-
摘要:
为了避免长导线源地空瞬变电磁装置的体积效应影响,并发挥装置探测深度大工作效率高的优势,分别设计了单个激发场源和多个激发场源的地空瞬变电磁数值模拟,对比分析场源分布对瞬变场的影响以及对地下模型的分辨特征。将一维反演应用于三维地电模型数据的解释之中,讨论复杂的激发源、简单的解释技术实现三维复杂目标反演的可行性。首先,采用三维数值模拟实现复杂激励源地空瞬变电磁三维正演模拟,分析多激励源瞬变场特征,证明可以通过改变源的布设方式减少电性源体积效应影响。然后,利用常规一维反演方法对数据进行解释,从而证明多源发射简单的解释方法也可以提高解释的分辨率。最后,对甘肃省某煤田采空区的野外数据进行一维反演解释,结果表明相较于单辐射源瞬变电磁的反演结果,使用多辐射源瞬变电磁探测方法可以得到更为精准的采空区分布信息。数值模型与实测数据解释结果充分说明复杂激发源即使采用简单的反演方法也能够有效提高解释结果的分辨率,这为提高瞬变电磁解释精度提供了新的思路。
Abstract:In order to avoid the volume effect of long-wire sources in semi-airborne transient electromagnetic device and leverage the advantages of high detection depth and working efficiency, numerical simulations were conducted using single and multiple field sources. The effect of source distribution on the transient fields and resolution characteristics of underground models was analyzed. The feasibility of achieving 3D complex target inversion using simple explanation techniques was discussed by applying the 1D inversion to interpret 3D geoelectric model data. First, the 3D FEM is used to realize the 3D forward modeling of multi-source semi-airborne TEM, analyze the characteristics of the multi-sources transient field, and prove that the volume effect of electrical sources can be reduced by changing the source layout. Then, the 1D inversion method is used to interpret the 3D model data to prove that the simple interpretation method of multi-source device can also improve the resolution of the result. Finally, 1D inversion interpretation of survey data from a coal mine goaf in Gansu Province is carried out. The results show that compared with the results of single-radiation source survey data, the multi-source survey data can be more accurate on the distribution of water zone. The interpretation of the synthetic model and the survey data demonstrate that the resolution of the results can be effectively improved even if simple inversion methods are used for complex excitation sources, which provides new ideas and useful explorations for improving the accuracy of TEM interpretation.
-
-
[1] 嵇艳鞠, 王远, 徐江, 等. 无人飞艇长导线源时域地空电磁勘探系统及其应用[J]. 地球物理学报, 2013, 56(11): 3640−3650.
JI Yanju, WANG Yuan, XU Jiang, et al. Development and application of the grounded long wire source airborne electromagnetic exploration system based on an unmanned airship[J]. Chinese Journal of Geophysics,2013,56(11):3640−3650.
[2] 李肃义, 林君, 阳贵红, 等. 电性源时域地空电磁数据小波去噪方法研究[J]. 地球物理学报, 2013, 56(9): 3145−3152.
LI Suyi, LIN Jun, YANG Guihong, et al. Ground-Airborne electromagnetic signals de-noising using a combined wavelet transform algorithm[J]. Chinese Journal of Geophysics,2013,56(9):3145−3152.
[3] 李貅, 胡伟明, 薛国强. 多辐射源地空瞬变电磁响应三维数值模拟研究[J]. 地球物理学报, 2021, 64(2): 716−723.
LI Xiu, HU Weiming, XUE Guoqiang. 3D modeling of multi-radiation source semi-airborne transient electromagnetic response[J]. Chinese Journal of Geophysics,2021,64(2):716−723.
[4] 李貅, 张莹莹, 卢绪山, 等. 电性源瞬变电磁地空逆合成孔径成像[J]. 地球物理学报, 2015, 58(1): 277−288.
LI Xiu, ZHANG Yingying, LU Xushan, et al. Inverse Synthetic Aperture Imaging of Ground-Airborne transient electromagnetic method with a galvanic source[J]. Chinese Journal of Geophysics,2015,58(1):277−288.
[5] 李貅. 瞬变电磁测深的理论与应用[M]. 西安: 陕西科学技术出版社, 2002.
LI Xiu. Theory and application of transient electromagnetic sounding [M]. Xi'an: Shaanxi Science Technology Press, 2002.
[6] 薛国强, 李貅, 底青云. 瞬变电磁法正反演问题研究进展[J]. 地球物理学进展, 2008, 23(4): 1165−1172.
XUE Guoqiang, LI Xiu, DI Qingyun. Research progress in TEM forward modeling and inversion calculation[J]. Progress in Geophysics,2008,23(4):1165−1172.
[7] 张莹莹, 李貅, 李佳, 等. 多辐射场源地空瞬变电磁法快速成像方法研究[J]. 地球物理学进展, 2016, 31(2): 869−876.
ZHANG Yingying, LI Xiu, LI Jia, et al. Fast imaging technique of multi-source ground-airborne transient electromagnetic method[J]. Progress in Geophysics,2016,31(2):869−876.
[8] 周道卿, 谭林, 谭捍东, 等. 频率域吊舱式直升机航空电磁资料的马奎特反演[J]. 地球物理学报, 2010, 53(2): 421−427.
ZHOU Daoqing, TAN Lin, TAN Handong, et al. Inversion of frequency domain helicopter-borne electromagnetic data with Marquardt’s method[J]. Chinese Journal of Geophysics,2010,53(2):421−427.
[9] Allah S A, Mogi T, Ito H, et al. Three-dimensional resistivity modeling of GREATEM survey data from Kujukuri beach, Japan[J]. Proceedings of the 10th SEGJ International Symposium, 2011, 314-317.
[10] Allah S A, Mogi T, Ito H, et al. Three-dimensional resistivity characterization of a coastal area: application of grounded electrical source airborne transient electromagnetic(GREATEM) survey data from Kujukuri beach, Japan[J]. Journal of Applied Geophysics,2013,99:1−11. doi: 10.1016/j.jappgeo.2013.09.011
[11] Bryan W, Roger E,Trenton. Resistivity Arrays as an Early Warning System for Monitoring Runoff Holding Ponds[J]. Journal of Environmental and Engineering Geophysics,2015,20:319−335. doi: 10.2113/JEEG20.4.319
[12] Ito H, Mogi T, Jomori A, et al. Further invertigations of underground resistivity structures in coastal areas using grounded source airborne edectromagnetics[J]. Earth Planets and Space,2011,63(8):9−12. doi: 10.5047/eps.2011.08.003
[13] Ito H, Kaieda H, Mogi T, et al. Grounded electrical-source airborne transient electromagnetic (GREATEM) survey of Aso Volcano, Japan[J]. Exploration Geophysics (CSIRO PUBLISHING),2014,45(1):43−48. doi: 10.1071/EG12074
[14] Mogi T, Tanaka Y, Kusunoki K, et al. Development of grounded electrical-source airborne transient EM (GREATEM)[J]. Exploration Geophysics,1998,29:61−64. doi: 10.1071/EG998061
[15] Mogi T, Kusunoki K, Kaieda H, et al. Grounded electrical-source airborne transient electromagnetic (GREATEM) survey of Mount Bandai, north-eastern Japan[J]. Exploration Geophysics,2009,40:1−7. doi: 10.1071/EG08115
[16] Smith R S, Annan A P, McGowan P D. A comparison of data from airborn, semi-airborne, and ground electromagnetic sounding method[J]. Geophysics,2001,66(5):1379−1385. doi: 10.1190/1.1487084
[17] Wright D A, Ziolkowski. Hydrocarbon detection and monitoring with a multicomponent transient electromagnetic (MTEM) survey[J]. The Leading Edge,2002,21:852−864. doi: 10.1190/1.1508954
-