Application of Seismic Frequency Expanding Processing Technology in the Jurassic Thin Reservoir Prediction of Jinlong Oilfield
-
摘要:
金龙油田侏罗系储层砂体厚度薄、横向变化快,空间分布规律不清,常规地震资料识别较为困难,提高地震资料分辨率进行薄砂体储层预测成为侏罗系岩性油气藏勘探、开发的关键。通过采用HFE高分辨率拓频处理方法,结合AIW波阻抗反演,实现了薄砂体储层的有效预测。结果表明:利用HFE高频拓展处理技术,目的层地震资料的频带拓宽了45 Hz(从10~55 Hz拓宽到10~100 Hz),提高了地震资料识别薄砂体储层的能力,实现了对大于8 m的薄层砂岩的有效刻画;同时,以地震拓频资料为基础,进行AIW波阻抗储层反演,准确预测并刻画了研究区侏罗系三工河组J1s21砂体的空间展布,识别出含油气储层有利区4个,其中1个有利区钻井已获高产工业油气流。实际钻井结果与储层预测结果吻合程度高,储层预测钻井符合率100%,砂体厚度相对误差绝对值小于4.29%。该方法对于侏罗系薄砂体储层预测有效,且效果明显,钻井吻合率高,可以作为薄砂体储层预测的有效方法,可为岩性油气藏的砂层预测提供可靠的技术支撑。
Abstract:The thickness of the Jurassic reservoir sand body in Jinlong Oilfield is thin, with rapid lateral changes and unclear spatial distribution patterns. It is difficult to identify conventional seismic data, and improving the resolution of seismic data for predicting thin sand body reservoirs has become the key to the exploration and development of Jurassic lithological oil and gas reservoirs. By using HFE high-resolution frequency extension processing method and combining with AIW acoustic impedance inversion technology, effective prediction of thin sand reservoir has been achieved. The results show that by utilizing HFE high-frequency expansion processing technology, the frequency band of target layer seismic data has been widened by 45 Hz (from 10~55 Hz to 10~100 Hz), improving the ability of seismic data to identify thin sand reservoirs and achieving effective characterization of thin sandstone layers larger than 8 m; At the same time, based on seismic frequency data, AIW wave impedance reservoir inversion was carried out to accurately predict and characterize the spatial distribution of the J1s21 sand body in the Jurassic Sangonghe Formation in the study area. Four favorable areas for oil and gas reservoirs were identified, with one favorable area having achieved high industrial oil and gas production through drilling. The actual drilling results are highly consistent with the reservoir prediction results, with a 100% accuracy rate for reservoir prediction drilling and an absolute error value of less than 4.29% for sand body thickness. This method is effective for predicting thin sand reservoirs in the Jurassic system, with obvious results and high drilling coincidence rate. It can be used as an effective method for predicting thin sand reservoirs and provide reliable technical support for predicting sand reservoirs in lithological oil and gas reservoirs.
-
-
表 1 侏罗系三工河组J1s21砂体预测精度统计
Table 1. Statistics of sand body prediction accuracy of J1s21 in the Jurassic Sangonghe Formation
序号 井名 预测厚度(m) 实钻厚度(m) 相对误差(%) 1 JL101 21.00 20.70 1.45 2 JL061 8.30 8.50 −2.35 3 JL13 − − − 4 G401 6.70 7.00 −4.29 5 G13 17.10 16.50 3.64 6 JL6 22.50 22.70 −0.88 7 G002 10.10 9.80 3.06 8 G4 21.00 20.37 3.09 9 G10 17.30 18.00 −3.89 10 J205 17.50 18.00 −2.78 11 G15 15.10 14.50 4.14 12 G 191 9.80 9.50 3.16 13 G 192 23.10 23.50 −1.70 14 G 19 26.65 25.65 3.90 15 G1905 29.00 30.00 −3.33 16 G1909 35.00 34.00 2.94 17 G1915 22.85 23.50 −2.77 18 JL108 21.00 20.50 2.44 -
[1] 陈波, 朱国维, 武延辉, 等. 基于广义S变换的透射槽波埃里相识别[J]. 物探与化探, 2021, 45(5): 1303−1310.
CHEN Bo, ZHU Guowei, WU Yanhui, et al. Research on identifying the airy phase of transmitted channel waves based on generalized S-transform[J]. Geophysical and Geochemical Exploration,2021,45(5):1303−1310.
[2] 陈珊, 徐兴友, 罗晓玲, 等. 基于改进匹配追踪算法的时频属性在薄储层沉积微相研究中的应用[J]. 物探与化探, 2018, 42(5): 1006−1012.
CHEN Shan, XU Xingyou, LUO Xiaoling, et al. Time-frequency attribute based on modified matching pursuit algorithm and its application to sedimentary microfacies of thin reservoir area[J]. Geophysical and Geochemical Exploration,2018,42(5):1006−1012.
[3] 崔永福, 彭更新, 李国会, 等. 基于小波边缘分析建模的波阻抗反演技术[J]. 新疆石油地质, 2009, 30(2): 261−263.
CUI Yongfu, PENG Gengxin, LI Guohui, et al. Acoustic impedance inversion based on wavelet edge analysis and modeling[J]. Xinjiang Petroleum Geology,2009,30(2):261−263.
[4] 刁瑞. 提高地震分辨率处理效果定量评价方法研究[J]. 物探与化探, 2020, 44(2): 381−387.
DIAO Rui. The quantitative evaluation method of seismic high resolution processing effect[J]. Geophysical and Geochemical Exploration,2020,44(2):381−387.
[5] 付爽, 纪宝强, 李俊飞, 等. 准噶尔盆地石南地区中侏罗-下白垩统储层成岩作用研究[J]. 西北地质, 2018, 51(4): 244−254.
FU Shuang, JI Baoqiang, LI Junfei, et al. Diagenesis of Middle Jurassic Lower Cretaceous reservoirs in Shinan Area, Junggar Basin[J]. Northwestern Geology,2018,51(4):244−254.
[6] 季焕成, 王江, 刘荷冲, 等. 双向拓频高分辨率地震技术在乌夏断裂带的应用[J]. 地球物理学进展, 2022, 37(1): 201−212.
JI Huancheng, WANG Jiang, LIU Hechong, et al. Application of bidirectional extension frequency high-resolution seismic technique in Wuxia fault zone[J]. Progress in Geophysics,2022,37(1):201−212.
[7] 贾春明, 潘拓, 余海涛, 等. 准噶尔盆地沙湾凹陷风城组储层特征及物性控制因素分析[J]. 西北地质, 2023, 56(4): 49−61.
JIA Chunming, PAN Tuo, YU Haitao, et al. Controlling Factors on Physical Property and Reservoir Characters of Fengcheng Formation in Shawan Depression, Junggar Basin[J]. Northwestern Geology,2023,56(4):49−61.
[8] 蒋波. 地震资料重处理的方法技术[J]. 石油物探, 2020, 59(4): 551−563.
JIANG Bo. Seismic data reprocessing[J]. Geophysical Prospecting for Petroleum,2020,59(4):551−563.
[9] 孔省吾, 张云银, 沈正春, 等. 波形指示反演在灰质发育区薄互层浊积岩预测中的应用-以牛庄洼陷沙三中亚段为例[J]. 物探与化探, 2020, 44(3): 665−671.
KONG Xingwu, ZHANG Yunyin, SHEN Zhengchun, et al. The application of waveform inversion prediction of thin turbidite reservoir to calcareous depositional area: A casestudy of E3s23in Niuzhuang sag[J]. Geophysical and Geochemical Exploration,2020,44(3):665−671.
[10] 李鹏飞, 肖又军, 成锁, 等. 频谱恢复高分辨处理技术在薄层识别研究中的应用[J]. 物探化探计算技术, 2022, 44(4): 426−434.
LI Pengfei, XIAO Youjun, CHENG Suo, et al. Application research of thin layer recognition based on spectrum recovery high resolution processing[J]. Computing Techniques for Geophysical and Geochemical Exploration,2022,44(4):426−434.
[11] 梁爽, 杜社宽. 准噶尔盆地中拐凸起侏罗系三工河组储层特征及控制因素[J]. 沉积学报, 2019, 37(6): 1269−1278.
LIANG Shuang, DU Shekuan. Reservoir characteristics and factors controlling the Jurassic Sangonghe Formation in Zhongguai Uplift, Junggar Basin[J]. Acta Sedimentologica Sinica,2019,37(6):1269−1278.
[12] 林火养, 贺海波, 吴佳朋, 等. 拓频技术在提高储集层预测精度中的应用[J]. 录井工程, 2019, 30(2): 111−115.
LIN Huoyang, HE Haibo, WU Jiapeng, et al. Application of frequency expanding technique in improving reservoir prediction accuracy[J]. Mud Logging Engineering,2019,30(2):111−115.
[13] 林帅, 王权国, 张春. HFE拓频处理技术在周清庄油田及周边地区的应用[J]. 录井工程, 2018, 29(03): 36−40.
LIN Shuai, WANG Quanguo, ZHANG Chun. HFE frequency expanding processing technique in Zhou qingzhuang oilfield and its surrounding areas[J]. Mud Logging Engineering,2018,29(03):36−40.
[14] 刘鸿洲, 王孟华, 张浩, 等. 基于分频构形反演方法的河道砂精准预测-以华北冀中探区赵皇庄地区为例[J]. 物探与化探, 2021, 45(5): 1311−1319.
LIU Hongzhou, WANG Menghua, ZHANG Hao, et al. Accurate prediction of channel sand based on frequency divided configuration inversion method: A case study of Zhaohuangzhuang area in Jizhong Sag, Huabei Oilfield[J]. Geophysical and Geochemical Exploration,2021,45(5):1311−1319.
[15] 裴森奇, 胡欣, 王兴志, 等. 四川盆地九龙山地区三叠系飞仙关组薄层鲕粒滩储层定量描述及预测[J]. 海相油气地质, 2020, 25(2): 155−161.
PEI Senqi, HU Xin, WANG Xingzhi, et al. Quantitative description and predication of thin oolitic shoal reservoir of Triassic Feixianguan Formation in Jiulongshan area, Sichuan Basin[J]. Marine Origin Petroleum Geology,2020,25(2):155−161.
[16] 宋维琪, 赵万金, 冯磊, 等. 地震高分辨率反演和地质模拟联合预测薄储层[J]. 石油学报, 2005, 26(1): 50−54.
SONG Weiqi, ZHAO Wanjin, FENG Lei, et al. Prognoses of thin reservoir by combining seismic high resolution inversion technology and geological simulation[J]. Acta Petrolei Sinica,2005,26(1):50−54.
[17] 孙靖, 薛晶晶, 费李莹, 等. 粗粒浅水三角洲沉积特征及模式—以准噶尔盆地莫北地区侏罗系三工河组为例[J]. 东北石油大学学报, 2022, 46(2): 13−22.
SUN Jing, XUE Jingjing, FEI Liying, et al. Sedimentary characteristics and model of coarse-grained shallow-water delta: a case study of Jurassic Sangonghe Formation in Mobei Area, Junggar Basin[J]. Journal of Northeast Petroleum University,2022,46(2):13−22.
[18] 王江, 赵传军, 李国福, 等. 地震拓频处理技术在乌尔逊断陷北部储层预测中的应用[J]. 大庆石油地质与开发, 2021, 40(4): 125−131.
WANG Jiang, ZHAO Chuanjun, LI Guofu, et al. Application of seismic frequency expanding processing technology in the reservoir prediction of North Wuerxun Rift[J]. Petroleum Geology & Oilfield Development in Daqing,2021,40(4):125−131.
[19] 王江, 王雪峰, 付尤中, 等. 基于小波边缘分析与井-震联合建模的波阻抗反演技术在乌尔逊断陷储层预测中的应用[J]. 大庆石油地质与开发, 2023, 42(2): 133−142.
WANG Jiang, WANG Xuefeng, FU Youzhong, et al. Application of wave impedance inversion technology based on wavelet edge analysis and well-seismic joint modeling in reservoir prediction of Wuerxun rift[J]. Petroleum Geology&Oilfield Development in Daqing,2023,42(2):133−142.
[20] 王小军, 赵飞, 张琴, 等. 准噶尔盆地金龙油田佳木河组火山岩储层孔隙类型及特征[J]. 石油与天然气地质, 2017, 38(1): 144−151.
WANG Xiaojun, ZHAO Fei, ZHANG Qin, et al. Pore types and characteristics of volcanic reservoirs of the Jiamuhe Formation in Jinlong oilfield, Junggar Basin[J]. Oil&Gas Geology,2017,38(1):144−151.
[21] 吴雨韩, 吴采西, 瞿建华, 等. 克拉玛依中拐地区三工河组和八道湾组沉积相新认识[J]. 新疆石油地质, 2010, 31(6): 590−592.
WU Yuhan, WU Caixi, QU Jianhua, et al. New cognition of sedimentary facies of Sangonghe and Badaowan Formations in Karamay Zhongguai Area[J]. Xinjiang Petroleum Geology,2010,31(6):590−592.
[22] 谢裕江, 郑金明, 刘高. 苏里格气田S区块有效砂岩储层波阻抗反演[J]. 工程地球物理学报, 2012, 9(3): 311−316.
XIE Yujiang, ZHENG Jinming, LIU Gao. Acoustic impedance inversion for the reservoir of valid sandstone in the S area of Sulige Gas Field[J]. Chinese Journal of Engineering Geophysics,2012,9(3):311−316.
[23] 徐衍和. 优化高频拓展法在煤田勘探中的应用[J]. 中国煤田地质, 2006, 18(2): 52−54.
XU Yanhe. Application of optimized high-frequency expanding technique in coalfield exploration[J]. Coal Geology of China,2006,18(2):52−54.
[24] 于景维, 张庆伟, 祁利祺, 等. 白家海地区下侏罗统三工河组高分辨层序地层格架内岩性油气藏研究[J]. 西北地质, 2022, 55(2): 199−208.
YU Jingwei, ZHANG Qingwei, QI Liqi, et al. Analysis of litho-stratigraphic reservoirs distribution in high-resolution sequence stratigraphic at the Lower Jurassic Sangonghe Formation in Baijiahai Area[J]. Northwestern Geology,2022,55(2):199−208.
[25] 俞礽安, 司庆红, 彭胜龙. 砂岩型铀矿综合探测技术和实践——以二连盆地BYH铀矿为例[J]. 华北地质, 2024, 47(3): 23−35.
YU Reng'an, SI Qinghong, PENG Shenglong. Comprehensive exploration techniques and Practices for Sandstone type uranium deposit: a case study of BYH uranium deposit in Erlian Basin[J]. North China Geology,2024,47(3):23−35.
[26] 袁红军, 吴时国, 王箭波, 等. 拓频处理技术在大牛地气田勘探开发中的应用[J]. 石油地球物理勘探, 2008, 43(1): 69−75.
YUAN Hongjun, WU Shiguo, WANG Jianbo, et al. Applicationof frequency broadening processing technique in exploration and development of Daniudi gas field[J]. Oil Geophysical Prospecting,2008,43(1):69−75.
[27] 张鹏飞, 张世晖. 西湖凹陷平湖组砂泥岩岩性神经网络地震预测[J]. 物探与化探, 2021, 45(4): 1014−1020.
ZHANG Pengfei, ZHANG Shihui. Neural network seismic prediction of sand and mudstone lithology of Pinghu Formation in Xihu Sag[J]. Geophysical and Geochemical Exploration,2021,45(4):1014−1020.
[28] 张益, 魏峰, 查玉强, 等. 地震拓频技术在涠洲6-12油气田薄储层刻画中的应用[J]. 西安石油大学学报(自然科学版), 2023, 38(2): 25−34.
ZHANG Yi, WEN Feng, ZHA Yuqiang, et al. Application of seismic extension frequency technology in thin reservoir characterization of Weizhou 6-12 oil/gas field[J]. Journal of Xi’an Shiyou University(Natural Science Edition),2023,38(2):25−34.
[29] 张誉洋, 李永军, 郑孟林, 等. 新疆车排子油田车探1井
3538 ~3774 m井段孢粉组合及地质意义[J]. 西北地质, 2022, 55(2): 157−165.ZHANG Yuyang, LI Yongjun, ZHENG Menglin, et al. Sporopollen assemblage and geological significance of
3538 ~3774 m section in well Chetan1, Chepaizi oilfield, Xinjiang[J]. Northwestern Geology,2022,55(2):157−165.[30] 张全, 王一品, 张伟, 等. 地震波能量补偿的并行反Q滤波方法研究[J]. 西南石油大学学报(自然科学版), 2023, 45(1): 24−32.
ZHANG Quan, WANG Yipin, ZHANG Wei, et al. Research on Parallel Inverse Q Filtering Methods for Seismic Wave Energy Compensation[J]. Journal of Southwest Petroleum University (Science & Technology Edition),2023,45(1):24−32.
[31] 赵斌, 明君, 马奎前, 等. 高频拓展处理技术在渤海H油田开发中的应用[J]. 石油地质与工程, 2011, 25(5): 45−49.
ZHAO Bin, MING Jun, MA Kuiqian, et al. Application of high frequency expansion processing technology in Bohai Sea H oilfield development[J]. Petroleum Geology and Engineering,2011,25(5):45−49.
[32] 赵飞, 韩宝, 钟磊, 等. 准噶尔盆地中拐地区致密砂岩气成藏特征及富集规律[J]. 西北地质, 2024, 57(5): 142−155.
ZHAO Fei, HAN Bao, ZHONG Lei, et al. Accumulation Characteristics and Enrichment Regularity of Tight Sandstone Gas Reservoirs in Zhongguai Area, Junggar Basin[J]. Northwestern Geology,2024,57(5):142−155.
[33] 周展, 杨朝强, 洪楚侨, 等. 深水少井区重力流薄泥岩隔夹层预测方法[J]. 天然气工业, 2020, 40(12): 52−58.
ZHOU Zhan, YANG Chaoqiang, HONG Chuqiao, et al. A prediction method of thin mudstone interlayers with gravity flow in deep water areas with fewer wells[J]. Natural Gas Industry,2020,40(12):52−58.
[34] 周宗良, 吴刚, 肖建玲, 等. 地震拓频处理技术在歧口深层气藏储层预测中的应用[J]. 工程地球物理学报, 2015, 12(5): 604−609.
ZHOU Zongliang, WU Gang, XIAO Jianling, et al. The application of seismic frequency expanding processing technique to deep gas reservoir prediction in Qikou[J]. Chinese Journal of Engineering Geophysics,2015,12(5):604−609.
[35] 邹拓. 港西油田六区河道砂体储层预测综合研究[J]. 地质学刊, 2015, 39(3): 475−480.
ZOU Tuo. A comprehensive study of channel sand body prediction in block six of Gangxi oilfield[J]. Journal of Geology,2015,39(3):475−480.
[36] 邹阳, 韦盼云, 朱涛, 等. 准噶尔盆地石西油田石南4井区侏罗系头屯河组储层特征及有利区展望[J]. 西北地质, 2020, 53(2): 235−243.
ZOU Yang, WEI Panyun, ZHU Tao, et al. The reservoir characteristics and favorable zone prospect of the Jurassic Toutunhe Formation in Wellblock Shinan4, Shixi Oilfield, Junggar Basin[J]. Northwestern Geology,2020,53(2):235−243.
-