U-Pb Zircon Age, Geochemistry and Geological Significance of the Late Silurian Diabase in the Southwest Margin of Tarim
-
摘要:
塔西南缘铁克里克构造带叶城一带古元古代花岗岩体及赛图拉岩群中大量发育辉绿岩脉(墙)群,通过对其进行详细的地质、年代学、地球化学和构造环境研究,结果表明, 该辉绿岩属于亚碱性拉斑玄武岩系列,具有高Fe、Ti,富Na,贫K的特征,球粒陨石标准化稀土元素配分图表现为LREE略富集的右倾分配模式,富集大离子亲石元素,相对亏损高场强元素,具有板内玄武岩特征。岩石成因研究表明,其具亏损岩石圈地幔源区特征,并受俯冲流体或熔体交代混染,原始岩浆源区主要为尖晶石二辉橄榄岩。辉绿岩形成于板内拉张环境。辉绿岩获得LA-ICP-MS锆石U-Pb年龄为(424±2.7)Ma,形成于晚志留世,结合西昆仑区域构造演化,认为该时期处于造山期后阶段,代表了原特提斯洋构造旋回的结束。辉绿岩中含有大量捕获锆石,第一组捕获锆石年龄为(2 242±19)Ma,表明铁克里克陆块确实存在古元古代结晶基底,第二组捕获锆石年龄为(1 842±42)Ma,代表了塔里木克拉通古元古代晚期的岩浆和构造记录。
Abstract:There are a large number of diabase dikes (walls) developed in the paleoproterozoic granite body and Setula Group in the Yecheng area of Tiekerike structural belt, southwestern margin of Tarim Basin. Through detailed geological, chronological, geochemical and tectonic environment studies, the results show that the diabases belong to the subbasic lapidous basalt series, with the characteristics of high Fe, Ti, Na and low K.The chondrite normalized REE patterns show the slightly enriched of LREE, which are right-sloping distribution. The diabases enrich LILEs and relatively loses HFSEs, resembling the feature of intraplate basalts. The study of lithogenesis showed that the diabases had the characteristics of a depleted lithospheric mantle source, and were mixed by subduction fluid or melt, and the original magma source area were mainly spinel dipyroxene peridotite. Diabases were formed in an intraplate tensioning environment. The LA-ICP-MS zircon U-Pb age of (424±2.7) Ma was obtained from diabase, formed in the Late Silurian, combined with the tectonic evolution of the West Kunlun region, it is believed that this period is in the post-orogenic stage, representing the end of the tectonic cycle of the original Proto-Tethyan Ocean. Diabases contain a large amount of inherited zircon, the first group inherits the zircon age of (
2242 ±19) Ma, which indicates that there is a Paleoproterozoic crystalline basement in the Tiekerek block, and the second group inherits the zircon age of (1 842±42) Ma, representing the magmatic and tectonic records of late Paleoproterozoic Tarim Craton. -
-
图 5 TAS岩石分类命名图解(a)(底图据Cox et al.,1979)及FeOT/MgO-TiO2图解(b)(底图据Miyasiro,1974)
Figure 5.
图 7 辉绿岩Fe/Mn-CaO(a)、Fe/Mn-MgO(b)、Fe/Mn-Fe2O3T(c)和Fe/Mn-MnO(d)源区判别图解(底图据Li, 2016)
Figure 7.
图 8 辉绿岩的La/Yb-Dy/Yb图解(据Bogaard et al., 2003)
Figure 8.
图 9 辉绿岩Yb-Th/Ta图解(底图据Schandl et al.,2002)
Figure 9.
表 1 辉绿岩的LA-ICP-MS锆石U-Pb分析结果
Table 1. Table of dating analysis of diabase zircon LA–ICP–MS
样品编号 含量(10−6) Th/U 同位素比值 同位素年龄(Ma) Pb Th U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ HL-6TW-1 315.95385 469.45 764.58 0.61 0.11275 0.00126 5.2058 0.05872 0.3349 0.00349 1844 9 1854 10 1862 17 HL-6TW-2 571.96792 949.62 1395.57 0.68 0.1115 0.00116 5.01132 0.05296 0.32601 0.00332 1824 9 1821 9 1819 16 HL-6TW-3 209.55952 215.47 345.33 0.62 0.16331 0.00214 10.57378 0.13946 0.46963 0.00541 2490 10 2486 12 2482 24 HL-6TW-4 31.56621 229.84 388.43 0.59 0.05612 0.00107 0.52255 0.00969 0.06754 0.00077 457 22 427 6 421 5 HL-6TW-5 23.91901 182.49 291.96 0.63 0.05695 0.00108 0.53845 0.00991 0.06858 0.00078 490 22 437 7 428 5 HL-6TW-6 136.2894 167.45 223.16 0.75 0.15963 0.00189 10.16874 0.12075 0.46203 0.00499 2452 9 2450 11 2449 22 HL-6TW-7 114.47227 375.83 1528.36 0.25 0.05587 0.00062 0.52261 0.00579 0.06785 0.00069 447 11 427 4 423 4 HL-6TW-8 46.12337 247.93 586.97 0.42 0.05539 0.00152 0.52327 0.01388 0.06851 0.0009 428 36 427 9 427 5 HL-6TW-9 37.08585 403.15 414.63 0.97 0.05517 0.00121 0.51669 0.01098 0.06793 0.00081 419 27 423 7 424 5 HL-6TW-10 23.93572 217.65 284.42 0.77 0.05564 0.00147 0.51453 0.01309 0.06707 0.00086 438 34 421 9 418 5 HL-6TW-11 182.96866 174.88 278.25 0.63 0.1638 0.00173 11.37392 0.12032 0.50359 0.00509 2495 8 2554 10 2629 22 HL-6TW-12 62.72011 631.34 705.88 0.89 0.05786 0.00079 0.54457 0.00726 0.06826 0.00071 524 14 441 5 426 4 HL-6TW-13 55.57702 288.19 696.72 0.41 0.05587 0.00079 0.52193 0.00724 0.06774 0.00071 447 14 426 5 423 4 HL-6TW-14 165.63799 161.21 275.45 0.59 0.16075 0.0017 10.18184 0.10693 0.45935 0.0046 2464 8 2451 10 2437 20 HL-6TW-15 310.96888 384.68 728.38 0.53 0.11283 0.00119 5.30526 0.05522 0.34099 0.00339 1845 8 1870 9 1891 16 HL-6TW-16 39.85422 376.9 453.41 0.83 0.05416 0.00099 0.51043 0.00902 0.06835 0.00075 378 21 419 6 426 5 HL-6TW-17 211.66882 226.43 337.64 0.67 0.16119 0.00171 10.43269 0.10897 0.46937 0.00468 2468 8 2474 10 2481 21 HL-6TW-18 16.15166 103.65 303.07 0.34 0.05164 0.0008 0.32983 0.00499 0.04632 0.00049 270 17 289 4 292 3 HL-6TW-19 187.78596 159.58 304.43 0.52 0.16261 0.00173 10.62133 0.11093 0.47367 0.00471 2483 8 2491 10 2500 21 HL-6TW-20 108.37869 203.95 246.97 0.83 0.11053 0.00119 4.93986 0.05231 0.3241 0.00322 1808 9 1809 9 1810 16 HL-6TW-21 44.88306 409.05 692.03 0.59 0.05358 0.00067 0.40163 0.00491 0.05436 0.00055 353 12 343 4 341 3 HL-6TW-22 310.28845 337.12 755.5 0.45 0.11184 0.00118 5.06654 0.05228 0.32852 0.00323 1830 8 1831 9 1831 16 HL-6TW-23 146.74297 143.78 235.26 0.61 0.16204 0.00178 10.43984 0.11226 0.46722 0.0047 2477 8 2475 10 2471 21 HL-6TW-24 37.47048 55.45 52.13 1.06 0.16889 0.00267 11.3314 0.17715 0.48654 0.00624 2547 12 2551 15 2556 27 HL-6TW-25 21.74959 93.65 206.22 0.45 0.05832 0.00219 0.6729 0.02423 0.08367 0.00131 542 51 522 15 518 8 HL-6TW-26 74.78277 136.35 946.08 0.14 0.05948 0.00126 0.56493 0.01149 0.06887 0.0008 585 25 455 7 429 5 HL-6TW-27 391.93267 818.2 964.51 0.85 0.10909 0.00314 4.28408 0.11341 0.28483 0.0032 1784 54 1690 22 1616 16 HL-6TW-28 106.79042 553.84 1308.16 0.42 0.05518 0.00072 0.5136 0.00647 0.06749 0.00068 420 13 421 4 421 4 表 2 辉绿岩主量(%)、微量、稀土元素(10−6)分析结果
Table 2. Analysis results of major (%), trace and rare earth elements (10−6) in diabase
样品编号 PM101-8DH1 HL-1DH HL-2DH HL-3DH HL-4DH HL-5DH HL-6DH HL-7DH HL-8DH SiO2 47.23 50.18 47.43 47.77 47.83 49.8 46.73 47.61 48.03 TiO2 1.74 2.35 2.92 1.75 2.61 3.14 3.08 2.78 3.24 Al2O3 14.05 12.55 13 14.58 12.74 12.71 13.62 12.91 12.67 TFe2O3 12.39 11.94 16 12.54 16.42 14.96 14.58 14.31 15.44 MnO 0.19 0.17 0.23 0.19 0.25 0.22 0.23 0.19 0.18 MgO 6.82 6.43 5.27 7.14 6.42 4.26 6.24 5.41 4.96 CaO 10.74 6.28 9.65 10.95 6.38 7.41 8.89 10.29 8.12 Na2O 2.85 2.92 2.48 2.13 2.16 3.32 3.36 2.34 3.36 K2O 0.84 1.68 0.74 1.03 1.34 1.88 0.57 0.91 0.78 P2O5 0.19 0.26 0.37 0.21 0.48 0.41 0.51 0.39 0.39 LOI 2.62 5.24 1.04 1.90 3.40 2.37 1.34 1.55 2.02 TOTAL 99.66 100.00 99.13 100.19 100.03 100.48 99.15 98.69 99.19 Li 152.08 32.90 13.96 15.52 16.50 16.87 11.19 15.47 19.67 La 12.17 41.35 24.14 29.61 25.13 25.82 58.22 31.32 38.15 Ce 30.71 86.05 55.85 59.05 56.72 57.85 118.80 69.17 82.33 Pr 4.23 10.34 7.37 6.58 7.32 7.46 13.83 8.85 10.36 Nd 18.86 41.38 32.48 25.23 33.36 32.56 54.64 38.27 43.26 Sm 4.66 7.63 7.62 4.92 7.48 7.21 11.12 8.52 10.08 Eu 1.61 2.42 2.71 1.74 2.74 2.65 2.72 2.69 2.83 Gd 5.05 6.89 8.64 5.63 8.72 6.98 11.31 9.32 10.77 Tb 0.81 0.92 1.37 0.82 1.44 1.02 1.80 1.35 1.61 Dy 5.06 5.18 8.39 4.85 9.15 5.89 11.09 8.18 9.63 Ho 1.01 0.93 1.69 0.99 1.91 1.09 2.19 1.60 1.96 Er 2.98 2.34 4.71 2.68 5.59 2.97 6.30 4.50 5.58 Tm 0.41 0.34 0.63 0.41 0.78 0.38 0.91 0.65 0.80 Yb 2.51 2.07 4.47 2.38 5.40 2.56 5.78 4.16 5.09 Lu 0.42 0.31 0.66 0.37 0.80 0.37 0.90 0.57 0.72 Y 24.13 21.81 39.84 22.71 44.86 25.52 52.55 37.72 46.94 ΣREE 90.50 208.14 160.73 145.26 166.55 154.79 299.62 189.12 223.17 LREE 72.24 189.17 130.17 127.13 132.76 133.53 259.33 158.81 187.01 HREE 18.26 18.98 30.56 18.12 33.79 21.26 40.29 30.32 36.17 LREE/HREE 3.96 9.97 4.26 7.01 3.93 6.28 6.44 5.24 5.17 (La/Yb)N 3.47 14.32 3.87 8.92 3.34 7.24 7.23 5.40 5.37 δEu 1.01 1.00 1.02 1.01 1.03 1.13 0.73 0.92 0.82 δCe 1.05 0.99 1.02 0.99 1.01 1.01 0.99 1.00 1.00 Li 22.00 32.90 13.96 15.52 16.50 16.87 11.19 15.47 19.67 Be 0.41 1.49 1.23 0.72 0.81 0.65 2.63 1.36 1.82 Sc 38.43 27.63 32.97 29.00 43.05 26.13 31.54 35.58 28.96 V 295.10 273.13 406.23 271.99 340.19 295.18 341.59 366.63 400.37 Cr 200.39 271.56 43.62 136.57 91.70 97.13 54.23 76.02 43.80 Co 46.54 38.07 47.23 46.41 45.36 45.63 39.10 49.82 42.65 Ni 83.00 99.09 37.80 78.60 32.96 73.97 37.72 55.17 46.57 Cu 74.79 76.51 54.46 71.39 53.75 76.30 178.45 117.35 109.22 Zn 80.94 141.15 128.48 87.47 126.17 106.60 390.70 90.71 99.14 Ga 16.54 16.91 21.43 17.71 19.21 18.37 21.03 19.81 21.09 Rb 37.93 76.88 40.82 65.69 57.56 26.73 89.17 31.13 36.87 Sr 227.50 319.73 272.86 489.31 251.63 306.97 339.90 247.93 231.69 Zr 84.48 188.69 175.76 101.50 165.19 141.18 350.64 206.27 258.49 Nb 9.20 20.10 18.70 8.40 17.92 16.74 52.64 26.96 31.24 Mo 0.29 0.46 0.91 0.45 0.54 0.98 2.32 1.33 1.56 Cd 0.08 0.24 0.13 0.14 0.12 0.12 0.35 0.09 0.11 In 0.06 0.10 0.11 0.07 0.12 0.10 0.13 0.11 0.12 Cs 0.49 1.11 0.98 0.40 0.62 0.72 0.46 0.78 0.39 Ba 364.57 931.24 400.22 657.53 512.96 329.56 604.25 326.51 300.15 Hf 2.37 5.37 5.03 2.92 4.99 4.01 9.49 5.82 7.36 Ta 0.69 1.26 1.20 0.55 1.21 1.10 3.56 1.79 2.09 Pb 1.84 39.57 5.02 6.43 4.88 3.19 6.21 4.36 5.84 Bi 0.01 0.06 0.01 0.01 0.02 0.01 0.02 0.01 0.02 Th 1.82 6.15 5.96 7.04 2.82 5.23 9.47 3.60 4.53 U 0.57 1.35 0.93 0.52 0.91 0.74 2.10 1.22 1.34 -
[1] 邓万明. 喀喇昆仑—西昆仑地区蛇绿岩的地质特征及其大地构造意义[J]. 岩石学报, 1995, 11(z1): 98−111.
DENG Wanming. Geological Features of Ophiolite and Tectonic Significance in the Karakorum-West Kunlun Mts.[J]. Acta Petrologica Sinica,1995,11(z1):98−111.
[2] 葛荣峰, 朱文斌, 周腾, 等. 塔里木克拉通太古宙大陆起源: 进展与问题[J]. 西北地质, 2024, 57(6): 1−24.
GE Rongfeng,ZHU Wenbin,ZHOU Teng,et al. Origin of Archean Continental Crust in the Tarim Craton: Progresses and Issues[J]. Northwestern Geology,2024,57(6):1−24.
[3] 韩芳林. 西昆仑增生造山带演化及成矿背景[D]. 北京: 中国地质大学(北京), 2006: 1−232.
HAN Fanglin. Evolution and mineralization background of West Kunlun orogenic belt[D]. Beijing: China University of Geosciences (Beijing), 2006: 1−232.
[4] 计文化, 周辉, 李荣社, 等. 西昆仑新藏公路北段古-中生代多期次构造-热事件年龄确定[J]. 地球科学: 中国地质大学学报, 2007, 32(5): 671−680.
JI Wenhua, ZHOU Hui, LI Rongshe, et al. The deformation age of Palaeozoic-Mesozoic tectonic alongnorth Xin-Zang road in west Kunlun[J]. Earth Science-Journal of China University of Geosciences,2007,32(5):671−680.
[5] 姜春发, 王宗起, 李锦轶. 中央造山带开合构造[M]. 北京: 地质出版社, 2000, 1−154.
JIANG Chunfa, WANG Zongqi, LI Jinyi. Open and close structure of Central Orogenic Belt[M]. Beijing: Geological Publishing House, 2000,1−154.
[6] 李荣社, 徐学义, 计文化. 对中国西部造山带地质研究若干问题的思考[J]. 地质通报, 2008, 27(12): 2020−2025.
LI Rongshe, XU Xueyi, JI Wenhua. Some problems of geological study in the western China orogenic belt[J]. Geological Bulletin of China,2008,27(12):2020−2025.
[7] 李天福, 张建新. 西昆仑库地蛇绿岩的二辉辉石岩和玄武岩锆石LA-ICP-MS U-Pb年龄及其意义[J]. 岩石学报, 2014, 30(8): 2393−2401.
LI Tianfu, ZHANG Jianxin. Zircon LA-ICP-MS U-Pb ages of webserite and basalt in Kudi ophiolite and the implication, West Kunlun[J]. Acta Petrologica Sinica,2014,30(8):2393−2401.
[8] 廖世勇. 西昆仑古生代花岗岩成因与造山带演化[D]. 南京: 南京大学, 2010, 1−120.
LIAO Shiyong. Genesis and orogenic evolution of Paleozoic granites in the West Kunlun Mountains[D]. Nanjing: Nanjin University, 2010, 1−120.
[9] 刘鑫, 朱志新, 郭瑞清, 等. 塔里木南缘铁克里克地区西段晚古生代辉绿岩 LA-ICP-MS 锆石U-Pb定年及其地质意义[J]. 地球科学, 2016, 51(3): 794−805.
LIU Xin, ZHU Zhixin, GUO Ruiqing, et al. LA-ICP-MS U-Pb zircon dating and its geological significance for the Late Paleozoic diabase from the west part of Tiekelike area, South Tarim[J]. Earth Science,2016,51(3):794−805.
[10] 刘成军. 西昆仑造山带(西段)及周缘早古生代—早中生代物质组成与构造演化[D]. 西安: 长安大学, 2015: 1−210.
LIU Chengjun. Material composition and tectonic evolution of the West Kunlun orogenic belt and its periphery from early Paleozoic to early Mesozoic[D]. Xi’an: Chang’an University, 2015, 1−210.
[11] 刘东晓, 王玉玺, 贾志磊, 等. 塔里木克拉通Columbia聚合后大陆裂解的高热事件痕迹[J]. 兰州大学学报(自然科学版), 2017, 53(6): 727−731.
LIU Dongxiao, WANG Yuxi, JIA Zhilei, et al. Traces of high heat events of continental cleavage after Tarim craton Columbia polymerization[J]. Journal of Lanzhou University(Natural Science Edition),2017,53(6):727−731.
[12] 柳坤峰, 王永和, 姜高磊, 等. 西昆仑新元古代中生代沉积盆地演化[J]. 地球科学, 2014, 39(8): 987−999. doi: 10.3799/dqkx.2014.090
LIU Kunfeng, WANG Yonghe, JIANG Gaolei, et al. Evolution of neoproterozoic-mesozoic sedimentary basins of West Kunlun area[J]. Earth Sciences,2014,39(8):987−999. doi: 10.3799/dqkx.2014.090
[13] 陆松年. 从罗迪尼亚到冈瓦纳超大陆—对新元古代超大陆研究几个问题的思考[J]. 地学前缘, 2001, 8(4): 442−449.
LU Songnian. From Rodinia to Gondwana Supercontinent: Reflections on Several Issues in the Study of Neoproterozoic Supercontinents[J]. Frontiers of Geoscience,2001,8(4):442−449.
[14] 陶再礼, 尹继元, 袁超, 等. 西昆仑造山带晚奥陶世侵入岩的岩石成因: 对原特提斯洋俯冲过程的制约[J]. 岩石学报, 2022, 38(11): 3321−3340. doi: 10.18654/1000-0569/2022.11.05
TAO Zaili, YIN Jiyuan, YUAN Chao, et al. Petrogenesis of Late Ordovician intrusive rocks in the WestKunlun orogenic belt: Constraints on thesubduction process of the Proto-Tethys Ocean[J]. Acta Petrologica Sinica,2022,38(11):3321−3340. doi: 10.18654/1000-0569/2022.11.05
[15] 王超, 刘良, 何世平, 等. 西昆仑早古生代岩浆作用过程: 布隆花岗岩地球化学和锆石 U-Pb-Hf同位素组成研究[J]. 地质科学, 2013, 48(4): 997−1014. doi: 10.3969/j.issn.0563-5020.2013.04.004
WANG Chao, LIU Liang, HE Shiping, et al. Early Paleozoic magmatic process in West Kunlun: Bloom granite geochemistry and zircon U-Pb-Hf isotopic composition[J]. Chinese Journal of Geology,2013,48(4):997−1014. doi: 10.3969/j.issn.0563-5020.2013.04.004
[16] 王向利, 高小平, 刘幼骐, 等. 塔里木盆地南缘铁克里克断隆结晶基底特征[J]. 西北地质, 2010, 43(4): 95-112.
WANG Xiangli, GAO Xiaoping, LIU Youqi, et al. Crystal basement feature of Tiekelike fault-uplift at southern margin of Tarim Basin[J]. Northwestern Geology, 2010, 43(4): 95−112.
[17] 魏博, 张旗, 吴锋, 等. 新疆西昆仑北缘叶城棋盘—西河休一带构造岩浆活动与成矿关系[J]. 地质与勘探, 2018, 54(S1): 1327−1337. doi: 10.12134/j.dzykt.2018.S1.003
WEI Bo, ZHANG Qi, WU Feng, et al. Tectonic magmatic activity in relation to mineralization in the Yecheng-Xihexiu area, northern margin of the West Kunlun, Xinjiang[J]. Geology and Exploration,2018,54(S1):1327−1337. doi: 10.12134/j.dzykt.2018.S1.003
[18] 肖文交, 侯泉林, 李继亮, 等. 西昆仑大地构造相解剖及其多岛增生过程[J]. 中国科学(D辑), 2000, 30(z1): 22−28. doi: 10.3969/j.issn.1674-7240.2000.z1.004
XIAO Wenjiao, HOU Quanlin, LI Jiliang, et al. Anatomy of tectonic facies in West Kunlun and its multi-island hyperplasia process[J]. Science in China (Series D),2000,30(z1):22−28. doi: 10.3969/j.issn.1674-7240.2000.z1.004
[19] 肖序常, 王军, 苏犁, 等. 再论西昆仑库地蛇绿岩及其构造意义[J]. 地质通报, 2003, 22(10): 745−750. doi: 10.3969/j.issn.1671-2552.2003.10.001
XIAO Xuchang, WANG Jun, SU Li, et al. A further discussion of the Kudi ophiolite, West Kunlun and its tectonic significance[J]. Geological Bulletin of China,2003,22(10):745−750. doi: 10.3969/j.issn.1671-2552.2003.10.001
[20] 袁超, 孙敏, 肖文交, 等. 原特提斯的消减极性: 西昆仑128公里岩体的启示[J]. 岩石学报, 2003, 19(3): 339−408.
YUAN Chao, SUN Min, XIAO Wenjiao, et al. The reduced polarity of Proto-Tethys: The enlightenment of the 128 km rock mass in West Kunlun[J]. Journal of Petrology,2003,19(3):339−408.
[21] 袁四化, 潘桂棠, 王立全, 等. 大陆边缘增生造山作用[J]. 地学前缘, 2009, 16(3): 32−48.
YUAN Sihua, PAN Guitang, WANG Liquan, et al. Accretionary orogenesis in the active continental margins[J]. Earth Science Frontiers,2009,16(3):32−48.
[22] 张传林, 马华东, 朱炳玉, 等. 西昆喀喇昆仑造山带构造演化及其成矿效应[J]. 地质论评, 2019, 65(5): 1077−1102.
ZHANG Chuanlin, MA Huadong, ZHU Bingyu, et al. Tectonic evolution and metallogenic effect of West Kunkarakorum[J]. Geological Review,2019,65(5):1077−1102.
[23] 张海军, 李宁波. 新疆库尔勒上户地区辉绿岩的地球化学特征及成因[J]. 地球化学, 2018, 47(2): 196−208.
ZHANG Haijun,LI Ningbo. Geochemical features and petrogenesis of the Shanghu diabase, Kuerle, Xinjiang[J]. Geochimica,2018,47(2):196−208.
[24] 张健, 张传林, 李怀坤, 等. 再论塔里木北缘阿克苏蓝片岩的时代和成因环境: 来自锆石U-Pb年龄、Hf同位素的新证据[J]. 岩石学报, 2014, 30(11): 3357−3365.
ZHANG Jian, ZHANG Chuanlin, LI Huaikun, et al. Revisit to time and tectonic environment of the Aksu blueschist terrane in Northern Tarim, NW China: New evidence from zircon U-Pb age and Hf isotope[J]. Acta Petrologica Sinica,2014,30(11):3357−3365.
[25] 张永旺, 刘汇川, 于志琪, 等. 塔里木克拉通古元古代晚期A型花岗岩成因及对哥伦比亚超大陆演化的指示意义[J]. 岩石学报, 2021, 37(4): 1122−1138. doi: 10.18654/1000-0569/2021.04.10
ZHANG Yongwang, LIU Huichuan, YU Zhiqi, et al. Petrogenesis of late Paleoproterozoic A type granites in theTarim Craton and implications for the Columbia assembly and break up[J]. Acta Petrologica Sinica,2021,37(4):1122−1138. doi: 10.18654/1000-0569/2021.04.10
[26] Anderson D L. Komatites and picrites: Evidence that “plume” source is depleted[J]. Earth and Planetary Science Letters,1994,128(3-4):303−311. doi: 10.1016/0012-821X(94)90152-X
[27] Bogaard P J F, Wörner G. Petrogenesis of Basanitic to Tholeiitic Volcanic Rocks from the Miocene Vogelsberg, Central Germany[J]. Journal of Petrology,2003,44(3):569−602. doi: 10.1093/petrology/44.3.569
[28] Boynton W V. Geochemistry of the Rare Earth Elements: Meteorite Studies. In: Henderson, P., ed., Rare Earth Element Geochemistry[J]. Elservier, Amsterdam, 1984: 63-114.
[29] Condie KC. Plate Tectonics and Crustal Evolution[J]. Oxford Pergamon Press, London, 1989: 476.
[30] Cox, J C, S A Ross, et al. Rubinstein. Option pricing: A simplified approach[J]. Journal of Financial Economics,1979,7(3):229−263.
[31] Chen F K, Hegner E, Todt W. Zircon Ages, Nd Isotopic and Chemical Compositions of Orthogneisses from the Black Forest, Germany: Evidencefora Cambrian Magmatic Arc[J]. International Journal of Earth Sciences,2000,88:791−802. doi: 10.1007/s005310050306
[32] Chen F K, Siebel W, Satir M, et al. Geochronology of the Karadere Basement(NW Turkey)and Implications for the Geological Evolution of the Istanbul Zone[J]. International Journal of Earth Sciences,2002,91:469−481. doi: 10.1007/s00531-001-0239-6
[33] Gibbons D A., Mueller D R, Zahirovic S, et al. A tectonic model reconciling evidence for the collisions between India, Eurasia and intra-oceanic arcs of the central-eastern Tethys[J]. Gondwana research,2015,28(2):451−492. doi: 10.1016/j.gr.2015.01.001
[34] Hawkesworth C J, Gallagher K, Hergt J M, et al. Mantle and slab contribution in arc magmas[J]. Annual Review of Earth and Planetary Sciences,1993,21:175−204. doi: 10.1146/annurev.ea.21.050193.001135
[35] Hofmann A W, Jochum K P, Seufert M, et al. Nb and Pb in oceanic basalts: New constraints on mantle evolution[J]. Earth and Planetary Science Letters,1986,79(1-2):33−45. doi: 10.1016/0012-821X(86)90038-5
[36] Jahn B M, Wu F Y , Chen B. Granitoids of the Central Asianorogenic belt and continental growth in the Phanerozoic[J]. Transactions of the Royal Society of Edinburgh: Earth Sciences,2000,91:181−193. doi: 10.1017/S0263593300007367
[37] Jia Ruya, Jiang Yaohui, Liu Zheng, et al. Petrogenesis and tectonic implications of early Silurian high-K calc-alkaline granites and their potassic microgranular enclaves, western Kunlun orogen, NW Tibetan Plateau[J]. International Geology Review,2013,55(8):958−975. doi: 10.1080/00206814.2012.755766
[38] Jiang Y H, Jia R Y, Liu Z, et al. Origin of Middle Triassic high-K calc-alkaline granitoids and their potassic microgranular enclaves from the western Kunlun orogen, Northwest China: A record of the closure of Paleo-Tethys[J]. Lithos,2013,156-159:13−30. doi: 10.1016/j.lithos.2012.10.004
[39] Li Y Q, Ma C Q, Robinson P T, et al. Petrology and Geochemistry of Cenozoic intra-plate basalts in east-central China: constraints on recycling of an oceanic slab in the source region[J]. Lithos,2016:27−43.
[40] Liao Shiyong, Jiang Yaohui, Jiang Shaoyong, et al. Subducting sediment-derived arc granitoids: evidence from the Datong pluton and its quenched enclaves in the western Kunlun orogen, Northwest China[J]. Mineralogy& Petrology,2010,100(1):55−74.
[41] Miyashiro A. Volcanic rock series in island arcs and active continental margins[J]. America Journal of Science,1974,274:321−355.
[42] McCulloch M T, Gamble J A. Geochemical and geodynamical constraints on subduction zone magmatism[J]. Earth and Planetary Science Letters,1991,102(3):358−374.
[43] Saunders A D, Storey M, Kent R W, et al. Consequences of plume-lithosphere interaction[J]. In: Storey B C, Alabaster T, Pankhurst R J (eds). Magmatism and the causes of continental break-up. Geological Society Special Publication, London,1992,68:41−60.
[44] Schandl E S. Application of high field strength elements to discriminate tectonic settings in VMS environments[J]. Economic Geology,2002,97(3):629−642.
[45] Sun, S S. McDonough W F. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. In: Saunders, A D, Norry, M J, eds., Magmatism in the Ocean Basins[J]. Geological Society of London, 1989: 313-345.
[46] Sklyarov E V, Gladkochub D P, Mazukabzov A M, et al. Neoproterozoic mafic dikeswarms of the Sharyzhalgai metamorphic massif, southern Siberiancraton[J]. Precambrian Research,2003,122(1):359−376.
[47] Taylor S R, McLennan S M. The continental crust: Its composition and evolution[M]. Oxford: Blackwell Scientific Publications, 1985: 57-72.
[48] Kieffer B, Arndt N, Lapierre H. Fllod and shield basalts from Ethiopia: magmas from the African superswell[J]. Petrol,2004,45(4):793−834. doi: 10.1093/petrology/egg112
[49] Wang P, Zhao G C, Liu Q, et al. Slab-controlled progressive evolution of the Kudi back-arc ophiolite in response to the rollback of the Proto-Tethys oceanic slab, in Western Kunlun, NW Tibetan Plateau[J]. Lithos,2020,105(887):380−381.
[50] Wang P, Zhao G C, Han Y G, et al. Petrogenesis of Ordovician granitoids in Western Kunlun, NW Tibetan Plateau: Insights into the evolution of the Proto-Tethys Ocean[J]. Geological Society of America Bulletin,2021,133(5-6):1071−1089. doi: 10.1130/B35740.1
[51] Wang Z H. Tectonic evolution of the western Kunlun orogenic belt, western China[J]. Journal of Asian Earth Sciences,2004,24(2):153−161. doi: 10.1016/j.jseaes.2003.10.007
[52] Wilson M. Igneous petrogenesis[M]. London: Unwin Hyman, 1989, 1−464.
[53] Xiao W, Han F, Windley B F. Multiple Accretionary Orogenesis and Episodic Growth of Continents: Insights from the Western Kunlun Range, Central Asia[J]. International Geology Review,2003,45(4):303−328.
[54] Yin A , Harrison T M. Geologic evolution of the Himalyan-Tibetan orogen[J]. Annual Review of Earth and Planetary Sciences,2000,28(1):211−280. doi: 10.1146/annurev.earth.28.1.211
[55] Yin J, Xiao W, Sun M, et al. Petrogenesis of Early Cambrian granitoids in the western Kunlun orogenic belt, Northwest Tibet: Insight into early stage subduction of the Proto-Tethys Ocean[J]. Geological Society of America Bulletin,2020,132(9-10):2221−2240.
[56] Yuan Chao, Sun Min, Zhou Meifu, et al. Tectonic Evolution of the West Kunlun: Geochronologic and Geochemical Constraints from Kudi Granitoids[J]. International Geology Review,2002,44(7):653−669.
[57] Yuan Honglin, Gao Shan, Liu Xiaoming, et al. Accurate U-Pb Age and Trace Element Determinations of Zircon by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry[J]. Geostandards & Geoanalytical Research,2004,28(3):353−370.
[58] Zhang C L, Zou H B, Li H K. Tectonic framework and evolution of the Tarim Block in NW China[J]. Gondwana Research,2013,23(4):1306−1315. doi: 10.1016/j.gr.2012.05.009
[59] Zhang Chuanlin, Zou Haibo, Ye Xiantao, et al. Tectonic evolution of the NE section of the Pamir Plateau: New evidence from field observations and zircon U-Pb geochronology[J]. Tectonophysics,2018a,723:27−40. doi: 10.1016/j.tecto.2017.11.036
[60] Zhang C L, Zou H B, Ye X T, et al. Timing of subduction initiation in the Proto-Tethys Ocean: Evidence from the Cambrian gabbros from the NE Pamir Plateau[J]. Lithos,2018b,314-315:40−51. doi: 10.1016/j.lithos.2018.05.021
[61] Zhao G C, Sun M, Wilde S A, et al. Assembly, Accretion and Breakup of the Paleo-Mesoproterozoic Columbia Supercontinent: Records in the North China Craton[J]. Gondwana Research,2003,6(3):417−434. doi: 10.1016/S1342-937X(05)70996-5
-