北山造山带尖山子新元古代早期似斑状花岗岩年代学、地球化学特征及地质意义

王必任, 滕超, 白相东, 关成尧, 袁四化, 张晓飞, 杨欣杰. 2024. 北山造山带尖山子新元古代早期似斑状花岗岩年代学、地球化学特征及地质意义. 西北地质, 57(6): 44-57. doi: 10.12401/j.nwg.2024074
引用本文: 王必任, 滕超, 白相东, 关成尧, 袁四化, 张晓飞, 杨欣杰. 2024. 北山造山带尖山子新元古代早期似斑状花岗岩年代学、地球化学特征及地质意义. 西北地质, 57(6): 44-57. doi: 10.12401/j.nwg.2024074
WANG Biren, TENG Chao, BAI Xiangdong, GUAN Chengyao, YUAN Sihua, ZHANG Xiaofei, YANG Xinjie. 2024. Age, Geochemistry and Geological Significance of an Early Neoproterozoic Porphyritic Granite in the Jianshanzi Area of the Beishan Orogenic Belt. Northwestern Geology, 57(6): 44-57. doi: 10.12401/j.nwg.2024074
Citation: WANG Biren, TENG Chao, BAI Xiangdong, GUAN Chengyao, YUAN Sihua, ZHANG Xiaofei, YANG Xinjie. 2024. Age, Geochemistry and Geological Significance of an Early Neoproterozoic Porphyritic Granite in the Jianshanzi Area of the Beishan Orogenic Belt. Northwestern Geology, 57(6): 44-57. doi: 10.12401/j.nwg.2024074

北山造山带尖山子新元古代早期似斑状花岗岩年代学、地球化学特征及地质意义

  • 基金项目: 廊坊市科学技术研究与发展计划自筹经费项目“三河市段甲岭-邦均断裂断层泥石英微形貌及其年代学研究”(2021013165),中央高校基本科研业务费专项自主申报项目“北山微地块前寒武纪地层对比及其对构造亲缘性的制约”(ZY20215119)联合资助。
详细信息
    作者简介: 王必任(1985−),男,博士,讲师,主要从事构造地质学教学与区域地质研究。E−mail:565985412@qq.com
    通讯作者: 滕超(1985−),男,硕士,高级工程师,主要从事基础地质调查与研究工作。E−mail:275498009@qq.com
  • 中图分类号: P597

Age, Geochemistry and Geological Significance of an Early Neoproterozoic Porphyritic Granite in the Jianshanzi Area of the Beishan Orogenic Belt

More Information
  • 笔者报道了北山造山带东缘尖山子地区新元古代早期似斑状花岗岩年代学、地球化学特征,结合已发表的同期花岗质岩石地球化学数据,讨论其源区性质及北山南部前寒武纪基底与塔里木克拉通的亲缘性。似斑状花岗岩两件样品锆石U-Pb年龄分别为(901±5)Ma,(935±3)Ma,表明其形成于新元古代早期。似斑状花岗岩样品发育钾长石斑晶,显示高的SiO2 含量(70.41%~76.05%)和过铝质特征(A/CNK = 1.01~1.21);具有相似的球粒陨石标准化稀土元素配分曲线并显示轻稀土富集、Eu负异常(δEu = 0.30~0.46)和在原始地幔标准化多元素图解上显示Rb、Th、U和K正异常,Ba、Nb、Ta、Sr、P和Ti负异常;具有富集的锆石Hf同位素组成,其εHf(t)值为−5.0~−1.4和相应的两阶段Hf模式年龄为2.08~1.86 Ga。这些地球化学特征共同反应似斑状花岗岩为壳源花岗岩,并指示早期地壳的再造事件。结合前人发表的地球化学数据,北山造山带南部前寒武纪基底经历了中元古代地壳新生事件和新元古代早期地壳再造事件,花岗质岩石锆石εHf(t)值主要落在2.2~1.3 Ga地壳物质Hf同位素演化区内,指示北山南部不存在太古代基底,因此与具有太古代结晶基底的塔里木克拉通可能不具有构造亲缘性。

  • 加载中
  • 图 1  中亚造山带构造位置图,显示北山造山带的位置(a)和北山造山带北山杂岩及已知的前寒武纪岩石空间分布(b)(据Xiao et al., 2010Wang et al., 2021b

    Figure 1. 

    图 2  北山造山带东缘尖山子地区地质简图及采样位置

    Figure 2. 

    图 3  尖山子似斑状花岗岩野外露头(a)和显微照片(b)

    Figure 3. 

    图 4  尖山子似斑状花岗岩锆石阴极发光(a、c)及锆石U-Pb谐和图(b、d)

    Figure 4. 

    图 5  尖山子似斑状花岗岩样品TW1003锆石εHft) –年龄(Ma)图

    Figure 5. 

    图 6  尖山子似斑状花岗岩(a)硅-碱性图(据Middlemost, 1994),(b)SiO2-K2O图(据Frost et al., 2001)和(c)A/NK-A/CNK图(据Maniar et al., 1989

    Figure 6. 

    图 7  尖山子似斑状花岗岩C1球粒陨石标准化稀土元素配分图(a)和原始地幔标准化多元素图(b)

    Figure 7. 

    图 8  北山造山带南部中元古代和新元古代早期花岗质岩石锆石εHft)–年龄(Ma)图解

    Figure 8. 

    表 1  尖山子似斑状花岗岩样品TW1003锆石LA-ICP-MS U-Pb年龄分析数据

    Table 1.  Zircon LA-ICP-MS U-Pb data for the sample TW1003 from the porphyritic granite in the Jianshanzi area

    点号 含量(10−6 同位素比值 年龄(Ma)
    TW1003 Pb Th U 207Pb/206Pb 207Pb/235U 206Pb/238U 208Pb/232Th 207Pb/206Pb 207Pb/235U 206Pb/238U
    TW1003-1 126 220 719 0.0713 0.0023 1.4571 0.0456 0.1474 0.0020 0.0494 0.0019 966 67 913 19 886 11
    TW1003-2 127 91 1024 0.0666 0.0018 1.2808 0.0355 0.1385 0.0018 0.0472 0.0030 833 56 837 16 836 10
    TW1003-3* 302 200 1583 0.0814 0.0025 1.9176 0.0526 0.1700 0.0021 0.1138 0.0041 1231 65 1087 18 1012 12
    TW1003-4* 1361 722 2152 0.3820 0.0091 8.0679 0.3240 0.1502 0.0042 0.3970 0.0185 3840 36 2239 36 902 23
    TW1003-5 194 263 1199 0.0696 0.0018 1.4317 0.0401 0.1481 0.0022 0.0624 0.0041 917 52 902 17 891 12
    TW1003-6 130 70 1036 0.0687 0.0016 1.4336 0.0425 0.1505 0.0030 0.0458 0.0022 889 50 903 18 904 17
    TW1003-7 129 431 643 0.0726 0.0020 1.5261 0.0511 0.1508 0.0027 0.0460 0.0014 1011 56 941 21 905 15
    TW1003-8* 104 213 452 0.0756 0.0023 1.8682 0.0597 0.1787 0.0026 0.0584 0.0019 1087 62 1070 21 1060 14
    TW1003-9 116 359 592 0.0696 0.0019 1.4392 0.0412 0.1494 0.0021 0.0456 0.0012 917 54 905 17 898 12
    TW1003-10 128 106 957 0.0693 0.0017 1.4330 0.0379 0.1488 0.0018 0.0503 0.0018 907 55 903 16 894 10
    TW1003-11* 199 591 844 0.0754 0.0019 1.6734 0.0494 0.1590 0.0023 0.0554 0.0017 1080 50 998 19 951 13
    TW1003-12 248 126 1819 0.0770 0.0016 1.6131 0.0425 0.1501 0.0024 0.0994 0.0041 1120 43 975 17 902 13
    TW1003-13 151 92 1202 0.0671 0.0014 1.4167 0.0310 0.1520 0.0021 0.0502 0.0014 840 43 896 13 912 12
    TW1003-14 101 69 794 0.0675 0.0014 1.4265 0.0318 0.1516 0.0020 0.0503 0.0016 854 44 900 13 910 11
    TW1003-15 468 827 1665 0.0899 0.0021 2.7197 0.0699 0.2163 0.0031 0.0742 0.0019 1433 39 1334 19 1262 17
    TW1003-16 98 84 711 0.0695 0.0024 1.4644 0.0617 0.1499 0.0022 0.0651 0.0076 922 72 916 25 900 13
    TW1003-17* 605 257 1807 0.1891 0.0094 4.4913 0.2548 0.1631 0.0032 0.4163 0.0262 2744 82 1729 47 974 18
    TW1003-18 140 59 1105 0.0671 0.0015 1.4159 0.0327 0.1511 0.0020 0.0522 0.0016 839 48 896 14 907 11
    TW1003-19* 301 91 1565 0.1267 0.0046 2.4865 0.1035 0.1387 0.0018 0.5338 0.0471 2054 64 1268 30 837 10
    TW1003-20 70 196 372 0.0684 0.0016 1.4270 0.0332 0.1500 0.0019 0.0464 0.0012 880 48 900 14 901 11
    TW1003-21 97 97 714 0.0655 0.0014 1.3836 0.0313 0.1512 0.0019 0.0466 0.0014 791 46 882 13 908 10
    TW1003-22 205 172 1221 0.0892 0.0028 1.8853 0.0642 0.1500 0.0019 0.1024 0.0050 1409 92 1076 23 901 10
    TW1003-23 82 258 418 0.0673 0.0016 1.4125 0.0377 0.1502 0.0024 0.0480 0.0014 856 48 894 16 902 13
    TW1003-24 158 102 1221 0.0663 0.0015 1.3876 0.0355 0.1498 0.0022 0.0471 0.0015 815 49 884 15 900 12
    TW1003-25* 544 999 1507 0.0934 0.0025 3.1789 0.0964 0.2424 0.0036 0.0757 0.0025 1496 45 1452 23 1399 18
    TW1003-26* 146 73 1033 0.0695 0.0016 1.5503 0.0365 0.1600 0.0023 0.0613 0.0023 922 47 951 15 957 13
    TW1003-27 174 203 1203 0.0701 0.0016 1.4758 0.0350 0.1507 0.0018 0.0508 0.0018 931 46 921 14 905 10
    TW1003-28 182 104 1304 0.0723 0.0016 1.5195 0.0343 0.1512 0.0020 0.0730 0.0025 994 46 938 14 908 11
    TW1003-29 143 106 1084 0.0687 0.0015 1.4335 0.0359 0.1491 0.0018 0.0561 0.0043 900 72 903 15 896 10
    TW1003-30* 290 516 902 0.0874 0.0017 2.9888 0.0637 0.2455 0.0030 0.0716 0.0016 1369 37 1405 16 1415 16
    TW1003-31 87 202 508 0.0690 0.0016 1.4469 0.0353 0.1506 0.0020 0.0450 0.0012 898 48 909 15 904 11
    TW1003-32 112 74 849 0.0689 0.0017 1.4329 0.0369 0.1492 0.0019 0.0482 0.0015 898 45 903 15 896 11
     注:*表示锆石核部点位。
    下载: 导出CSV

    表 2  尖山子似斑状花岗岩样品TW8837锆石LA-ICP-MS U-Pb年龄分析数据

    Table 2.  Zircon LA-ICP-MS U-Pb data for the sample TW8837 from the porphyritic granite in the Jianshanzi area

    点号 含量(10−6 同位素比值 年龄(Ma)
    TW8837 Pb Th U 207Pb/206Pb 207Pb/235U 206Pb/238U 208Pb/232Th 207Pb/206Pb 207Pb/235U 206Pb/238U
    TW8837-1 578 565 2424 0.0721 0.0018 1.5704 0.0401 0.1566 0.0015 0.0548 0.0016 989 19 959 16 938 8
    TW8837-2 392 565 1343 0.0708 0.0018 1.5354 0.0378 0.1564 0.0014 0.0479 0.0011 950 56 945 15 937 8
    TW8837-3 2373 4494 5527 0.0722 0.0017 1.5747 0.0349 0.1573 0.0016 0.0477 0.0011 991 48 960 14 942 9
    TW8837-4 1354 2073 4069 0.0708 0.0014 1.5397 0.0304 0.1566 0.0012 0.0502 0.0010 950 41 946 12 938 7
    TW8837-5 792 1023 3056 0.0670 0.0014 1.4566 0.0297 0.1566 0.0013 0.0469 0.0009 835 43 913 12 938 7
    TW8837-6 1623 2081 5514 0.0825 0.0018 1.6488 0.0329 0.1440 0.0010 0.0557 0.0011 1258 42 989 13 867 6
    TW8837-7 641 530 3129 0.0685 0.0014 1.4879 0.0307 0.1565 0.0013 0.0490 0.0012 883 43 925 13 937 7
    TW8837-8 409 285 1947 0.0704 0.0016 1.5303 0.0336 0.1566 0.0013 0.0607 0.0016 939 46 943 13 938 7
    TW8837-9 494 375 2598 0.0715 0.0016 1.5547 0.0349 0.1566 0.0014 0.0418 0.0011 972 47 952 14 938 8
    TW8837-10 1555 2353 4238 0.0744 0.0020 1.6301 0.0458 0.1566 0.0015 0.0563 0.0022 1054 54 982 18 938 8
    TW8837-11 986 1372 3002 0.0726 0.0018 1.5778 0.0392 0.1566 0.0016 0.0527 0.0012 1003 52 962 15 938 9
    TW8837-12 514 430 2269 0.0709 0.0017 1.5416 0.0362 0.1567 0.0015 0.0565 0.0015 955 53 947 14 938 8
    TW8837-13 607 414 2654 0.0739 0.0017 1.6226 0.0406 0.1567 0.0022 0.0681 0.0024 1039 48 979 16 938 12
    TW8837-14 927 1433 2810 0.0741 0.0017 1.6052 0.0358 0.1568 0.0019 0.0475 0.0011 1043 52 972 14 939 10
    TW8837-15 443 288 2252 0.0688 0.0015 1.4949 0.0323 0.1566 0.0016 0.0517 0.0012 892 76 928 13 938 9
    TW8837-16 818 578 4164 0.0693 0.0014 1.5057 0.0311 0.1565 0.0013 0.0466 0.0010 909 43 933 13 938 7
    TW8837-17 498 321 2396 0.0724 0.0016 1.5659 0.0340 0.1559 0.0014 0.0573 0.0014 998 43 957 13 934 8
    TW8837-18 600 552 2580 0.0704 0.0016 1.5294 0.0338 0.1566 0.0013 0.0510 0.0012 943 46 942 14 938 7
    TW8837-19 507 431 2290 0.0688 0.0016 1.4915 0.0333 0.1563 0.0013 0.0505 0.0013 894 42 927 14 936 7
    TW8837-20 588 463 2517 0.0772 0.0018 1.6772 0.0400 0.1566 0.0014 0.0571 0.0014 1125 48 1000 15 938 8
    TW8837-21* 646 468 2250 0.0800 0.0019 2.0261 0.0529 0.1819 0.0019 0.0747 0.0018 1198 46 1124 18 1077 11
    TW8837-22 477 314 2492 0.0682 0.0016 1.4735 0.0353 0.1556 0.0013 0.0513 0.0015 876 48 920 14 932 7
    TW8837-23 628 985 1916 0.0705 0.0016 1.5208 0.0342 0.1554 0.0012 0.0487 0.0010 943 45 939 14 931 7
    TW8837-24 463 644 1481 0.0695 0.0020 1.4925 0.0440 0.1548 0.0015 0.0534 0.0012 915 58 927 18 928 8
    TW8837-25 486 456 2299 0.0685 0.0015 1.4765 0.0332 0.1555 0.0015 0.0487 0.0011 883 44 921 14 932 8
    TW8837-26 491 383 2174 0.0741 0.0026 1.5846 0.0571 0.1552 0.0020 0.0674 0.0031 1044 75 964 22 930 11
    TW8837-27 568 327 2975 0.0731 0.0016 1.5723 0.0368 0.1550 0.0015 0.0631 0.0019 1017 44 959 15 929 9
    TW8837-28 369 432 1584 0.0704 0.0018 1.5108 0.0388 0.1550 0.0016 0.0472 0.0013 939 52 935 16 929 9
    TW8837-29* 481 467 1812 0.0700 0.0018 1.6017 0.0412 0.1655 0.0017 0.0622 0.0018 928 55 971 16 987 10
    TW8837-30* 419 207 2163 0.0695 0.0019 1.5900 0.0431 0.1652 0.0016 0.0673 0.0026 922 56 966 17 986 9
     注:*表示锆石核部点位。
    下载: 导出CSV

    表 3  尖山子似斑状花岗岩样品TW1003锆石Hf同位素组成

    Table 3.  Zircon Hf-isotope compositions for the sample TW1003 from the porphyritic granite in the Jianshanzi area

    点号 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf 年龄
    (Ma)
    176Hf/177Hf)i εHf0 εHft TDM
    (Ma)
    TDM2
    (Ma)
    fLu/Hf
    TW1003-5 0.054984 0.000289 0.001418 0.000007 0.282170 0.000025 901 0.282146 −21.3 −2.3 1544 1916 −0.96
    TW1003-6 0.050315 0.000471 0.001302 0.000012 0.282139 0.000023 901 0.282117 −22.4 −3.3 1582 1980 −0.96
    TW1003-7 0.037520 0.000372 0.000998 0.000010 0.282130 0.000023 901 0.282113 −22.7 −3.4 1582 1988 −0.97
    TW1003-9 0.087226 0.001205 0.002261 0.000024 0.282195 0.000021 901 0.282157 −20.4 −1.9 1543 1891 −0.93
    TW1003-10 0.091361 0.001105 0.002329 0.000026 0.282108 0.000022 901 0.282068 −23.5 −5.0 1672 2087 −0.93
    TW1003-13 0.071769 0.001814 0.001842 0.000037 0.282167 0.000026 901 0.282136 −21.4 −2.6 1566 1938 −0.94
    TW1003-14 0.080789 0.000700 0.002134 0.000025 0.282169 0.000023 901 0.282133 −21.3 −2.7 1575 1944 −0.94
    TW1003-16 0.064744 0.000391 0.001682 0.000006 0.282198 0.000025 901 0.282170 −20.3 −1.4 1514 1861 −0.95
    下载: 导出CSV

    表 4  尖山子似斑状花岗岩样品主量(%)和微量元素(10–6)组成

    Table 4.  Major (%) and trace element (10–6) compositions for samples from the porphyritic granite in the Jianshanzi area

    样号 TW1003 YQ2224 TW8837 样号 TW1003 YQ2224 TW8837
    SiO2 76.05 72.01 70.41 Y 32.27 38.96 45.02
    Al2O3 12.66 14.20 14.25 ΣREE 138.47 261.00 362.78
    TiO2 0.09 0.52 0.55 (La/Yb)N 7.17 8.41 10.79
    Fe2O3t 0.76 3.21 δEu 0.46 0.32 0.30
    Fe2O3 1.48 Li 8.94 12.50 23.14
    FeO 1.95 Be 1.35 2.57 2.86
    CaO 1.39 1.25 1.30 Sc 5.41 10.10 8.83
    MgO 0.47 0.85 1.11 V 9.51 40.64 53.43
    K2O 5.33 5.13 5.23 Cr 6.87 7.88 19.22
    Na2O 2.53 2.36 2.48 Co 66.15 64.20 5.97
    MnO 0.04 0.03 0.04 Ni 3.20 4.82 6.94
    P2O5 0.06 0.05 0.06 Cu 4.48 5.66 19.92
    LOI 0.83 0.36 1.01 Zn 10.75 46.32 75.92
    Total 100.21 99.97 99.89 Ga 12.29 10.35 24.39
    K2O+Na2O 7.86 7.49 7.72 Rb 130.66 200.65 294.88
    A/NK 1.27 1.51 1.46 Sr 116.65 102.45 118.67
    A/CNK 1.01 1.21 1.17 Zr 43.29 200.66 304.54
    La 25.63 52.30 65.79 Nb 3.05 10.67 21.44
    Ce 38.92 89.68 131.31 Mo 0.08 0.12 0.74
    Pr 4.14 8.77 15.37 Cd 0.09 0.14 0.16
    Nd 17.33 32.10 59.91 In 0.05 0.08 0.10
    Sm 2.87 8.67 11.52 Cs 2.12 8.67 9.96
    Eu 0.52 0.92 1.08 Ba 632.13 710.23 618.77
    Gd 4.19 8.64 10.09 Hf 1.67 8.60 10.21
    Tb 0.81 1.24 1.63 Ta 0.87 1.69 2.35
    Dy 4.76 6.86 9.04 W 363.73 320.00 1.75
    Ho 1.11 2.31 1.58 Tl 1.92
    Er 2.55 4.95 4.55 Pb 34.50 42.73 56.72
    Tm 0.38 0.68 0.82 Bi 0.08 0.06 1.32
    Yb 2.56 4.46 4.37 Th 16.63 35.60 48.94
    Lu 0.42 0.46 0.68 U 3.64 5.44 6.67
    下载: 导出CSV
  • [1]

    卜涛, 王国强, 黄博涛, 等. 北山北带新元古代 A 型花岗岩: Rodinia 超大陆裂解早期的地质响应[J]. 岩石学报, 2022, 38(10): 2988−3002. doi: 10.18654/1000-0569/2022.10.06

    BU Tao, WANG Guoqian, HUANG Botao, et al. Neoproterozoic A-type granites in northern Beishan Orogenic Belt: Early response of the Rodinia supercontinent break-up[J]. Acta Petrologica Sinica,2022,38(10):2988−3002. doi: 10.18654/1000-0569/2022.10.06

    [2]

    戴鹏飞, 苟学明, 何大鹏, 等. 北山南部炭窑井地区花岗岩型铀矿地质特征及找矿模型[J]. 东华理工大学学报(自然科学版), 2023, 46(1): 10−20.

    DAI Pengfei, GOU Xueming, HE Dapeng, et al. Geological characteristics and prospecting model of granite-type uranium deposits in Tanyaojing area,southern Beishan[J]. Journal of East China University of Technology (Natural Science),2023,46(1):10−20.

    [3]

    贺振宇, 孙立新, 毛玲娟, 等. 北山造山带南部片麻岩和花岗闪长岩的锆石U-Pb 定年和Hf同位素: 中元古代的岩浆作用与地壳生长[J]. 科学通报, 2015, 60(4): 389−399. doi: 10.1360/N972014-00898

    HE Zhenyu, SUN Lixin, MAO Lingjuan, et al. Zircon U-Pb and Hf isotopic study of gneiss and granodiorite from the southern Beishan orogenic collage: Mesoproterozoic magmatism and crustal growth[J]. Chinese Science Bulletin,2015,60(4):389−399. doi: 10.1360/N972014-00898

    [4]

    何世平, 任秉琛, 姚文光, 等. 甘肃内蒙古北山地区构造单元划分[J]. 西北地质, 2002, 35(4): 30−40. doi: 10.3969/j.issn.1009-6248.2002.04.004

    HE Shiping, REN Bingchen, YAO Wenguang, et al. The division of tectonic units of Beishan area, Gansu-Inner Mongolia[J]. Northwestern Geology,2002,35(4):30−40. doi: 10.3969/j.issn.1009-6248.2002.04.004

    [5]

    何世平, 周会武, 任秉琛, 等. 甘肃内蒙古北山地区古生代地壳演化[J]. 西北地质, 2015, 38(3): 6−15.

    HE Shiping, ZHOU Huiwu, REN Bingchen, et al. Crustal evolution of Paleozoic in Beishan area, Gansu and Inner Mongolia, China[J]. Northwestern Geology,2015,38(3):6−15.

    [6]

    霍宁, 郭谦谦, 陈艺超, 等. 北山中部古硐井群物源区性质与构造意义[J]. 岩石学报, 2022, 38(4): 1253−1279.

    HUO Ning, GUO Qianqian, CHEN Yichao et al. Provenance and tectonic setting of the Gudongjing Group in Beishan Orogen[J]. Acta Petrologica Sinica,2022,38(4):1253−1279.

    [7]

    姜洪颖, 贺振宇, 宗克清, 等. 北山造山带南缘北山杂岩的锆石U-Pb定年和Hf同位素研究[J]. 岩石学报, 2013, 29(11): 3949−3967.

    JIANG Hongying, HE Zhenyu, ZONG Keqing, et al. Zircon U-Pb dating and Hf isotopic studies on the Beishan complex in the southern Beishan Orogenic Belt[J]. Acta Petrologica Sinica,2013,29(11):3949−3967.

    [8]

    李怀坤, 朱士兴, 相振群, 等. 北京延庆高于庄组凝灰岩的锆石U-Pb定年研究及其对华北北部中元古界划分新方案的进一步约束[J]. 岩石学报, 2010, 26(7): 2131−2140.

    LI Huaikun, ZHU Shixing, XIANG Zhenqun, et al. Zircon U-Pb dating on tuff bed from Gaoyuzhuang Formation in Yanqing, Beijing: Further constraints on the new subdivision of the Mesoproterozoic stratigraphy in the northern North China Craton[J]. Acta Petrologica Sinica,2010,26(7):2131−2140.

    [9]

    李志琛. 敦煌地块变质岩系时代新认识[J]. 中国区域地质, 1994, 13(2): 131−134.

    LI Zhichen. New speculation of the age of the metamorphic rocks series of the Dunhuang massif[J]. Regional Geology of China,1994,13(2):131−134.

    [10]

    李沅柏, 李海泉, 周文孝, 等. 北山造山带新元古代热事件及其构造意义: 来自甘肃北山南带两期花岗质岩的地球化学和年代学证据[J]. 地质通报, 2021, 40(7): 1117−1139.

    LI Yuanbai, LI Haiquan, ZHOU Wenxiao, et al. Neoproterozoic thermal events and tectonic implications in the Beishan orogenic belt: Geochemical and geochronological evidence from two sets of granitic rocks from the southern Beishan orogenic belt, Gansu Province[J]. Geological Bulletin of China,2021,40(7):1117−1139.

    [11]

    梅华林, 于海峰, 李铨, 等. 甘肃敦煌-北山早前寒武纪岩石组合-构造初步框架[J]. 前寒武纪研究进展, 1997, 20(4): 47−54.

    MEI Hualin,YU Haifeng,LI Quan. Preliminary litho-tectonic framework of early Precambrian rocks in Dunhuang-Beishan area,Gansu,west China[J]. Progress in Precambrian Research,1997,20(4):47−54.

    [12]

    梅华林, 李惠民, 陆松年, 等. 甘肃柳园地区花岗质岩石时代及成因[J]. 岩石矿物学杂志, 1999, 18(1): 14−17.

    MEI Hualin, LI Huimin, LU Songnian, et al. The age and origin of the Liuyuan granitoid, northwestern Gansu[J]. Acta Petrologica et Mineralogica,1999,18(1):14−17.

    [13]

    聂凤军, 江思宏, 刘妍, 等. 内蒙古北山交叉沟地区变质火山岩Sm-Nd 同位素研究[J]. 地质学报, 2004, 76(8): 807−812.

    NIE Fengjun, JIANG Sihong, LIU Yan, et al. Sm-Nd isotope study on metamorphosed volcano-sedimentary Rocks of the Jiaochagou Metamorphic Complex, Beishan Mt., Inner Mongolia[J]. Acta Geologica Sinica,2004,76(8):807−812.

    [14]

    牛文超, 任邦方, 任云伟, 等. 北山北带新元古代岩浆记录: 来自内蒙古哈珠地区片麻状花岗岩的证据[J]. 地球科学, 2019, 44(1): 284−297.

    NIU Wenchao, REN Bangfang, REN Yunwei, et al. Neoproterozoic magmatic records in the north Beishan Orogenic Belt: evidence of the gneissic granites from the Hazhu area, Inner Mongolia[J]. Earth Science,2019,44(1):284−297.

    [15]

    牛腾, 倪志耀, 孟宝航, 等. 冀北康保芦家营巨斑状花岗岩: 华北克拉通北缘中段1.3~1.2 Ga B. P. 伸展—裂解事件的地质记录[J]. 成都理工大学学报(自然科学版), 2023, 50(4): 486−503.

    NIU Teng, NI Zhiyao, MENG Baohang, et al. The Lujiaying megaporphyric granite in Kangbao area, North Hebei: A geological record of extension and breakup event at 1.3~1.2 Ga B. P. in the central segment of northern margin of North China Craton[J]. Journal of Chengdu University of Technology (Science & Technology Edition),2023,50(4):486−503.

    [16]

    桑海清, 裘冀, 王松山, 等. 北山地区大口子片麻岩Ar-Ar年代学初步研究[J]. 地球学报, 1997, 18(S1): 58−61.

    SANG Haiqing, QIU Ji, WANG Songshan, et al. A preliminary study on Ar-Ar chronology of Dakouzi gneiss from Beishan Area[J]. Acta Geoscientia Sinica,1997,18(S1):58−61.

    [17]

    孙新春, 张红军, 魏志军, 等. 甘蒙北山地区小红山一带变质侵入岩体的时代厘定及其地质意义[J]. 西北地质, 2005, 38(3): 61−67. doi: 10.3969/j.issn.1009-6248.2005.03.009

    SUN Xinchun, ZHANG Hongjun, WEI Zhijun, et al. Time of definition and geological meaning for metamorphic intrusive rock body in Xiaohongshan region, Beishan area of Gansu and Inner Mongolia[J]. Northwestern Geology,2005,38(3):61−67. doi: 10.3969/j.issn.1009-6248.2005.03.009

    [18]

    魏学平, 龚全胜, 梁明宏, 等. 马鬃山隆起区前长城系敦煌岩群变质变形和演化特征[J]. 甘肃地质学报, 2000, 9(1): 36−43.

    WEI Xueping, GONG Quansheng, LIANG Minghong, et al. Metamorphic deformational and evolutionary characteristics of pre-Changcheng Dunhuang terrain occurring on Mazongshan upwelling area[J]. Acta Geologica Gansu,2000,9(1):36−43.

    [19]

    王文宝, 李卫星, 雷聪聪, 等. 中亚造山带中段早—中三叠世埃达克岩和A型花岗岩成因及构造意义[J]. 西北地质, 2024, 57(3): 29−43.

    WANG Wenbao,LI Weixing,LEI Congcong,et al. Early-Middle Triassic Adakitic and A-type Granite in Middle Segment of Central Asian Orogenic Belt: Petrogenesis and Tectonic Implications[J]. Northwestern Geology,2024,57(3):29−43.

    [20]

    王梓桐, 王根厚, 张维杰, 等. 阿拉善地块南缘志留纪花岗闪长岩LA-ICP-MS锆石U-Pb年龄及地球化学特征[J]. 成都理工大学学报(自然科学版), 2022, 49(5): 586−600.

    WANG Zitong, WANG Genhou, ZHANG Weijie, et al. LA-ICP-MS zircon U-Pb dating and geochemical characteristics of the Silurian granodiorite in the southern margin of Alxa Block, China[J]. Journal of Chengdu University of Technology (Science Technology Edition),2022,49(5):586−600.

    [21]

    吴妍蓉, 周海, 赵国春, 等. 中亚造山带南蒙古地区石炭纪—二叠纪岩浆活动及其构造意义[J]. 西北地质, 2024, 57(3): 11−28.

    WU Yanrong,ZHOU Hai,ZHAO Guochun,et al. Carboniferous-Permian Magmatism of Southern Mongolia, Central Asian Orogenic Belt and Its Tectonic Implications[J]. Northwestern Geology,2024,57(3):11−28.

    [22]

    肖文交, 宋东方, Windley B F, 等. 中亚增生造山过程与成矿作用研究进展[J]. 中国科学: 地球科学, 2019, 49(10): 1512−1545.

    XIAO Wenjiao, SONG Dongfang, Windley B F, et al. Research progresses of the accretionary processes and metallogenesis of the Central Asian Orogenic Belt[J]. Science China: Earth Sciences,2019,49(10):1512−1545.

    [23]

    杨合群, 李英, 李文明, 等. 北山成矿构造背景概论[J]. 西北地质, 2008, 41(1): 22−28. doi: 10.3969/j.issn.1009-6248.2008.01.002

    YANG Hequn, LI Ying, LI Wenming, et al. General discussion on metallogenitic tectonic setting of Beishan Mountain, Northwestern China[J]. Northwestern Geology,2008,41(1):22−28. doi: 10.3969/j.issn.1009-6248.2008.01.002

    [24]

    杨合群, 李英, 赵国斌, 等. 新疆-甘肃-内蒙古衔接区地层对比及其意义[J]. 西北地质, 2009, 42(4): 60−75. doi: 10.3969/j.issn.1009-6248.2009.04.008

    YANG Hequn, LI Ying, ZHAO Guobin, et al. Stratigraphic Correlation and Its Significance of Xinjiang-Gansu-Inner Mongolia Join Area[J]. Northwestern Geology,2009,42(4):60−75. doi: 10.3969/j.issn.1009-6248.2009.04.008

    [25]

    杨合群, 李英, 赵国斌, 等. 北山蛇绿岩特征及构造属性[J]. 西北地质, 2010, 43(1): 26−35.

    YANG Hequn,LI Ying,ZHAO Guobin,et al. Character and structural attribute of the Beishan ophiolite[J]. Northwestern Geology,2010,43(1):26−35.

    [26]

    杨合群, 赵国斌, 李英, 等. 新疆-甘肃-内蒙古衔接区古生代构造背景与成矿的关系[J]. 地质通报, 2012, 31(2/3): 413−421.

    YANG Hequn, ZhAO Guobin, LI Ying, et al. The relationship between Paleozoic tectonic setting and mineralization in Xinjiang-Gansu-Inner Mongolia juncture area[J]. Geological Bulletin of China,2012,31(2/3):413−421.

    [27]

    叶晓峰, 宗克清, 张泽明, 等. 北山造山带南缘柳园地区新元古代花岗岩的地球化学特征及其地质意义[J]. 地质通报, 2013, 32(2−3): 307−317.

    YE Xiaofeng,ZONG Keqing,ZHANG Zeming,et al. Geochemistry of Neoproterozoic granite in Liuyuan area of southern Beishan orogenic belt and its geological significance[J]. Geological Bulletin of China,2013,32(2−3):307−317.

    [28]

    俞胜, 赵斌斌, 贾轩, 等. 北山造山带南缘一条山北闪长岩地球化学、年代学特征及其构造意义[J]. 西北地质, 2022, 55(4): 267−279.

    YU Sheng, ZHAO Binbin, JIA Xuan, et al. Geochemistry, Geochronology Characteristics and Tectonic Significance of Yitiaoshan Diorite in the Southern Margin of Beishan Orogenic Belt[J]. Northwestern Geology,2022,55(4):267−279.

    [29]

    朱文斌, 林和丰, 葛荣峰, 等. 塔里木克拉通北缘库鲁克塔格地块太古宙基底组成与地壳演化[J]. 地质学报, 2022, 96(9): 3084−3101.

    ZHU Wenbin, LIN Hefeng, GE Rongfeng, et al. Archean basement composition and crustal evolution of the Kuluketage block in the northern margin of the Tarim Craton[J]. Acta Geologica Sinica,2022,96(9):3084−3101.

    [30]

    左国朝, 张淑玲, 何国琦, 等. 北山地区早古生代板块构造特征[J]. 地质科学, 1990, 4: 305−314.

    ZUO Guochao, ZHANG Shuling, HE Guoqi, et al. Early Paleozoic plate tectonics in Beishan area[J]. Chinese Journal of Geology,1990,4:305−314.

    [31]

    Ao S J, Xiao W J, Windley B F, et al. Paleozoic accretionary orogenesis in the eastern Beishan orogen: constraints from zircon U–Pb and 40Ar/39Ar geochronology[J]. Gondwana Research,2016,30:224−235. doi: 10.1016/j.gr.2015.03.004

    [32]

    Frost B R, Barnes C G, Collins W J, et al. A geochemical classification for granitic rocks[J]. Journal of Petrology,2001,42(11):2033−2048.

    [33]

    He Z Y, Klemd R, Yan L L, et al. The origin and crustal evolution of microcontinents in the Beishan orogen of the southern Central Asian Orogenic Belt[J]. Earth-Science Reviews,2018,185:1−14.

    [34]

    Huang B T, Wang G Q, Li X M, et al. Precambrian tectonic affinity of the Beishan Orogenic Belt: Constraints from Proterozoic metasedimentary rocks[J]. Precambrian Research,2022,376:P106686.

    [35]

    Kröner A, Alexeiev D V, Agramonte Y, et al. Mesoproterozoic (Grenvilleage) terranes in the Kyrgyz North Tianshan: zircon ages and Nd-Hf isotopic constraints on the origin and evolution of basement blocks in the southern Central Asian Orogen[J]. Gondwana Research,2013,23:272−295. doi: 10.1016/j.gr.2012.05.004

    [36]

    Li J, Wu C, Chen X, et al. Tectonic setting of metamorphism and exhumation of eclogite-facies rocks in the South Beishan orogen, northwestern China[J]. Geosphere,2023,19(1):100−138. doi: 10.1130/GES02548.1

    [37]

    Liu Q, Zhao G C, Sun M, et al. Ages and tectonic implications of Neoproterozoic ortho- and paragneisses in the Beishan Orogenic Belt, China[J]. Precambrian Research,2015,266:551−578. doi: 10.1016/j.precamres.2015.05.022

    [38]

    Maniar P D, Piccoli P M. Tectonic discrimination of granitoids[J]. Geological Society of America Bulletin,1989,101:635−643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2

    [39]

    Middlemost E A. Naming materials in the magma/igneous rock system[J]. Earth Science Reviews,1994,37(3−4):215−224.

    [40]

    Niu Y Z, Shi G R, Ji W H, et al. Paleogeographic evolution of a Carboniferous-Permian sea in the southernmost part of the Central Asian Orogenic Belt, NW China: Evidence from microfacies, provenance and paleobiogeography[J]. Earth- Science Reviews,2021a,220:103738. doi: 10.1016/j.earscirev.2021.103738

    [41]

    Niu Y Z, Shi G R, Wang J Q, et al. The closing of the southern branch of the Paleo-Asian Ocean: Constraints from sedimentary records in the southern Beishan region of the Central Asian Orogenic Belt, NW China[J]. Marine and Petroleum Geology,2021b,124:104791. doi: 10.1016/j.marpetgeo.2020.104791

    [42]

    Rudnick R L, Gao S. Composition of the continental crust. In: Rudick R L. The crust, treatise on geochemistry, Amsterdam[M].Elsevier, 2003, 3: 1−64.

    [43]

    Sengör A M C, Natal’in B A, Burtman V S. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia[J]. Nature,1993,364:299−307. doi: 10.1038/364299a0

    [44]

    Song D F, Xiao W J, Han C M, et al. Progressive accretionary tectonics of the Beishan orogenic collage Altaids: insights from zircon U–Pb and Hf isotopicdata of high-grade complexes[J]. Precambrian Research,2013a,227:368−388. doi: 10.1016/j.precamres.2012.06.011

    [45]

    Song D F, Xiao W J, Han C M, et al. Geochronological and geochemical study of gneiss–schist complexes and associated granitoids, Beishan Orogen, southern Altaids[J]. International Geology Review,2013b,55(14):1705−1727. doi: 10.1080/00206814.2013.792515

    [46]

    Song D F, Xiao W J, Han C M, et al. Provenance of meta-sedimentary rocks from the Beishan orogenic collage, southern Altaids: constraints from detrital zircon U–Pb and Hf isotopic data[J]. Gondwana Research,2013c,24:1127−1151. doi: 10.1016/j.gr.2013.02.002

    [47]

    Song D F, Xiao W J, Windley B F, et al. A Paleozoic Japan-type subduction-accretion system in the Beishan orogenic collage, southern Central Asian Orogenic Belt[J]. Lithos,2015,224−225:195−213. doi: 10.1016/j.lithos.2015.03.005

    [48]

    Song D F, Xiao W J, Windley B F, et al. Metamorphic complexes in accretionary orogens: insights from the Beishan collage, southern Central Asian Orogenic Belt[J]. Tectonophysics,2016,688:135−147. doi: 10.1016/j.tecto.2016.09.012

    [49]

    Soldner J, Yuan C, Schul Mann K, et al. Grenvillean evolution of the Beishan Orogen, NW China: Implications for development of an active Rodinian Margin[J]. The Geological Society of American,2019,132(7−8):1657−1680.

    [50]

    Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[M]. In: Saunders, A. D., Norry, M. J. (Eds.), Magmatism in the Ocean Basins. Geological Society, London, Special Publications, 1989, 42, 313−345.

    [51]

    Windley B F, Alexeiev D, Xiao W J, et al. Tectonic models for accretion of the Central Asian Orogenic Belt[J]. Journal of the Geological Society,2007,164:31−47. doi: 10.1144/0016-76492006-022

    [52]

    Xiao W J, Mao Q G, Windley B F, et al. Paleozoic multiple accretionary and collisional processes of the Beishan orogenic collage[J]. American Journal of Science,2010,310:1553−1594. doi: 10.2475/10.2010.12

    [53]

    Yuan Y, Zong K Q, He Z Y, et al. Geochemical and geochronological evidence for a former early Neoproterozoic microcontinent in the South Beishan Orogenic Belt, southernmost Central Asian Orogenic Belt[J]. Precambrian Research,2015,266:409−424. doi: 10.1016/j.precamres.2015.05.034

    [54]

    Yuan Y, Zong K Q, Cawood P A, et al. Implication of Mesoproterozoic (∼1.4 Ga) Magmatism within microcontinents along the southern Central Asian Orogenic Belt[J]. Precambrian Research,2019,327:314−326. doi: 10.1016/j.precamres.2019.03.014

    [55]

    Zheng R G, Li J Y, Xiao W J, et al. Nature and provenance of the Beishan Complex, southernmost Central Asian Orogenic Belt[J]. International Journal of Earth Sciences,2018,107:729−755. doi: 10.1007/s00531-017-1525-2

    [56]

    Zhou J B, Wilde S A, Zhao G C, et al. Nature and assembly of microcontinental blocks within the Paleo-Asian Ocean[J]. Earth-Science Reviews,2018,186:76−93. doi: 10.1016/j.earscirev.2017.01.012

    [57]

    Zong K Q, Klem R, Yuan Y, et al. The assembly of Rodinia: The correlation of early Neoproterozoic (ca. 900 Ma) high-grade metamorphism and continental arc for Mation in the southern Beishan Orogen, southern Central Asian Orogenic Belt (CAOB)[J]. Precambrian Research,2017,290:32−48. doi: 10.1016/j.precamres.2016.12.010

    [58]

    Zuo G C, Zhang S L, He G Q, et al. Plate tectonic characteristics during the early Paleozoic in Beishan near the Sino-Mongolian border region, China[J]. Tectonophysics,1991,188:385−392. doi: 10.1016/0040-1951(91)90466-6

    [59]

    Wang B R, Yang X S, Li S C, et al. Age, depositional environment, and tectonic significance of an Early Neoproterozoic volcano-sedimentary sequence in the eastern Beishan orogenic belt, southern Central Asian Orogenic Belt[J]. Geological Journal,2021a,156:1346−1357.

    [60]

    Wang B R, Yang X S, Li S C, et al. Geochronology, geochemistry, and tectonic implications of early Neoproterozoic granitic rocks from the eastern Beishan Orogenic Belt, southern Central Asian Orogenic Belt[J]. Precambrian Research,2021b,352:106016. doi: 10.1016/j.precamres.2020.106016

  • 加载中

(8)

(4)

计量
  • 文章访问数:  498
  • PDF下载数:  38
  • 施引文献:  0
出版历程
收稿日期:  2023-12-31
修回日期:  2024-08-01
录用日期:  2024-08-09
刊出日期:  2024-12-20

目录