
[35] 张振亮, 冯选洁, 赵国斌, 等. 东天山—北山地区中生代内生矿床成矿规律[J]. 西北地质, 2022, 55(4): 280−299.
ZHANG Zhenliang, FENG Xuanjie, ZHAO Guobin, et al. The Metallogenic Rule of Mesozoic Hypogene Deposits in the Eastern Tianshan-Beishan Area[J]. Northwestern Geology,2022,55(4):280−299.
[36] 赵志强, 白德胜, 张凯涛, 等. 河南陈楼萤石矿床M3-I矿体原生晕特征及深部找矿预测[J]. 矿产勘查, 2020, 11(4): 783−789.
ZHAO Zhiqiang, BAI Desheng, ZHANG Kaitao, et al. Characteristics of primary halos in the M3-I orebody and its deep prospecting prediction in Chenlou fluorite deposit, Henan Province[J]. Mineral Exploration,2020,11(4):783−789.
[37] 邹灏, 张寿庭, 方乙, 等. 天然萤石的放射性元素含量及其影响[J]. 物探与化探, 2014, 38(3): 478−484.
ZOU Hao, ZHANG Shouting, FANG Yi, et al. The radioactive elements content of natural fluorite and its influence[J]. Geophysical and Geochemical Exploration,2014,38(3):478−484.
[38] Camprubí, A., González-Partida, E., Richard, A., et al. MVT-Like Fluorite Deposits and Oligocene Magmatic-Hydrothermal Fluorite-Be-U-Mo-P-V Overprints in Northern Coahuila, Mexico[J]. Minerals, 2019, 9(1): 58–85.
[39] Castorina F., Masi U., Gorello I. Rare Earth Element and Sr-Nd Isotopic Evidence for the Origin of Fluorite from the Silius Vein Deposit (Southeastern Sardinia, Italy)[J]. Journal of Geochemical Exploration,2020,215:106535
[40] Meng Yinsheng, Zhang Ruizhong, Liu Ruide, et al. Application of Multiple Geophysical Methods to Prospect Concealed Ores Beneath Quaternary Cover: A Case Study from a Copper-Polymetallic Deposit[J]. Technology and Application of Environmental and Engineering Geophysics, 2017: 243–249.
[41] Pei Qiuming, Zhang Shouting, Hayashi K., et al. Nature and genesis of the Xiaobeigou fluorite deposit, Inner Mongolia, northeast China: evidence from fluid inclusions and stable isotopes[J]. Resource Geology,2019,69(2):148−166.
[42] Singh S., Rani A., Kumar Mahajan R., et al. 226Ra, 232Th and 40K analysis in soil samples from some areas of Punjab and Himachal Pradesh, India using gamma-ray spectrometry[J]. Radiat. Meas,2005,39(4):431−439.
[43] Wang Liang, Zhang Shouting, Fang Yi, et al. Integrated Exploration Model for Concealed Ore Deposit: A Case Study from Shuitou Fluorite Deposit, Inner Mongolia, North China[J]. Journal of Earth Science,2021,32(2):370−389. doi: 10.1007/s12583-021-1427-x
[44] Yan Jiayong, Chen Xiangbin, Meng Guixiang, et al. Concealed faults and intrusions identification based on multiscale edge detection and 3D inversion of gravity and magnetic data: A case study in Qiongheba area, Xinjiang[J]. Northwest China Interpretation,2019,7(2):331−345.
[45] Rodi W, Mackie R L. Nonlinear conjugate gradients algorithm for 2-D magnetotelluric inversion[J]. Geophysics,2001,66(1):174−187. doi: 10.1190/1.1444893
[46] Zou Hao, Pei Qiuming, Li Xinyu, et al. Application of field-portable geophysical and geochemical methods for tracing the Mesozoic-Cenozoic vein-type fluorite deposits in shallow overburden areas: A case from the Wuliji’Oboo deposit, Inner Mongolia, NE China[J]. Ore Geology Reviews, 2022, 142: 104685.
-