基于极限抗剪强度改进的压实填方边坡稳定性评价方法研究

王振华, 邓辉, 张永军. 2024. 基于极限抗剪强度改进的压实填方边坡稳定性评价方法研究. 西北地质, 57(4): 262-270. doi: 10.12401/j.nwg.2024046
引用本文: 王振华, 邓辉, 张永军. 2024. 基于极限抗剪强度改进的压实填方边坡稳定性评价方法研究. 西北地质, 57(4): 262-270. doi: 10.12401/j.nwg.2024046
WANG Zhenhua, DENG Hui, ZHANG Yongjun. 2024. Stability Evaluation Method and Protection Countermeasure of Compacted Fill Slope Based on Improvement of Ultimate Shear Strength. Northwestern Geology, 57(4): 262-270. doi: 10.12401/j.nwg.2024046
Citation: WANG Zhenhua, DENG Hui, ZHANG Yongjun. 2024. Stability Evaluation Method and Protection Countermeasure of Compacted Fill Slope Based on Improvement of Ultimate Shear Strength. Northwestern Geology, 57(4): 262-270. doi: 10.12401/j.nwg.2024046

基于极限抗剪强度改进的压实填方边坡稳定性评价方法研究

  • 基金项目: 2020年度中央财政自然灾害防治体系建设项目“兰州市黄土斜坡变形破坏机理及风险管控措施研究”(甘资财发〔2020〕16号)资助成果
详细信息
    作者简介: 王振华(1984−),男,高级工程师,长期从事工程地质、地质灾害防治研究。E−mail:956711249@qq.com
  • 中图分类号: P55;TU4

Stability Evaluation Method and Protection Countermeasure of Compacted Fill Slope Based on Improvement of Ultimate Shear Strength

  • 压实度是影响填方边坡稳定性的重要因素,为了分析不同压实度下填方边坡的稳定性,设计了不同压实度下填方边坡工况,分析并建立了压实土体本构关系模型,基于有限元强度折减理论,分析了变形破坏趋势,确定极限抗剪强度。采用Bishop方法计算土条两侧的作用力,在不考虑土体侧向变形的情况下,计算得出边坡稳定性系数和填土外加应力作用下导致的沉降变形值,根据计算结果提出了填方边坡稳定性防护对策。结果表明:所提出的分析方法能够准确分析出填方边坡变形情况,有效降低了稳定性分析误差,并且将其应用于实际填方边坡稳定性分析中,具有实际应用意义。

  • 加载中
  • 图 1  建设场地填方边坡工程地质平面图

    Figure 1. 

    图 2  场地填方边坡工程地质剖面图

    Figure 2. 

    图 3  不同压实度下最大竖向沉降值对比

    Figure 3. 

    图 4  不同压实度下填方边坡水平最大负位移值对比

    Figure 4. 

    图 5  不同压实度下填方边坡水平最大正位移对比

    Figure 5. 

    图 6  压实度80%黄土填方边坡

    Figure 6. 

    图 7  压实度90%黄土填方边坡

    Figure 7. 

    图 8  压实度95%黄土填方边坡

    Figure 8. 

    表 1  土层折减系数取值表

    Table 1.  Values of soil layer reduction coefficient

    土层液化指数液化土层深度(m)折减系数
    ≤0.6≤100
    10~201/3
    0.6~0.8≤101/3
    10~202/3
    0.8~1.0≤102/3
    10~201.0
    下载: 导出CSV

    表 2  兰州市某建设场地填方边坡参数

    Table 2.  Filling slope parameters of a construction site in Lanzhou

    序号指标参数
    1饱和渗透系数(m/h)0.108
    2饱和含水率(%)5.21
    3残余含水率(%)0.084
    4土体粘结强度标准值(kPa)45
    5暴雨入渗后内聚力(kPa)26
    6暴雨入渗后内摩擦角(°)25.3
    7暴雨入渗后容重(KN/m317.6
    8天然容重(KN/m313.5
    9土体底面倾角(°)45
    10地下水反流线平均倾角(°)32
    11填土高度(m)0~120
    12条块滑动面的长度(m)315
    下载: 导出CSV
  • [1]

    陈东. 某高速公路下填方边坡稳定性分析及支护方案研究[J]. 公路工程, 2020, 45(1): 114−116.

    CHEN Dong. Study on Stability Analysis and Support Scheme of Lower Slope of a Highway[J]. Highway Engineering,2020,45(1):114−116.

    [2]

    代雪, 张家明. 某场地边坡稳定分析方法的比较研究[J]. 中国安全生产科学技术, 2021, 17(11): 119−124.

    DAI Xue, ZHANG Jiaming. Comparative study on slope stability analysis methods at a site[J]. China Safety Science and Technology,2021,17(11):119−124.

    [3]

    高彦斌, 罗文康, 骆佳樑, 等. 两种固结状态下软土的三轴不排水剪切模量非线性及对比[J]. 岩土工程学报, 2021, 43(S2): 64−67.

    GAO Yanbin, LUO Wenkang, LUO Jialiang, et al. Nonlinearity and comparison of triaxial undrained shear modulus of soft soil under two consolidation states[J]. Chinese Journal of Geotechnical Engineering,2021,43(S2):64−67.

    [4]

    韩文喜, 张日华, 王昊. 降雨和地震对高填方边坡稳定性的影响研究[J]. 水力发电, 2019, 45(12): 31−36.

    HAN Wenxi, ZHANG Rihua, WANG Hao. Study on the Influences of Rainfall and Earthquake on the Stability of High Fill Slope[J]. Water Power,2019,45(12):31−36.

    [5]

    贺林林, 钱进, 赵陈雨, 等. 巫山神女峰机场高填方边坡稳定性分析方法研究[J]. 合肥工业大学学报(自然科学版), 2023, 46(5): 646−651+703.

    HE Linlin, QIAN Jin, ZHAO Chenyu, et al. Study on stability analysis method of high fill slope of Wushan Shennufeng Airport[J]. Journal of Hefei University of Technology (Natural Science Edition),2023,46(5):646−651+703.

    [6]

    贾俊, 张茂省, 冯立, 等. 流态破坏型黄土滑坡滑带土临界特征[J]. 西北地质, 2019, 52(2): 136−147.

    JIA Jun, ZHANG Maosheng, FENG Li, et al. Critical characteristics of soil in sliding zone of fluid destructive loess landslide[J]. Northwestern Geology,2019,52(2):136−147.

    [7]

    蒋辽, 喻兴, 刘林洁, 等. 基于蒙特卡罗模拟的填方边坡可靠度分析[J]. 地下空间与工程学报, 2017, 13(S2): 693−697.

    JIANG Liao, YU Xing, LIU Linjie, et al. Reliability analysis of fill slope based on Monte Carlo simulation[J]. Chinese Journal of Underground Space and Engineering,2017,13(S2):693−697.

    [8]

    李海涛, 任光明, 范荣全, 等. 川北某变电站堆积体边坡稳定性及加固措施分析[J]. 成都理工大学学报(自然科学版), 2023, 50(4): 454−464.

    LI Haitao, REN Guangming, FAN Rongjin, et al. Analysis on stability and reinforcement measures of accumulation body slope in a substation in north Sichuan[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2023, 50(4): 454−464.

    [9]

    刘畅, 张平松, 杨为民, 等. 税湾地震黄土滑坡的岩土动力特性及其稳定性评价[J]. 西北地质, 2020, 53(4): 176−185.

    LIU Chang, ZHANG Pingsong, YANG Weimin, et al. Geotechnical dynamic characteristics and stability evaluation of loess landslide in Shiwan earthquake[J]. Northwestern Geology,2020,53(4):176−185.

    [10]

    吕江, 赵晖, 杨杓, 等. 山区水下填方路堤边坡的稳定性分析[J]. 深圳大学学报: 理工版, 2021, 38(2): 151−156.

    LV Jiang, ZHAO Hui, YANG Shao, et al. Slope stability of underwater fill embankment in mountainous area[J]. Journal of Shenzhen University (Science & Engineering),2021,38(2):151−156.

    [11]

    任东兴, 薛鹏, 叶飞, 等. 降雨入渗条件下黏性土基坑浅层边坡稳定性分析[J]. 成都理工大学学报(自然科学版), 2022, 49(2): 204−212.

    REN Dongxing, XUE Peng, YE fei, et al. Shallow slope stability analysis of cohesive soil foundation pit under rainfall infiltration[J]. Journal of Chengdu University of Technology (Science & Technology Edition),2022,49(2):204−212.

    [12]

    唐亚明. 基于可靠度的黄土斜坡稳定性分析[J]. 地质通报, 2008, 27(8): 1217−1222.

    TANG Yaming. Loess slope stability analysis based on reliability[J]. Geological Bulletin of China,2008,27(8):1217−1222.

    [13]

    王斌, 熊宗瑜. 黄土高填方路堤沉降观测及有限元分析[J]. 港工技术与管理, 2020(5): 17−22.

    WANG Bin, XIONG Zongyu. Settlement Observation and Finite Element Analysis of Loess High Fill Embankment[J]. Technology & Management Of Port & Harbor Engineering,2020(5):17−22.

    [14]

    薛强, 张茂省, 毕俊擘, 等. 开挖型黄土边坡剥落侵蚀作用及变形破坏研究[J]. 西北地质, 2019, 52(2): 158−166.

    XUE Qiang, ZHANG Maoxing, BI Junbo, et al. Exfoliation Erosion and Deformation Failure of Excavated Loess Slope[J]. Northwestern Geology,2019,52(2):158−166.

    [15]

    向文贤, 黎应书, 许万忠, 等. 降雨入渗条件下预应力锚索加固填方边坡稳定性分析[J]. 中国煤炭地质, 2022, 34(1): 69−74. doi: 10.3969/j.issn.1674-1803.2022.01.12

    XIANG Wenxian, LI Yingshu, XU Wanzhong, et al. Prestressed Cable Anchor Reinforced Slope Stability Analysis under Rainfall Penetration Condition[J]. Coal Geology of China,2022,34(1):69−74. doi: 10.3969/j.issn.1674-1803.2022.01.12

    [16]

    杨智勇, 李典庆, 曹子君, 等. 考虑土质边坡多失效模式的区域概率风险分析方法[J]. 工程力学, 2019, 36(5): 216−225.

    YANG Zhiyong, LI Dianqing, CAO Zijun, et al. Region probability method for soil slope risk assessment involving multiple failure modes[J]. Engineering Mechanics,2019,36(5):216−225.

    [17]

    叶帅华, 张玉巧, 房光文. 黄土高填方边坡的稳定性影响因素及其变形规律[J]. 兰州理工大学学报, 2021, 47(3): 120−126.

    YE Shuaihua, ZHANG Yuqiao, FANG Guangwen. Influencing factors and deformation law of stability of loess high fill slope[J]. Journal of Lanzhou University of Technology,2021,47(3):120−126.

    [18]

    叶志程, 杨溢, 左晓欢, 等. 基于Midas-GTS/NX的不同工况下某填方边坡稳定性分析及加固措施[J]. 化工矿物与加工, 2021, 50(5): 16−19.

    YE Zhicheng, YANG Yi, ZUO Xiaohuan, et al. Stability analysis of a slope with reinforcement based on Midas-GTS/NX under different working conditions[J]. Industrial Minerals & Processing,2021,50(5):16−19.

    [19]

    赵洪, 谢友均, 龙广成, 等. 冲击荷载作用下含黏结界面混凝土破坏特征与应力应变分析[J]. 上海交通大学学报, 2022, 59(9): 1208−1217.

    ZHAO Hong, XIE Youjun, LONG Guangcheng, et al. Mechanical Characteristics and Stress and Strain Analysis of Concrete with Bonding Interface Under Impact Load[J]. Journal of Shanghai Jiaotong University,2022,59(9):1208−1217.

    [20]

    赵建祥, 毕鹏飞, 惠亚强. 降雨作用下高填方边坡失稳机制研究[J]. 水利水电技术(中英文), 2021, 52(S2): 421−429.

    ZHAO Jianxiang, BI Pengfei, HUI Yaqiang. Study on instability mechanism of high fill slope under rainfall[J]. Water Resources and Hydropower Technology (Chinese and English),2021,52(S2):421−429.

    [21]

    张文生, 罗强, 蒋良潍, 等. 小样本岩土参数下考虑矩估计偏差的土质边坡可靠度分析[J]. 岩土力学, 2019, 40(1): 315−324.

    ZHANG Wensheng, LUO Qiang, JIANG Liangwei, et al. Reliability analysis of soil slope considering moment estimation bias using small sample geotechnical param[J]. Rock and Soil Mechanics,2019,40(1):315−324.

    [22]

    周中, 李繁, 鲁四平. 轻质土换填路堤地基侧向变形非线性算法研究[J]. 铁道工程学报, 2022, 39(11): 12−18. doi: 10.3969/j.issn.1006-2106.2022.11.003

    ZHOU Zhong, LI Fan, LU Siping. Research on nonlinear Algorithm of lateral deformation of lightweight soil replacement embankment[J]. Journal of Railway Engineering,2022,39(11):12−18. doi: 10.3969/j.issn.1006-2106.2022.11.003

    [23]

    周亚东, 李龙辉, 陈思源. 饱和土一维大变形非线性热固结模型[J]. 岩石力学与工程学报, 2023, 42(9): 2306−2314.

    ZHOU Yadong, LI Longhui, CHEN Siyuan. One-dimensional nonlinear thermal consolidation model of saturated soil with large deformation[J]. Chinese Journal of Rock Mechanics and Engineering,2023,42(9):2306−2314.

    [24]

    Li Kaiqi, Yin Zhenyu, Zhang Ning, et al. A PINN-based modelling approach for hydromechanical behaviour of unsaturated expansive soils[J]. Computers and Geotechnics, 2024, 169: 106174.

    [25]

    Mohammad Hashem Bathayian Seyed, Maleki Mohammad. Kinematic hardening based coupled elastoplastic–viscoplastic model for describing time-dependent behavior of soils subjected to non-monotonic loadings[J]. Computers and Geotechnics, 2023, 161: 105602.

    [26]

    Parvaneh Seyed Milad, Foster Craig D, Chi Shengwei. A hardening/softening viscoplastic model for large deformation of soil[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2022, 46(10): 1895–1918.

    [27]

    Xiao Yang, Liu Shuang, Shi Jinquan, et al. Temperature-Dependent SWCC Model for Unsaturated Soil[J]. International Journal of Geomechanics, 2024, 24(5): 04024071 .

    [28]

    Peng Yu, Yin Zhenyu, Gao Fuping. Micromechanical analysis of pipeline-soil interaction in unsaturated granular soil undergoing lateral ground movement[J]. Computers and Geotechnics, 2024, 169: 106181.

  • 加载中

(8)

(2)

计量
  • 文章访问数:  596
  • PDF下载数:  129
  • 施引文献:  0
出版历程
收稿日期:  2023-02-07
修回日期:  2024-04-11
录用日期:  2024-05-08
刊出日期:  2024-08-20

目录