鄂尔多斯盆地地热和氦气资源远景:来自居里面深度的证据

冯旭亮, 汪啸东, 罗姣, 魏泽坤, 宗翔宇, 郭升, 罗通. 2025. 鄂尔多斯盆地地热和氦气资源远景:来自居里面深度的证据. 西北地质, 58(3): 22-32. doi: 10.12401/j.nwg.2024114
引用本文: 冯旭亮, 汪啸东, 罗姣, 魏泽坤, 宗翔宇, 郭升, 罗通. 2025. 鄂尔多斯盆地地热和氦气资源远景:来自居里面深度的证据. 西北地质, 58(3): 22-32. doi: 10.12401/j.nwg.2024114
FENG Xuliang, WANG Xiaodong, LUO Jiao, WEI Zekun, ZONG Xiangyu, GUO Sheng, LUO Tong. 2025. Geothermal and Helium Resource Prospects in the Ordos Basin: Insight from the Curie Point Depths. Northwestern Geology, 58(3): 22-32. doi: 10.12401/j.nwg.2024114
Citation: FENG Xuliang, WANG Xiaodong, LUO Jiao, WEI Zekun, ZONG Xiangyu, GUO Sheng, LUO Tong. 2025. Geothermal and Helium Resource Prospects in the Ordos Basin: Insight from the Curie Point Depths. Northwestern Geology, 58(3): 22-32. doi: 10.12401/j.nwg.2024114

鄂尔多斯盆地地热和氦气资源远景:来自居里面深度的证据

  • 基金项目: 国家自然科学基金项目“基于不同范数的密度界面三维重力反演研究”(41904115),陕西燃气集团委托课题“渭河盆地华州–华阴地区氦源岩空间分布特征研究”(0102/290024512)联合资助。
详细信息
    作者简介: 冯旭亮(1989−),男,博士,副教授,硕士生导师,主要从事重、磁勘探方法理论与应用及构造地球物理综合解释研究。E−mail:fxlchd@163.com
  • 中图分类号: P631

Geothermal and Helium Resource Prospects in the Ordos Basin: Insight from the Curie Point Depths

  • 鄂尔多斯盆地是一个多种资源富集的大型多旋回叠合盆地,居里面深度可为研究该盆地地壳热结构及氦气等资源分布提供依据。笔者在分析鄂尔多斯盆地磁力异常特征的基础上,利用功率谱法采用了多种窗口大小和移动步长计算了居里面深度,将其平均值确定为最终的居里面深度。结合地热及氦气分布等资料,分析了鄂尔多斯盆地居里面深度特征。鄂尔多斯盆地居里面深度为18~30 km,平均深度为23 km,盆地内居里面深度变化相对较小,表明鄂尔多斯盆地构造较为稳定,自盆地形成之后没有发生大的热活动。与长庆油田区地温资料的对比表明,鄂尔多斯盆地居里面深度变化与地温场特征较为一致,盆地北部伊盟隆起、盆地西部银川–靖边一带、盆地东南缘宜川–黄龙一带为居里面隆起区,推测地热资源潜力较大。鄂尔多斯盆地居里面深度与氦气含量具有明显的相关性,氦气含量越高,居里面越浅,推测是由盆地内氦源岩中U、Th元素放射性衰变生热引起的。根据居里面深度特征,盆地内除黄龙气田、东胜气田、苏里格气田西区、苏里格气田南区外,庆阳–环县–华池一带以及志丹–靖边一带可能也是潜在的氦气富集区。

  • 加载中
  • 图 1  鄂尔多斯盆地已发现的天然气田氦气丰度与热流图

    Figure 1. 

    图 2  鄂尔多斯盆地化极磁力异常图

    Figure 2. 

    图 3  鄂尔多斯盆地居里面深度图

    Figure 3. 

    图 4  鄂尔多斯盆地热流与居里面深度的相关性

    Figure 4. 

    图 5  长庆油田区内居里面深度与地温梯度及2500 m深度处地层温度(郭路等,2023

    Figure 5. 

    图 6  鄂尔多斯盆地各气田氦气含量、居里面深度及热流

    Figure 6. 

  • [1]

    白奋飞, 魏登峰, 韩伟, 等. 鄂尔多斯盆地延长油气区地热资源赋存特征及开发利用建议[J]. 西北地质, 2023, 56(6): 329−339. doi: 10.12401/j.nwg.2023068

    BAI Fenfei, WEI Dengfeng, HAN Wei, et al. Occurrence characteristics and exploitation of geothermal resources in Yanchang oil and gas area of Ordos Basin[J]. Northwestern Geology,2023,56(6):329−339. doi: 10.12401/j.nwg.2023068

    [2]

    包洪平, 何登发, 王前平, 等. 鄂尔多斯盆地四大古隆起演化及其油气控藏意义的差异[J]. 古地理学报, 2022, 24(5): 951−969.

    BAO Hongping, HE Dengfa, WANG Qianping, et al. Four main paleouplifts evolution in Ordos Basin and their differences in significance of oil and gas reservoir control[J]. Journal of Palaeogeography,2022,24(5):951−969.

    [3]

    包洪平, 邵东波, 郝松立, 等. 鄂尔多斯盆地基底结构及早期沉积盖层演化[J]. 地学前缘, 2019, 26(1): 33−43.

    BAO Hongping, SHAO Dongbo, HAO Songli, et al. Basement structure and evolution of early sedimentary cover of the Ordos Basin[J]. Earth Science Frontiers,2019,26(1):33−43.

    [4]

    曹展鹏, 任战利, 熊平, 等. 鄂尔多斯盆地渭北隆起西南缘奥陶系热演化史恢复与生烃史[J]. 地质学报, 2016, 90(3): 513−520. doi: 10.3969/j.issn.0001-5717.2016.03.008

    CAO Zhanpeng, REN Zhanli, XIONG Ping, et al. The Ordovician thermal evolution and hydrocarbon generation history in the southwestern margin of Weibei Uplifting of the Ordos Basin: A case study of the Linyou-Xunyi region[J]. Acta Geologica Sinica,2016,90(3):513−520. doi: 10.3969/j.issn.0001-5717.2016.03.008

    [5]

    陈晓晶, 虎新军, 李宁生, 等. 银川盆地东缘地热成藏模式探讨[J]. 物探与化探, 2021, 45(3): 583−589.

    CHEN Xiaojing, HU Xinjun, LI Ningsheng, et al. A discussion on geothermal accumulation model on the eastern margin of Yinchuan Basin[J]. Geophysical & Geochemical Exploration,2021,45(3):583−589.

    [6]

    戴金星, 李剑, 候路. 鄂尔多斯盆地氦同位素的特征[J]. 高校地质学报, 2005, 11(4): 473−478. doi: 10.3969/j.issn.1006-7493.2005.04.002

    DAI Jinxing, LI Jian, HOU Lu. Characteristics of helium isotopes in the Ordos Basin[J]. Geological Journal of China Universities,2005,11(4):473−478. doi: 10.3969/j.issn.1006-7493.2005.04.002

    [7]

    范立勇, 单长安, 李进步, 等. 基于磁力资料的鄂尔多斯盆地氦气分布规律[J]. 天然气地球科学, 2023, 34(10): 1780−1789.

    FAN Liyong, SHAN Chang’an, LI Jinbu, et al. Distribution of helium resources in Ordos Basin based on magnetic data[J]. Nature Gas Geoscience,2023,34(10):1780−1789.

    [8]

    范立勇, 祁凯, 刘新社, 等. 鄂尔多斯盆地中上元古界—下古生界热演化程度: 来自伊利石结晶度及伊蒙混层的指示[J]. 地质科学, 2024, 59(3): 673−682. doi: 10.12017/dzkx.2024.047

    FAN Liyong, QI Kai, LIU Xinshe, et al. The degree of thermal evolution of the Middle-Upper Proterozoic to Lower Paleozoic in the Ordos Basin: Constraints from illite crystallinity and I/S mixed-layer[J]. Chinese Journal of Geology,2024,59(3):673−682. doi: 10.12017/dzkx.2024.047

    [9]

    付金华, 赵会涛, 董国栋, 等. 鄂尔多斯盆地新领域油气勘探开发与前景展望[J]. 天然气地球科学, 2023, 34(8): 1289−1304.

    FU Jinhua, ZHAO Huitao, DONG Guodong, et al. Discovery and prospect of oil and gas exploration in new areas of Ordos Basin[J]. Nature Gas Geoscience,2023,34(8):1289−1304.

    [10]

    郭路, 夏岩, 段晨阳, 等. 长庆油田区中深层地热资源储量评价[J]. 油气藏评价与开发, 2023, 13(6): 749−756.

    GUO Lu, XIA Yan, DUAN Chenyang, et al. Evaluation of middle and deep geothermal resources reserves in Changqing Oilfield[J]. Petroleum Reservoir Evaluation and Development,2023,13(6):749−756.

    [11]

    弓汶琪, 弓虎军, 王苏里, 等. 鄂尔多斯盆地东南部延长组中期物源分析及其对秦岭造山带隆升作用的指示[J]. 西北地质, 2025, 58(1): 118−134.

    GONG Wenqi,GONG Hujun,WANG Suli,et al. Provenance Analysis of Middle Yanchang Formation in the Southeastern Ordos Basin and Its Indications for the Uplift of the Qinling Orogenic Belt[J]. Northwestern Geology,2025,58(1):118−134.

    [12]

    韩颖, 白雪峰, 张欣, 等. 山西省地热资源及其开发利用模式探讨[J]. 中国地质调查, 2018, 5(5): 13−20.

    HAN Ying, BAI Xuefeng, ZHANG Xin. Discussion on geothermal resources and its exploitation and utilization model in Shanxi Province[J]. Geological Survey of China,2018,5(5):13−20.

    [13]

    何发岐, 王付斌, 王杰, 等. 鄂尔多斯盆地东胜气田氦气分布规律及特大型富氦气田的发现[J]. 石油实验地质, 2022, 44(1): 1−10. doi: 10.11781/sysydz202201001

    HE Faqi, WANG Fubin, WANG Jie, et al. Helium distribution of Dongsheng gas field in Ordos Basin and discovery of a super large helium-rich gas field[J]. Petroleum Geology & Experiment,2022,44(1):1−10. doi: 10.11781/sysydz202201001

    [14]

    何自新, 付金华, 席胜利, 等. 苏里格大气田成藏地质特征[J]. 石油学报, 2003, 24(2): 6−12. doi: 10.3321/j.issn:0253-2697.2003.02.002

    HE Zixin, FU Jinhua, XI Shengli, et al. Geological features of reservoir formation of Sulige Gas Field[J]. Acta Petrolei Sinica,2003,24(2):6−12. doi: 10.3321/j.issn:0253-2697.2003.02.002

    [15]

    虎新军, 陈晓晶, 仵阳, 等. 综合地球物理技术在银川盆地东缘地热研究中的应用[J]. 物探与化探, 2022, 46(4): 845−853.

    HU Xinjun, CHEN Xiaojing, WU Yang, et al. Application of comprehensive geophysical exploration in geothermal resources on the eastern margin of Yinchuan Basin[J]. Geophysical & Geochemical Exploration,2022,46(4):845−853.

    [16]

    李冰, 宋燕兵, 石磊, 等. 鄂尔多斯盆地的磁场特征及地质意义[J]. 物探与化探, 2019, 43(4): 767−777.

    LI Bing, SONG Yanbing, SHI Lei, et al. Characteristics of gravity and magnetic fields in Ordos Basin and their geological significance[J]. Geophysical & Geochemical Exploration,2019,43(4):767−777.

    [17]

    李玉宏, 张国伟, 周俊林, 等. 氦气资源调查理论与技术研究现状及建议[J]. 西北地质, 2022, 55(4): 1−10.

    LI Yuhong, ZHANG Guowei, ZHOU Junlin, et al. Research status and suggestions on helium resources investigation theory and technology[J]. Northwestern Geology,2022,55(4):1−10.

    [18]

    刘成林, 丁振刚, 陈践发, 等. 鄂尔多斯盆地氦源岩特征及生氦潜力[J]. 石油与天然气地质, 2023, 44(6): 1546−1554. doi: 10.11743/ogg20230616

    LIU Chenglin, DING Zhengang, CHEN Jianfa, et al. Characteristics and helium-generating potential of helium source rocks in the Ordos Basin[J]. Oil & Gas Geology,2023,44(6):1546−1554. doi: 10.11743/ogg20230616

    [19]

    刘建朝, 李荣西, 魏刚峰, 等. 渭河盆地地热水水溶氦气成因与来源研究[J]. 地质科技情报, 2009, 28(6): 84−88.

    LIU Jianchao, LI Rongxi, WEI Gangfeng, et al. Origin and source of soluble helium gas in geothermal water, Weihe basin[J]. Geological Science and Technology Information,2009,28(6):84−88.

    [20]

    刘润川, 任战利, 叶汉青, 等. 地热资源潜力评价—以鄂尔多斯盆地部分地级市和重点层位为例[J]. 地质通报, 2021, 40(4): 565−576. doi: 10.12097/j.issn.1671-2552.2021.04.013

    LIU Runchuan, REN Zhanli, YE Hanqing, et al. Potential evaluation of geothermal resources: exemplifying some municipalities and key strata in Ordos Basin as a study case[J]. Geological Bulletin of China,2021,40(4):565−576. doi: 10.12097/j.issn.1671-2552.2021.04.013

    [21]

    鲁宝亮, 王万银, 张功成, 等. 南海深部过程及与含油气盆地耦合关系研究进展[J]. 地球物理学进展, 2016, 31(3): 1342−1350. doi: 10.6038/pg20160357

    LU Baoliang, WANG Wanyin, ZHANG Gongcheng, et al. Overview of the deep processes and their coupling relationships with the petroliferous basins in the South China Sea[J]. Progress in Geophysics,2016,31(3):1342−1350. doi: 10.6038/pg20160357

    [22]

    司庆红, 曾威, 刘行, 等. 临汾-运城盆地氦气富集要素及成藏条件[J]. 西北地质, 2023, 56(1): 129−141. doi: 10.12401/j.nwg.2022039

    SI Qinghong, ZENG Wei, LIU Xing, et al. Analysis of helium enrichment factors and reservoir forming conditions in Linfen-Yuncheng Basin[J]. Northwestern Geology,2023,56(1):129−141. doi: 10.12401/j.nwg.2022039

    [23]

    孙晓, 王杰, 陶成, 等. 鄂尔多斯盆地大牛地下古生界天然气地球化学特征及其来源综合判识[J]. 石油实验地质, 2021, 43(2): 307−314. doi: 10.11781/sysydz202102307

    SUN Xiao, WANG Jie, TAO Cheng, et al. Evaluation of geochemical characteristics and source of natural gas in Lower Paleozoic, Daniudi area, Ordos Basin[J]. Petroleum Geology & Experiment,2021,43(2):307−314. doi: 10.11781/sysydz202102307

    [24]

    孙涛, 雷晶超, 刘阳, 等. 鄂尔多斯盆地西南缘镇原地区洛河组沉积环境对铀成矿的制约[J]. 西北地质, 2024, 57(6): 199−217.

    SUN Tao,LEI Jingchao,LIU Yang,et al. The Constraints of the Depositional Environment of the Luohe Formation on Uranium Mineralization in the Zhenyuan Area of the Southwestern Ordos Basin[J]. Northwestern Geology,2024,57(6):199−217.

    [25]

    田刚, 杨明慧, 宋立军, 等. 鄂尔多斯盆地基底结构特征及演化过程新认识[J]. 地球科学, 2024, 49(1): 123−139.

    TIAN Gang, YANG Minghui, SONG Lijun, et al. New understanding of basement structural characteristics and its evolution process in Ordos Basin[J]. Earth Science,2024,49(1):123−139.

    [26]

    王贵玲, 刘志明, 蔺文静. 鄂尔多斯周缘地质构造对地热资源形成的控制作用[J]. 地质学报, 2004, 78(1): 44−51. doi: 10.3321/j.issn:0001-5717.2004.01.006

    WANG Guiling, LIU Zhiming, LIN Wenjing. Tectonic control of geothermal resources in the peripheral of Ordos Basin[J]. Acta Geologica Sinica,2004,78(1):44−51. doi: 10.3321/j.issn:0001-5717.2004.01.006

    [27]

    魏国齐, 朱秋影, 杨威, 等. 鄂尔多斯盆地寒武纪断裂特征及其对沉积储集层的控制[J]. 石油勘探与开发, 2019, 46(5): 836−847. doi: 10.11698/PED.2019.05.04

    WEI Guoqi, ZHU Qiuying, YANG Wei, et al. Cambrian faults and their control on the sedimentation and reservoirs in the Ordos Basin, NW China[J]. Petroleum Exploration and Development,2019,46(5):836−847. doi: 10.11698/PED.2019.05.04

    [28]

    吴乾蕃, 祖金华, 廉雨方, 等. 山西断陷带地热特征与地震活动性[J]. 华北地震科学, 1993, 2: 14−22.

    WU Qianfan, ZU Jinhua, LIAN Yufang, et al. The geothermal field characteristics and seismic activities in Shanxi fault depression area[J]. North China Earthquake Sciences,1993,2:14−22.

    [29]

    汪集旸, 邱楠生, 胡圣标, 等. 中国油田地热研究的进展和发展趋势[J]. 地学前缘, 2017, 24(3): 1−12.

    WANG Jiyang, QIU Nansheng, HU Shengbiao, et al. Advancement and developmental trend in the geothermics of oil fields in China[J]. Earth Science Frontiers,2017,24(3):1−12.

    [30]

    仵阳, 赵福元, 虎新军, 等. 银川盆地东缘上地壳电性结构特征及地热勘探方向[J]. 物探与化探, 2024, 48(5): 1258−1267.

    WU Yang, ZHAO Fuyuan, HU Xinjun, et al. Electrical structure characteristics and geothermal exploration directions of the upper crust on the eastern margin of the Yinchuan Basin[J]. Geophysical & Geochemical Exploration,2024,48(5):1258−1267.

    [31]

    熊盛青, 杨海, 丁燕云, 等. 中国陆域居里等温面深度特征[J]. 地球物理学报, 2016, 59(10): 3604−3617. doi: 10.6038/cjg20161008

    XIONG Shengqing, YANG Hai, DING Yanyun, et al. Characteristics of Chinese continent Curie point isotherm[J]. Chinese Journal of Geophysics,2016,59(10):3604−3617. doi: 10.6038/cjg20161008

    [32]

    徐柳娜, 李春峰, 黄亮, 等. 红海与加利福尼亚湾初始扩张系统的热状态差异[J]. 热带海洋学报, 2023, 42(6): 74−88. doi: 10.11978/2023032

    XU Liuna, LI Chunfeng, HUANG Liang, et al. Contrasting thermal states of the initial spreading systems between the Red Sea and the Gulf of California[J]. Journal of Tropical Oceanography,2023,42(6):74−88. doi: 10.11978/2023032

    [33]

    许光, 李玉宏, 王宗起, 等. 我国氦气资源调查评价进展[J]. 地质学报, 2023, 97(5): 1711−1716.

    XU Guang, LI Yuhong, WANG Zongqi, et al. Progress of investigation and evaluation of helium resources in China[J]. Acta Geologica Sinica,2023,97(5):1711−1716.

    [34]

    杨华, 张军, 王飞雁, 等. 鄂尔多斯盆地古生界含气系统特征[J]. 天然气工业, 2000, 20(6): 7−11. doi: 10.3321/j.issn:1000-0976.2000.06.002

    YANG Hua, ZHANG Jun, WANG Feiyan, et al. Characteristics of the Paleozoic gas bearing system in the Ordos Basin[J]. Nature Gas Industry,2000,20(6):7−11. doi: 10.3321/j.issn:1000-0976.2000.06.002

    [35]

    张健, 何雨蓓, 范艳霞. 松辽盆地地壳热结构与深部热源条件[J]. 地球科学与环境学报, 2023, 45(2): 157−167.

    ZHANG Jian, HE Yubei, FAN Yanxia. Crustal thermal structure and deep heat source conditions in Songliao Basin, NE China[J]. Journal of Earth Sciences and Environment,2023,45(2):157−167.

    [36]

    Andrés J, Marzán I, Ayarza P, et al. Curie point depth of the Iberian Peninsula and surrounding margins. A thermal and tectonic perspective of its evolution[J]. Journal of Geophysical Research: Solid Earth,2018,123:2049−2068. doi: 10.1002/2017JB014994

    [37]

    Awoyemi M O, Falade S G, Arogundade A B, et al. Magnetically inferred regional heat flow and geological structures in parts of Chad Basin, Nigeria and their implications for geothermal and hydrocarbon prospects[J]. Journal of Petroleum Science and Engineering,2022,213:110388. doi: 10.1016/j.petrol.2022.110388

    [38]

    Blakely R J. Curie temperature isotherm analysis and tectonic implications of aeromagnetic data from Nevada[J]. Journal of Geophysical Research: Solid Earth,1988,93:11817−11832. doi: 10.1029/JB093iB10p11817

    [39]

    Gao G, Kang G, Li G, et al. Crustal magnetic anomaly in the Ordos region and its tectonic[J]. Journal of Asian Earth Sciences,2015,109:63−73. doi: 10.1016/j.jseaes.2015.04.033

    [40]

    Gao G, Lu Q, Wang J, et al. Constraining crustal thickness and lithospheric thermal state beneath the northeastern Tibetan Plateau and adjacent regions from gravity, aeromagnetic, and heat flow data[J]. Journal of Asian Earth Sciences,2021,212:104743. doi: 10.1016/j.jseaes.2021.104743

    [41]

    Herrera D R H, Castro D L, Oliveira J T C, et al. Crustal thermal structure of the Brazilian equatorial margin using Fourier and continuous wavelet transforms: A comparative analysis based on different magnetic datasets[J]. Surveys in Geophysics,2022,43:883−912. doi: 10.1007/s10712-021-09680-2

    [42]

    Li C, Shi X, Zhou Z, et al. Depths to the magnetic layer bottom in the South China Sea area and their tectonic implications[J]. Geophysical Journal International,2010,182(3):1229−1247. doi: 10.1111/j.1365-246X.2010.04702.x

    [43]

    Li C, Wang J. Thermal structures of the Pacific lithosphere from magnetic anomaly inversion[J]. Earth and Planetary Physics,2018,2:1−15.

    [44]

    Li C., Wang J. Variations in Moho and Curie depths and heat flow in eastern and southeastern Asia[J]. Marine Geophysical Research,2016,37(1):1−20. doi: 10.1007/s11001-016-9265-4

    [45]

    Saada S A. Curie point depth and heat flow from spectral analysis of aeromagnetic data over the northern part of Western Desert, Egypt[J]. Journal of Applied Geophysics,2016,134:100−111. doi: 10.1016/j.jappgeo.2016.09.003

    [46]

    Spector A, Grant F S. Statistical models for interpreting aeromagnetic data[J]. Geophysics,1970,35:293−302. doi: 10.1190/1.1440092

    [47]

    Stüwe K. Geodynamic of the Lithosphere[M]. Springer-Verlag, Berlin, 2002.

    [48]

    Turcotte D L, Schubert G. Geodynamics[M]. Cambridge University Press, Cambridge, 2002.

    [49]

    Xu Y., Hao T, Zeyen H, et al. Curie point depths in North China Craton based on spectral analysis of magnetic anomalies[J]. Pure and Applied Geophysics,2017,174:339−347. doi: 10.1007/s00024-016-1421-x

  • 加载中

(6)

计量
  • 文章访问数:  17
  • PDF下载数:  3
  • 施引文献:  0
出版历程
收稿日期:  2024-10-17
修回日期:  2024-12-22
刊出日期:  2025-06-20

目录