鄂尔多斯盆地西南缘镇原地区洛河组沉积环境对铀成矿的制约

孙涛, 雷晶超, 刘阳, 尹永朋, 王军礼, 李小伟, 陈正国. 2024. 鄂尔多斯盆地西南缘镇原地区洛河组沉积环境对铀成矿的制约. 西北地质, 57(6): 199-217. doi: 10.12401/j.nwg.2024077
引用本文: 孙涛, 雷晶超, 刘阳, 尹永朋, 王军礼, 李小伟, 陈正国. 2024. 鄂尔多斯盆地西南缘镇原地区洛河组沉积环境对铀成矿的制约. 西北地质, 57(6): 199-217. doi: 10.12401/j.nwg.2024077
SUN Tao, LEI Jingchao, LIU Yang, YIN Yongpeng, WANG Junli, LI Xiaowei, CHEN Zhengguo. 2024. The Constraints of the Depositional Environment of the Luohe Formation on Uranium Mineralization in the Zhenyuan Area of the Southwestern Ordos Basin. Northwestern Geology, 57(6): 199-217. doi: 10.12401/j.nwg.2024077
Citation: SUN Tao, LEI Jingchao, LIU Yang, YIN Yongpeng, WANG Junli, LI Xiaowei, CHEN Zhengguo. 2024. The Constraints of the Depositional Environment of the Luohe Formation on Uranium Mineralization in the Zhenyuan Area of the Southwestern Ordos Basin. Northwestern Geology, 57(6): 199-217. doi: 10.12401/j.nwg.2024077

鄂尔多斯盆地西南缘镇原地区洛河组沉积环境对铀成矿的制约

  • 基金项目: 中国石油长庆油田分公司项目“镇原地区孟Ⅰ区北区白垩系BSK1资源评价项目”(2024-KTSY-D005)资助。
详细信息
    作者简介: 孙涛(1970−),男,高级工程师,主要从事矿产勘查方面的研究。E−mail:652571598@qq.com
    通讯作者: 刘阳(1986−),男,高级工程师,主要从事沉积学及砂岩型铀矿研究。E−mail:529832520@qq.com
  • 中图分类号: P536

The Constraints of the Depositional Environment of the Luohe Formation on Uranium Mineralization in the Zhenyuan Area of the Southwestern Ordos Basin

More Information
  • 含铀岩系沉积环境制约着铀储层的空间分布以及铀成矿作用,其在铀成矿潜力评价中具有重要的意义。鄂尔多斯西南缘洛河组含铀岩系沉积环境存在争议,其与铀成矿的关系不明确,制约了区域铀成矿规律的认识。笔者通过碎屑组分分析、粒度分析等方法,对鄂尔多斯盆地西南缘上白垩统洛河组含铀岩系进行了沉积环境分析。研究发现洛河组含铀岩系铀储层主要为红色、灰色、灰绿色细–粗砂岩,碎屑成分主要由石英、长石、岩屑组成,砂岩主要为岩屑石英砂岩和长石石英砂岩。砂岩粒度平均值(Mz)的均值为2.01。标准偏差(σ)平均值为0.49,表明分选好。偏度(Sk)平均值为0.11,表明洛河组沉积以较粗物质为主,且留有一个细物质的尾部。峰度(Kg)平均值为1.05,峰度变化幅度不大。频率曲线显示较好的正态分布特征,频率直方图多呈单峰式,概率值累积曲线为高斜率一段跳跃式、一跳一悬两段式和一滚一跳一悬三段式。综合分析认为,研究区上白垩统洛河组含铀岩系沉积环境为风成沉积体系,其中包括风成砂丘、丘间沉积、河道沉积和浅湖沉积等成因相,成因相的岩性组合、粒度特征有其各自特征。研究区上白垩统洛河组含铀岩系中的河流沉积和小型湖泊沉积制约着铀成矿作用,风成–水成相互作用,形成了富含有机质、发育有较为稳定“泥–砂–泥”结构的铀储层,这为后期大规模的铀成矿作用提供了前提条件。因此,盆地边缘的风成–水成交互沉积作用区域为有利的砂岩型铀成矿区域。

  • 加载中
  • 图 1  工作区构造位置图(a)(据金若时等,2023修改)和取样钻孔位置图(b)

    Figure 1. 

    图 2  洛河组砂岩岩心及镜下碎屑组分图

    Figure 2. 

    图 3  洛河组砂岩Qm-F-Lt分类判别图解

    Figure 3. 

    图 4  镇原地区洛河组砂岩粒度概率累积曲线

    Figure 4. 

    图 5  研究区洛河组砂岩、现代沙漠、现代河流样品的粒度参数散点图

    Figure 5. 

    图 6  研究区洛河组砂岩、现代沙漠、现代河流样品的粒度结构参数散点图

    Figure 6. 

    图 7  洛河组砂岩样品萨胡成因图解

    Figure 7. 

    图 8  研究区PY-2井上白垩统洛河组单井相分析图

    Figure 8. 

    图 9  研究区洛河组成因相的空间分布特征

    Figure 9. 

    图 10  研究区洛河组砂体沉积环境及地球化学环境与铀矿体的空间配置图

    Figure 10. 

    表 1  洛河组砂岩薄片碎屑组分的原始统计表(%)

    Table 1.  Raw point-counting data of sandstone compositions in thin sections from the Luohe Formation

    样品号深度(m)粒度QmQpPlKpLvLmLsOQtFLLt
    B1721.92m67.547.418.020.8011.420.800.403.6174.958.8212.6320.04
    B2727.32m80.494.158.780.734.390.490.490.4984.639.515.379.51
    B3770.31m78.373.857.210.728.650.720.240.2482.217.939.6213.46
    B4805.46f79.014.447.901.984.940.740.490.4983.469.886.1710.62
    B5673.87f79.464.218.170.995.450.740.500.5083.669.166.6810.89
    B9761.22f76.664.5810.532.294.580.460.230.6981.2412.815.269.84
    B13860.78f84.083.485.220.754.980.750.250.5087.565.975.979.45
    B171017.42f82.594.487.460.753.480.500.500.2587.068.214.488.96
    B21894.95f79.265.194.940.748.150.740.490.4984.445.689.3814.57
    B22941.64f81.063.605.040.727.670.960.480.4884.655.769.1112.71
    B23795.25f76.414.679.831.725.900.740.250.4981.0811.556.8811.55
    B24778.75f76.923.239.932.485.710.740.740.2580.1512.417.2010.42
    B25839.2m80.103.406.071.217.280.970.730.2483.507.288.9812.38
    B27872.85m80.683.624.830.978.210.720.480.4884.305.809.4213.04
    B28797.1m83.953.952.470.997.160.740.490.2587.903.468.4012.35
    B291319.45f78.043.345.010.959.551.431.190.4881.385.9712.1715.51
    B301139.05m83.253.203.451.237.140.740.490.4986.454.688.3711.58
     注:Qm. 单晶石英;Qp. 多晶石英;Pl. 斜长石;Kp. 钾长石;Lv. 火山岩岩屑;Lm. 变质岩岩屑;Ls. 沉积岩岩屑(不包括碳酸盐岩);O. 其他矿物(云母、重矿物和透明矿物);Qt=Qm+Qp;F=Kp+Pl;L=Lv+Lm+Ls;Lt=L+Qp;f. 细砂岩;m. 中砂岩。
    下载: 导出CSV

    表 2  镇原地区洛河组砂岩粒度分析统计表(%)

    Table 2.  Sandstone grain size of Luohe Formation in Zhenyuan area

    样品编号 岩石定名 砾石 巨砂 粗砂 中砂 细砂 粉砂 黏土
    ɸ≤−1 −1<ɸ≤0 0<ɸ≤1 1<ɸ≤2 2<ɸ≤4 4<ɸ≤8 ɸ>8
    B1 细砂质中砂岩 0.00 0.00 0.89 73.62 25.49 0.00 0.00
    B2 细砂质中砂岩 0.00 0.00 3.52 57.88 38.60 0.00 0.00
    B3 中砂岩 0.00 0.00 12.34 63.98 23.67 0.01 0.00
    B4 中砂质细砂岩 0.00 0.00 0.00 34.90 65.02 0.07 0.00
    B5 中砂质细砂岩 0.00 0.00 0.00 25.94 74.06 0.00 0.00
    B9 中砂质细砂岩 0.00 0.00 0.00 25.11 74.89 0.00 0.00
    B13 中砂质细砂岩 0.00 0.00 0.00 31.43 68.56 0.01 0.00
    B17 中砂岩 0.00 0.00 2.84 74.92 22.24 0.00 0.00
    B21 中砂质细砂岩 0.00 0.00 0.00 35.43 64.57 0.00 0.00
    B22 中砂细砂岩 0.00 0.00 7.76 37.43 54.64 0.16 0.00
    B23 细砂岩 0.00 0.00 0.00 23.49 76.51 0.00 0.00
    B24 中砂质细砂岩 0.00 0.00 0.00 25.52 73.99 0.49 0.00
    B25 细砂质中砂岩 0.00 0.00 0.00 64.07 35.84 0.09 0.00
    B27 细砂质中砂岩 0.00 0.00 10.74 50.36 38.20 0.70 0.00
    B28 中砂岩 0.00 0.00 20.80 63.06 16.02 0.12 0.00
    B29 中砂质细砂岩 0.00 0.00 0.00 30.92 68.31 0.76 0.00
    B30 细砂质中砂岩 0.00 0.00 0.00 64.77 35.21 0.02 0.00
    下载: 导出CSV

    表 3  镇原地区洛河组砂岩与现代沙漠及河流粒度参数表

    Table 3.  Grain size parameters of Luohe Formation sandstone in Zhenyuan area and deserts、river

    地区 样品编号 岩石定名 平均值(Mz) 标准偏差(σ) 偏度(Sk) 峰度(Kg) 计算方法 参考文献
    鄂尔多斯盆地
    西南缘镇原地区
    B1中砂岩1.730.420.11.02图解法本研究数据
    B2中砂岩1.860.42−0.131.01
    B3中砂岩1.640.60.171.15
    B4细砂岩2.210.55−0.011.14
    B5细砂岩2.310.490.010.99
    B9细砂岩2.250.380.071.09
    B13细砂岩2.180.390.051.08
    B17中砂岩1.770.350.171.15
    B21细砂岩2.160.40.071.04
    B22细砂岩2.10.8−0.010.9
    B23细砂岩2.260.350.050.98
    B24细砂岩2.310.450.020.96
    B25中砂岩1.880.420.180.97
    B27中砂岩1.850.810.071.01
    B28中砂岩1.430.590.251.28
    B29细砂岩2.320.650.651.09
    B30中砂岩1.910.290.120.99
    塔克拉玛干沙漠S1极细沙0.12−0.421.37图解法吉启慧,1996
    古尔班通古特沙漠S2细沙和极细沙0.10.40.351.48图解法钱亦兵等,2009
    库姆塔格沙漠S3细沙和中沙0.240.680.020.96图解法何清等,2009
    巴丹吉林沙漠S4细沙和中沙0.380.610.231.13图解法钱广强等,2011
    腾格里沙漠S5细沙和中沙0.250.510.030.93图解法李恩菊,2011
    乌兰布和沙漠S6细沙和极细沙0.140.131.12图解法桂洪杰,2013
    巴音温都尔沙漠S7粗沙0.450.980.531.09图解法周丹丹等,2008
    库布奇沙漠S8细沙0.180.570.010.96图解法沈亚萍等,2016
    毛乌素沙地S9细沙0.170.640.030.99图解法
    浑善达克沙地S10细沙0.280.670.081.09图解法
    科尔沁沙地S11细沙0.210.890.191.15图解法
    呼伦贝尔沙地S12细沙0.231.030.191.13图解法
    哈勒腾河流域沙丘S13细沙2. 280. 600.211.3图解法田敏等,2020
    哈勒腾河流域河道H1中沙2. 260. 92−0.161.13
    北京潮白河H2细沙-粗沙61.820.371.17图解法乔大伟等,2020
    H35.821.820.371.17
    H46.181.80.311.13
    长江下游H5粉砂岩6.061.770.652.98图解法张凌华等,2015
    长江河口区H6细砂岩3.11.61.62.3图解法邓程文等,2016
    湘江衡阳段H7细沙2.59−1.53−0.170.83图解法熊平生等,2022
    渭河陕西段H8细沙-粗沙0.160.242.270.18图解法宋进喜等,2013
    黄河乌兰布和
    沙漠段
    H9细沙4.651.230.191.18图解法郭建英等,2021
    下载: 导出CSV

    表 4  镇原地区洛河组砂岩主量元素分析结果(%)

    Table 4.  Contents of major elements of sandstone of Luohe Formation in Zhenyuan area

    孔号 样品编号 岩性 SiO2 TiO2 Al2O3 TFe2O3 MnO MgO CaO Na2O K2O P2O5 烧失量 K2O/Na2O CIA
    PY-1 A1 浅红色细砂岩 79.23 0.11 5.28 0.86 0.04 0.36 5.96 0.90 1.93 0.13 5.33 2.14 68.97
    PY-2 A2 浅灰色细砂岩 81.39 0.11 5.55 0.80 0.03 1.92 2.80 0.98 1.87 0.02 4.23 1.91 63.20
    PY-3 A3 浅灰色细砂岩 74.30 0.11 5.12 0.67 0.03 0.21 8.84 1.12 1.75 1.15 6.30 1.56 70.33
    PY-4 A4 灰色细砂岩 86.82 0.13 5.47 0.74 0.02 0.55 1.62 1.15 1.80 0.02 2.14 1.57 69.52
    PY-5 A5 浅红色细砂岩 70.98 0.19 5.69 1.70 0.07 3.48 6.34 0.71 1.99 0.90 8.24 2.80 70.80
    PY-6 A6 灰色细砂岩 82.26 0.14 5.04 0.62 0.04 1.09 4.00 1.03 1.71 0.02 4.58 1.66 70.48
    PY-7 A7 灰色细砂岩 91.00 0.09 4.17 0.45 0.01 0.59 0.81 0.41 1.16 0.02 1.68 2.83 70.79
    PY-8 A8 灰黄色细砂岩 85.56 0.12 4.66 0.78 0.02 0.74 2.83 0.59 1.83 0.02 3.30 3.10 75.87
    PY-11 A9 浅灰色细砂岩 82.56 0.15 5.39 0.84 0.03 1.82 2.62 1.04 1.98 0.02 4.08 1.90 61.81
    下载: 导出CSV

    表 5  镇原地区洛河组含铀岩系风成沉积体系判别参数表

    Table 5.  Discriminant parameters for the uranium bearing rock series and aeolian sedimentary system in the Luohe Formation of Zhenyuan

    沉积体系 成因相 成因相各参数特征
    岩性组合 沉积构造 粒度参数 概率累积曲线 成因判别 镜下显微
    风成沉积体系风成砂丘红色、黄色细-中粒长石石英砂岩或岩屑石英砂岩,分选好,次圆状-圆状。自然伽马、电阻率和自然电位值相对较低块状构造平均值(Mz):1.43~2.32;标准偏差(σ):0.35~0.81;偏度(Sk):
    -0.13~0.17;峰度(Kg):0.9~1.15
    一段式或两段式,一段式为主,主要为跳跃次总体。二段式悬浮次总体与跳跃总体的交截点小于2.75ɸ;跳跃次总体倾角大于60°,一般不存在滚动总体C值平均值为
    0.5131,M值平均值为0.2479。样品位于萨胡成因图解左下方风、海滨环境区域
    石英含量在75%以上,岩屑含量一般大于长石含量。石英颗粒表面撞击坑的形状为似碟状、新月状(向尧, 2022乔大伟等,2020
    河道沉积灰色、灰绿色细-中粒或含砾长石石英砂岩或岩屑石英砂岩,分选较好-中等或较差,次棱角状-次圆状。自然伽马、电阻率和自然电位值相对较高微斜层理、递变层理,含暗色条带平均值(Mz):1.43~2.31;标准偏差(σ):0.29~0.59;偏度(Sk):0.02~0.25;峰度(Kg):0.96~1.28两段式和三段式,悬浮次总体比较发育,与跳跃总体之间的交截点在2.75ɸ~3.5ɸ之间,跳跃总体的倾角多在60°~65°C值平均值为
    0.5095,M值平均值为0.2836。样品位于萨胡成因图解中间河流、浅海环境区域
    石英含量在70%以上,长石含量一般大于岩屑含量。石英颗粒表面撞击坑的形状为贝壳状的断口(向尧, 2022乔大伟等,2020
    丘间沉积红色、棕红色粉砂岩、粉砂质泥岩或泥岩块状构造或小型平行层理
    浅湖沉积灰色、灰黑色粉砂质泥岩、
    泥岩
    小型交错层理和滑塌构造,可见动植物
    化石
    下载: 导出CSV
  • [1]

    曹民强. 松辽盆地钱家店铀矿含铀岩系层序地层结构对铀成矿的约束[J]. 地质科技通报, 2021, 404): 131142.

    CAO Minqiang. Constraints of the sequence stratigraphic structure of uranium-bearing series on mineralization in Qianjiadian uranium deposit, Songliao Basin[J]. Bulletin of Geological Science and Technology, 2021, 404): 131142.

    [2]

    陈戴生, 李胜祥, 蔡煜琦. 我国中、新生代盆地砂岩型铀矿沉积环境研究概述[J]. 沉积学报, 2006, 242): 223228. doi: 10.3969/j.issn.1000-0550.2006.02.009

    CHEN Daisheng, LI Shengxiang, CAI Yuqi. Overview of the Researches on Sedimentary Environment for Sandstone-type Uranium Deposits in the Meso-Cenozoic Basins of China[J]. Acta Sedimentologica Sinica, 2006, 242): 223228. doi: 10.3969/j.issn.1000-0550.2006.02.009

    [3]

    陈逵. 元坝地区须家河组储层岩石学特征和图像法粒度分析研究[D]. 成都: 成都理工大学, 2014, 29−49.

    CHEN Kui. Reservoir Petrology Characteristics Study and Image Method Grain-size Analysis of Xujiahe Formation inYuanba Area[D]. Chengdu: Chengdu University of Technology, 2014, 29−49.

    [4]

    程银行, 金若时, Michel CUNEY, 等. 中国北方盆地大规模铀成矿作用: 地层篇[J]. 地质学报, 2024, 987): 19531976.

    CHENG Yinhang, JIN Ruoshi, Michel CUNEY, et al. The strata constraint on large scale sandstone- type uranium mineralization in Meso- Cenozoic basins, northern China[J]. Acta Geologica Sinica, 2024, 987): 19531976.

    [5]

    成都地质学院陕北队. 沉积岩(物)粒度分析及其应用[M]. 北京: 地质出版社, 1976, 44−109.

    The Shaanbei Team of Chengdu College of Geology. Application analysis of grain size[M]. Beijing: Geological Publishing House, 1976, 44−109.

    [6]

    程先钰, 张天福, 苗培森, 等. 鄂尔多斯盆地西南缘洛河组下段含铀砂岩锆石U-Pb年代学: 对岩石圈伸展作用的启示[J]. 中国地质, 2023, 503): 853871.

    CHENG Xianyu, ZHANG Tianfu, MIAO Peisen, et al. Detrital zircon U-Pb geochronology of uranium-bearings and stone in the lower member of Luohe Formation in the southwest margin of the Ordos Basin: Implications for the lithospheric extension[J]. Geology in China, 2023, 503): 853871.

    [7]

    邓程文, 张霞, 林春明, 等. 长江河口区末次冰期以来沉积物的粒度特征及水动力条件[J]. 海洋地质与第四纪地质, 2016, 366): 185197.

    [8]

    郭建英, 李锦荣, 陈新闯, 等. 黄河乌兰布和沙漠段不同区域入黄沙物质粒度特征及其来源分析[J]. 中国水利水电科学研究院学报, 2021, 191): 1524.

    GUO Jianying, LI Jinrong, CHEN Xinchuang, et al. Grain size characteristics and source analysis of aeolian sediment feed into river in Ulanbuh Desert along bank of Yellow River[J]. Journal of China Institute of Water Resources and Hydropower Research, 2021, 191): 1524.

    [9]

    桂洪杰. 黄河宁蒙河段四大沙漠粒度和元素特征对比研究[D]. 兰州: 兰州大学, 2013, 16−29.

    GUI Hongjie. Comparative studies on characteristics of grain sizes and elements of the four deserts in Ningxia-Inner Mongolia section of the Yellow River[D]. Lanzhou: Lanzhou University, 2013, 16−29.

    [10]

    李志忠, 凌智永, 陈秀玲, 等. 新疆伊犁河谷晚全新世风沙沉积粒度旋回与气候变化[J]. 地理科学, 2010, 304): 613619.

    LI Zhizhong, LING Zhiyong, CHEN Xiuling, et al. Late Holocene Climate Changes Revealed by Grain-size Cycles in Takemukul Desert in Yili of Xinjiang[J]. Scientia Geographica Sinica, 2010, 304): 613619.

    [11]

    李恩菊. 巴丹吉林沙漠与腾格里沙漠沉积物特征的对比研究[D]. 西安: 陕西师范大学, 2011.

    LI Enju. Comparative Study on Sediment Characteristics of Badain Jaran Desert and Tengger Desert[D]. Xi’an: Shaanxi Normal University, 2011.

    [12]

    李建刚, 刘晓燕, 袁四化, 等. 伊犁盆地三道河河流阶地沉积物粒度特征及其古气候响应[J]. 西北地质, 2020, 534): 1119.

    LI Jiangang, LIU Xiaoyan, YUAN Sihua, et al. Grain-size Characteristics and Paleoclimate Response of Terrace Sediments in Sandaohe River of Yili Basin[J]. Northwestern Geology, 2020, 534): 1119.

    [13]

    刘宝珺, 张锦泉. 沉积成岩作用[M]. 北京: 科学出版社, 1992: 65−92.

    LIU Baojun, ZHANGJinquan. Sedimentary Diagenesis[M]. Beijing: Science Press, 1992: 65−92.

    [14]

    刘池洋, 赵红格, 谭成仟, 等. 多种能源矿产赋存与盆地成藏(矿)系统[J]. 石油与天然气地质, 2006, 272): 131142. doi: 10.3321/j.issn:0253-9985.2006.02.001

    LIU Chiyang, ZHAO Hongge, TAN Chengqian, et al. Occurrences of multiple energy mineral deposits and mineralization/reservoiring system in the basin[J]. Oil & Gas Geology, 2006, 272): 131142. doi: 10.3321/j.issn:0253-9985.2006.02.001

    [15]

    刘坤鹏, 刘凯鹏, 王晓鹏, 等. 鄂尔多斯盆地南部建庄地区直罗组铀矿化定位研究[J]. 西北地质, 2024, 571): 230238.

    LIU Kunpeng, LIU Kaipeng, WANG Xiaopeng, et al. Study on Uranium Mineralization Location of Zhiluo Formation in Jianzhuang Area, Southern Ordos Basin[J]. Northwestern Geology, 2024, 571): 230238.

    [16]

    刘华健, 金若时, 肖鹏, 等. 松辽盆地北部古恰地区含铀岩系四方台组粒度特征及其沉积环境指示意义[J]. 地质调查与研究, 2018, 411): 4050.

    LIU Huajian, JIN Ruoshi, XIAO Peng, et al. Grain-size characteristics of the Sifangtai Formation of uraniumbearing series in Guqia area, northern Songliao basin and its sedimentary environmental implications[J]. Geological Survey and Research, 2018, 411): 4050.

    [17]

    刘阳, 王军礼, 曹惠锋, 等. 鄂尔多斯盆地南缘双龙地区直罗组下段后生蚀变地球化学特征及其对铀成矿的制约[J]. 地质科技通报, 2021, 406): 7787.

    LIU Yang, WANG Junli, CAO Huifeng, et al. Geochemical Characteristics of Epigenetic Alteration and Its Constraintson Mineralization in Zhiluo Formation, Shuanglong Area, Southern Ordos Basin[J]. Bulletin of Geological Science and Technology, 2021, 406): 7787.

    [18]

    何清, 杨兴华, 霍文, 等. 库姆塔格沙漠粒度分布特征及环境意义[J]. 中国沙漠, 2009, 291): 1822.

    HE Qing, YANG Xinghua, HUO Wen, et al. Characteristics of Sand Granularity from Kumtag Desert and Its Environmental Significance[J]. Journal of Desert Research, 2009, 291): 1822.

    [19]

    侯光才, 张茂省. 鄂尔多斯盆地地下水资源与可持续利用[M]. 西安: 陕西科技出版社, 2004, 139−145.

    HOU Guangcai, ZHANG Maosheng. Groundwater Resources and Sustainable Utilization in the Ordos Basin[M]. Xi’an: Xi’an Science and Technology Press, 2004, 139−145.

    [20]

    胡小文, 杨晓勇, 任伊苏, 等. 准噶尔盆地沉积环境‒构造演化对砂岩型铀矿成矿的控制作用[J]. 大地构造与成矿学, 2020, 444): 725741.

    HU Xiaowen, YANG Xiaoyong, REN Yisu, et al. Sedimentary Environment and Tectonic Evolution of Junggar Basin: Constrains on the Mineralization of Sandstone-type Uranium Deposits[J]. Geotectonica et Metallogenia, 2020, 444): 725741.

    [21]

    胡永兴, 张翔, 胡妍, 等. 鄂尔多斯盆地西南缘白垩系洛河组砂岩型铀矿床铀赋存特征及铀成矿作用浅析[J]. 地质找矿论丛, 2020, 354): 380389.

    HU Yongxing, ZHANG Xiang, HU Yan, et al. Analysis on the uranium metallogenic conditions and uranium occurrence characteristics of the sandstone-hosted uranium deposit in Cretaceous Luohe Formation in the southwestern margin of the Ordos Basin[J]. Contributions to Geology and Mineral Resources Research, 2020, 354): 380389.

    [22]

    吉启慧. 粒度分析在塔克拉玛干沙漠研究中的应用[J]. 中国沙漠, 1996, 162): 173179.

    JI Qihui. Application of Grain Size Analysis in the Studies of Taklimakan Desert[J]. Journal of Desert Research, 1996, 162): 173179.

    [23]

    焦养泉, 陈安平, 王敏芳, 等. 鄂尔多斯盆地东北部直罗组底部砂体成因分析—砂岩型铀矿床预测的空间定位基础[J]. 沉积学报, 2005, 233): 371379.

    JIAO Yangquan, CHEN Anping, WANG Minfang, et al. Genetic Analysis of the Bottom Sandstone of Zhiluo Formation, Northeastern Ordos Basin: Predictive base of spatial orientation of sandstone-type uranium deposit[J]. Acta Sedimentologica Sinica, 2005, 233): 371379.

    [24]

    焦养泉, 吴立群, 杨生科, 等. 铀储层沉积学—砂岩型铀矿勘查与开发的基础[M]. 北京: 地质出版社, 2006: 1−29.

    JIAO Yangquan, WU Liqun, YANG Shengke, et al. Sedimentology of Uranium Reservoir—The Exploration and Production Base of Sandstone-type Uranium Deposits[M]. Beijing: Geological Publishing House, 2006: 1−29.

    [25]

    焦养泉, 吴立群, 杨琴. 铀储层—砂岩型铀矿地质学的新概念[J]. 地质科技情报, 2007, 264): 17.

    JIAO Yangquan, WU Liqun, YANG Qin. Uranium Reservoir: A New Concept of Sandstone-Type Uranium Deposits Geology[J]. Geological Science and Technology Information, 2007, 264): 17.

    [26]

    焦养泉, 吴立群, 彭云彪, 等. 中国北方古亚洲构造域中沉积型铀矿形成发育的沉积-构造背景综合分析[J]. 地学前缘, 2015, 221): 189205.

    JIAO Yangquan, WU Liqun, PENG Yunbiao, et al. Sedimentary-tectonic setting of the depositiomtype uranium deposits forming in the Paleo-Asian tectonic domain, North China[J]. Earth Science Hrontiers, 2015, 221): 189205.

    [27]

    焦养泉, 吴立群, 荣辉, 等. 中国盆地铀资源概述[J]. 地球科学, 2021, 468): 26752696.

    JIAO Yangquan, WU Liqun, RONG Hui, et al. Review of Basin Uranium Resources in China[J]. Earth Science, 2021, 468): 26752696.

    [28]

    焦养泉, 吴立群, 荣辉, 等. 沉积、成岩与铀成矿: 中国砂岩型铀矿研究的创新发现与认知挑战[J]. 地球科学, 2022, 4710): 35803602.

    JIAO Yangquan, WU Liqun, RONG Hui, et al. Sedimentation, Diagenesis and Uranium Mineralization: Innovative Discoveries and Cognitive Challenges in Study of Sandstone-Type Uranium Deposits in China[J]. Earth Science, 2022, 4710): 35803602.

    [29]

    金若时, 朱强. 鄂尔多斯盆地泾川地区风成沉积体系砂岩型铀矿超常富集机制及成矿过程[J]. 地质学报, 2023, 973): 725737.

    JIN Ruoshi, ZHU Qiang. Supernormal enrichment mechanism and metallogenic process of sandstone type uranium deposit in the eolian sedimentary system in Jingchuan area, Ordos basin[J]. Acta Geologica Sinica, 2023, 973): 725737.

    [30]

    李明辉, 王剑, 谢渊, 等. 鄂尔多斯盆地白垩纪岩相古地理与地下水相关性探讨[J]. 沉积与特提斯地, 2003, 234): 3440.

    LI Minghui, WANG Jian, XIE Yuan, et al. The correlation of sedimentary facies and palaeogeography and ground water from the Cretaceous strata in the Ordos Basin[J]. Sedimentary Geology and Tethyan Geology, 2003, 234): 3440.

    [31]

    李思田, 焦养泉, 林畅松, 等. 含能源盆地沉积体系[M]. 武汉: 中国地质大学出版社, 1996, 138−147.

    LI Sitian, JIAO Yangquan, LIN Changsong, et al. Sedimentary system of energy containing basins[M]. Wuhan: China University of Geosciences Press, 1996, 138−147.

    [32]

    乔大伟, 旷红伟, 柳永清, 等. 鄂尔多斯盆地风成含铀岩系的识别—以 XX 井为例[J]. 大地构造与成矿学, 2020, 444): 648666.

    QIAO Dawei, KUANG Hongwei, LIU Yongqing, et al. Identification of Eolian Sandstone in Cretaceous Uraniferous Sandstone in Ordos Basin, China[J]. Geotectonica et Metallogenia, 2020, 444): 648666.

    [33]

    乔卫涛, 陈仁, 胡歆睿, 等. 贵州开阳地区澄江组第二段砂岩粒度分析与沉积环境[J]. 贵州地质, 2020, 371): 5965. doi: 10.3969/j.issn.1000-5943.2020.01.008

    QIAO Weitao, CHEN Ren, HU Yinrui, et al. Grain-size Analysis and Depositional Environment of the Second Member of Chengjiang Formation at Kaiyang Area of Guizhou Province[J]. Guizhou Geology, 2020, 371): 5965. doi: 10.3969/j.issn.1000-5943.2020.01.008

    [34]

    钱广强, 董治宝, 罗万银, 等. 巴丹吉林沙漠地表沉积物粒度特征及区域差异[J]. 中国沙漠, 2011, 316): 13571364.

    QIAN Guangqiang, DONG Zhibao, LUO Wanyin, et al. Grain Size Characteristics and Spatial Variation of Surface Sediments in the Badain Jaran Desert[J]. Journal of Desert Research, 2011, 316): 13571364.

    [35]

    钱亦兵, 吴兆宁, 杨海峰, 等. 古尔班通古特沙漠南部风沙土粒度分布的空间异质性[J]. 干旱区地理, 2009, 325): 655661.

    QIAN Yibing, WU Zhaoning, YANG Haifeng, et al. Spatial heterogeneity for grain size distribution of eolian sand soil in the southern Gurbantunggut Desert[J]. Arid Land Geography, 2009, 325): 655661.

    [36]

    沈亚萍, 张春来, 李庆, 等. 中国东部沙区表层沉积物粒度特征[J]. 中国沙漠, 2016, 361): 150157. doi: 10.7522/j.issn.1000-694X.2015.00278

    SHEN Yaping, ZHANG Chunlai, LI Qing, et al. Grain-size Characteristics of Surface Sediments in the Eastern Desert Regions of China[J]. Journal of Desert Research, 2016, 361): 150157. doi: 10.7522/j.issn.1000-694X.2015.00278

    [37]

    宋进喜, 于芳, 王珍. 渭河陕西段河床沉积物的粒度参数分析[J]. 南水北调与水利科技, 2013, 114): 7578.

    SONG Jinxi, YU Fang, WANG Zhen. Parameter Analysis on Grain Size Distribution of Streambed Sediment in theWeihe River of Shaanxi Province[J]. South-to-North Water Transfers and Water Science & Technology, 2013, 114): 7578.

    [38]

    田敏, 钱广强, 杨转玲, 等. 柴达木盆地东北部哈勒腾河流域风成沉积物粒度特征与空间差异[J]. 中国沙漠, 2020, 402): 6878.

    TIAN Min, QIAN Guangqiang, YANG Zhuanling, et al. Grain size characteristics and spatial variation of aeolian sediments in the Haerteng River, Northeastern Qaidam Basin, China[J]. Journal of Desert Research, 2020, 402): 6878.

    [39]

    向尧. 风成沉积体系中氧化还原作用与铀成矿关系—以鄂尔多斯盆地西南部洛河组和罗汉洞组为例[D]. 武汉: 中国地质大学(武汉), 2022, 39−64.

    XIANG Rao. Relationship between oxidation-reduction and uranium mineralization in aeolian depositional system: Taking Luohe Formation and Luohandong Formation in southwest Ordos Basin as an example[D]. Wuhan: China University of Geosciences (Wuhan), 2022, 39−64.

    [40]

    熊平生, 刘亮, 张楚楚, 等. 湘江衡阳段河漫滩沉积物粒度特征及其环境意义[J]. 绵阳师范学院学报, 2022, 415): 9398.

    XIONG Pingsheng, LIU Liang, ZHANG Chuchu, et al. Grain-size characteristics and its Environmental Significance of Floodplain Sediments in Hengyang Section of Xiangjiang River[J]. Journal of Mianyang Teachers' College, 2022, 415): 9398.

    [41]

    王龙辉, 剡鹏兵, 焦养泉, 等. 鄂尔多斯盆地北部下白垩统铀成矿模式[J]. 地质科技通报, 2023, 423): 222233.

    WANG Longhui, YAN Pengbing, JIAO Yangquan, et al. Uranium metallogenic model of the Lower Cretaceous in the northern Ordos Basin[J]. Bulletin of Geological Science and Technology, 2023, 423): 222233.

    [42]

    王贵玲, 刘志明, 蔺文静. 鄂尔多斯周缘地质构造对地热资源形成的控制作用[J]. 地质学报, 2004, 781): 4451. doi: 10.3321/j.issn:0001-5717.2004.01.006

    WANG Guiling, LIU Zhiming, LIN Wenjing. Tectonic Control of Geothermal Resources in the Peripheral of Ordos Basin[J]. Acta Geologica Sinica, 2004, 781): 4451. doi: 10.3321/j.issn:0001-5717.2004.01.006

    [43]

    王宁祖, 张文斌, 何碧, 等. 贵州中坪地区上三叠统二桥组砂岩粒度分析及其沉积环境意义[J]. 地质与资源, 2023, 324): 406417.

    WANG Ningzu, ZHANG Wenbin, HE Bi, et al. Sandstone Grain Size Analysis of Upper Triassic Erqiao Fromation in Zhongping Area, Guizhou Province: Implication of Sedimentary Environment[J]. Geology and Resources, 2023, 324): 406417.

    [44]

    吴柏林, 张婉莹, 宋子升, 等. 鄂尔多斯盆地北部砂岩型铀矿铀矿物地质地球化学特征及其成因意义[J]. 地质学报, 2016, 9012): 33933407. doi: 10.3969/j.issn.0001-5717.2016.12.009

    WU Bolin, ZANG Wanying, SONG Zisheng, et al. Geological and Geochemical Characteristics of Uranium Minerals inthe Sandstone-type Uranium Deposits in the North of Ordos Basin and Their Genetic Significance[J]. Acta Geologica Sinica, 2016, 9012): 33933407. doi: 10.3969/j.issn.0001-5717.2016.12.009

    [45]

    吴柏林, 孙斌, 程相虎, 等. 铀矿沉积学研究与发展[J]. 沉积学报, 2017, 355): 10441053.

    WU Bolin, SUN Bin, CHENG Xianghu, et al. Study and Prospect for Sedimentology of Uranium Deposit[J]. ActaSedimentologica Sinica, 2017, 355): 10441053.

    [46]

    吴颖, 孙磊, 冯敏, 等. 天环坳陷南北部盒8段地层水地化特征差异性分析[J]. 西北地质, 2024, 572): 244253.

    WU Ying, SUN Lei, FENG Min, et al. Analysis on Geochemical Characteristics and Difference of Formation Water in He 8th Member in Northern and Southern Tianhuan Depression[J]. Northwestern Geology, 2024, 572): 244253.

    [47]

    杨玉卿, 田洪, 孟杰, 等. 渤海湾中部南堡35-2地区新第三系河流沉积及油气勘探意义[J]. 古地理学报, 2001, 34): 7784. doi: 10.3969/j.issn.1671-1505.2001.04.009

    YANG Yuqing, TIAN Hong, MENG Jie, et al. Fluvial Sediments and Their Oil-Gas Exploration Significance of the Neogene in the Nanpu 35-2 Area of Central Bohai Gulf[J]. Journal of Palaeogeography, 2001, 34): 7784. doi: 10.3969/j.issn.1671-1505.2001.04.009

    [48]

    张龙, 吴柏林, 刘池洋, 等. 鄂尔多斯盆地北部砂岩型铀矿直罗组物源分析及其铀成矿意义[J]. 地质学报, 2016, 9012): 34413453. doi: 10.3969/j.issn.0001-5717.2016.12.012

    ZHANG Long, WU Bolin, LIU Chiyang, et al. Provenance Analysis of the Zhiluo Formation in the Sandstone-hosted Uranium Deposits of the Northern Ordos Basin and Implications for Uranium Mineralization[J]. Acta Geologica Sinica, 2016, 9012): 34413453. doi: 10.3969/j.issn.0001-5717.2016.12.012

    [49]

    张凌华, 张振克, 符跃鑫, 等. 长江下游南京-镇江河段河漫滩粒度特征[J]. 地理科学, 2015, 359): 11831190.

    ZHANG Linghua, ZHANG Zhenke, FU Yuexin, et al. Grain-size Characteristics of Overbank Sediments in the Lower Reaches of the Changjiang River and Its Environmental Implication[J]. Scientia Geographica Sinica, 2015, 359): 11831190.

    [50]

    张帅军. 西藏岗玛日地区下三叠统康鲁组砂岩粒度分析及环境意义[D]. 北京: 中国地质大学(北京), 2013, 20−37.

    ZHANG Shuaijun. Sandstone Grain Size Analysis and Environmental significance of Lower Triassic Kanglu Formation Gangmari region, Tibet[D]. Beijing: China University of Geosciences(Beijing), 2013, 20−37.

    [51]

    张天福, 张云, 金若时, 等. 鄂尔多斯盆地东北缘侏罗系层序界面特征对砂岩型铀矿成矿环境的制约[J]. 中国地质, 2020, 472): 278299. doi: 10.12029/gc20200202

    ZHANG Tianfu, ZHANG Yun, JIN Ruoshi, et al. Characteristics of Jurassic sequence boundary surfaces on the northeastern margin of Ordos basin and their constraints on the spatial-temporal properties of sandstone uranium mineralization[J]. Geology In China, 2020, 472): 278299. doi: 10.12029/gc20200202

    [52]

    张翔, 胡永兴, 杨涛, 等. 鄂尔多斯盆地西南缘砂岩型铀矿含矿目的层—洛河组砂岩的沉积物源特征[J]. 铀矿地质, 2022, 382): 153167. doi: 10.3969/j.issn.1000-0658.2022.38.015

    ZHANG Xiang, HU Yongxing, YANG Tao, et al. Sediment Source Characteristics of the Target Sandstone Layer for Sandstone-type Uranium Deposit in Southwestern Ordos Basin[J]. Uranium Geology, 2022, 382): 153167. doi: 10.3969/j.issn.1000-0658.2022.38.015

    [53]

    郑浚茂, 王德发, 孙永传. 黄骅拗陷几种砂体的粒度分布特征及其水动力条件的初步分析[J]. 石油实验地质, 1980, 2: 921. doi: 10.11781/sysydz198003009

    ZHENG Junmao, WANG Defa, SUN Yongchuan. Preliminary Analysis of Particle Size Distribution Characteristics and Hydrodynamic Conditions of Several Sand Bodies in Huanghua Depression[J]. Petroleum Geology & Experiment, 1980, 2: 921. doi: 10.11781/sysydz198003009

    [54]

    郑萌, 梁积伟, 冯振伟, 等. 鄂尔多斯盆地中部寒武纪岩相古地理研究[J]. 西北地质, 2023, 566): 352368.

    ZHENG Meng, LIANG Jiwei, FENG Zhenwei, et al. Lithofacies Paleogeography of the Cambrian in the Central Ordos Basin[J]. Northwestern Geology, 2023, 566): 352368.

    [55]

    周丹丹, 董建林, 高永, 等. 巴音温都尔沙漠表层土壤粒度特征及风蚀量估算[J]. 干旱区地理, 2008, 316): 933939.

    ZHOU Dandan, DONG Jianlin, GAO Yong, et al. Grain sizes analysis and soil loss of surface soil during desertification process on Bayinwenduer Desert[J]. Arid Land Geography, 2008, 316): 933939.

    [56]

    朱强, 李建国, 苗培森, 等. 鄂尔多斯盆地西南部洛河组储层特征和深部铀成矿地质条件[J]. 地球科学与环境学报, 2019, 416): 675690. doi: 10.3969/j.issn.1672-6561.2019.06.004

    ZHU Qiang, LI Jianguo, MIAO Peisen, et al. Reservoir Characteristics of Luohe Formation and Metallogenic Geological Conditions of Deep Uranium in the Southwestern Margin of Ordos Basin, China[J]. Journal of Earth Sciences and Environment, 2019, 416): 675690. doi: 10.3969/j.issn.1672-6561.2019.06.004

    [57]

    朱欣然, 刘立, 贾士琚, 等. 鄂尔多斯盆地白垩系洛河组风成砂岩地球化学与物源区特征: 以靖边县龙洲乡露头为例[J]. 世界地质, 2018, 373): 702711. doi: 10.3969/j.issn.1004-5589.2018.03.004

    ZHU Xinran, LIU Li, JIA Shiju, et al. Geochemical and provenance characteristics of eolian sandstone of Cretaceous Luohe Formation in Ordos Basins: an example from outcrop in Longzhou, Jingbian[J]. Global Geology, 2018, 373): 702711. doi: 10.3969/j.issn.1004-5589.2018.03.004

    [58]

    朱筱敏. 沉积岩石学(第4版)[M]. 北京: 石油工业出版社, 2008, 138−268.

    ZHU Xiaomin. Sedimentary Petrology (4th edition)[M]. Beijing: petroleum industry press, 2008, 138−268.

    [59]

    Belnap J, Munson S M, Jason P F. Aeolian and fluvial processes in dryland regions: the need for integrated studies[J]. Ecohydrology, 2011, 41): 615622.

    [60]

    Blott S J, Pye K. GRADISTAT: a grain size distribution and statistics package for the analysis of unconsolidated sediments[J]. Earth Surface Processes and Landforms, 2001, 2611): 12371248. doi: 10.1002/esp.261

    [61]

    Bullard J E. Aeolian-fluvial interactions in dryland environments: scales, concepts and Australia case study[J]. Progress in Physical Geography, 2003, 271): 471501.

    [62]

    Cheng Yinhang, Wang Shaoyi, Jin Ruoshi, et al. Global Miocene tectonics and regional sandstone-style uranium mineralization[J]. Ore Geology Reviews, 2019, 106: 238250.

    [63]

    Fredlund M D, Wilson G W, Fredlund D G. Use of the grain-size distribution for estimation of the soil-water characteristic curve[J]. Canadian Geotechnical Journal, 2002, 395): 11031117. doi: 10.1139/t02-049

    [64]

    Folk R L, Ward W C. Brazos River bar: A study in the significance of grain size parameters[J]. Journal of Sedimentary Petrology, 1957, 271): 326. doi: 10.1306/74D70646-2B21-11D7-8648000102C1865D

    [65]

    Folk R L. A review of grain-size parameters[J]. Sedimentology, 19666): 7393.

    [66]

    Sahu B K. Depositional mechanisms from the size analysis of clastic sediments[J]. Journal of Sedimentary Petrology, 1964, 341): 7383.

    [67]

    Stanistreet I G, Stollhofen H. Hoanib River flood deposits of Namib Desert interdunes as analogues for thin permeability barrier mudstone layers in aeolianite reservoirs[J]. Sedimentology, 2002, 491): 719736.

    [68]

    Sun D H, Bloemendal J, Rea D K, et al. Grain-size distribution function of polymodal sediments in hydraulic and aeolian environments, and numerical partitioning of the sedimentary components[J]. Sedimentary Geology, 2002, 1523−4): 263277.

    [69]

    Visher G S. Grain size distributions and depositional processes[J]. Journal of sedimentary petrology, 1969, 393): 10741106.

    [70]

    Weltje G J, Prins M A. Genetically meaningful decomposition of grain-size distributions[J]. Sedimentary Geology, 2007, 2023): 409424. doi: 10.1016/j.sedgeo.2007.03.007

    [71]

    Yu S Y, Colman S M, Li L X. BEMMA: A hierarchical bayesian end-member modeling analysis of sediment grain-size distributions[J]. Mathematical Geosciences, 2016, 486): 723741. doi: 10.1007/s11004-015-9611-0

  • 加载中

(10)

(5)

计量
  • 文章访问数:  302
  • PDF下载数:  0
  • 施引文献:  0
出版历程
收稿日期:  2023-12-19
修回日期:  2024-07-11
录用日期:  2024-08-09
刊出日期:  2024-12-20

目录