基于GM(1,1)与BP神经网络模型的西安市地下水位动态特征及趋势预测研究

李培月, 梁豪, 杨俊岩, 田艳, 寇晓梅. 2025. 基于GM(1,1)与BP神经网络模型的西安市地下水位动态特征及趋势预测研究. 西北地质, 58(3): 236-245. doi: 10.12401/j.nwg.2024118
引用本文: 李培月, 梁豪, 杨俊岩, 田艳, 寇晓梅. 2025. 基于GM(1,1)与BP神经网络模型的西安市地下水位动态特征及趋势预测研究. 西北地质, 58(3): 236-245. doi: 10.12401/j.nwg.2024118
LI Peiyue, LIANG Hao, YANG Junyan, TIAN Yan, KOU Xiaomei. 2025. Dynamic Characteristics and Trend Prediction of Groundwater Level in Xi’an City, China Based on GM (1, 1) and BP Neural Network Models. Northwestern Geology, 58(3): 236-245. doi: 10.12401/j.nwg.2024118
Citation: LI Peiyue, LIANG Hao, YANG Junyan, TIAN Yan, KOU Xiaomei. 2025. Dynamic Characteristics and Trend Prediction of Groundwater Level in Xi’an City, China Based on GM (1, 1) and BP Neural Network Models. Northwestern Geology, 58(3): 236-245. doi: 10.12401/j.nwg.2024118

基于GM(1,1)与BP神经网络模型的西安市地下水位动态特征及趋势预测研究

  • 基金项目: 国家重点研发计划项目课题“土壤–地下水污染时空演化规律及主控因子”(2023YFC3706901),国家自然科学基金面上项目“大型灌区地下水多场协同作用下典型农业污染物迁移转化机制研究”(42472316)联合资助。
详细信息
    作者简介: 李培月(1984–),男,教授,博士生导师,主要从事地下水文学与水资源研究。E–mail:lipy2@163.com
  • 中图分类号: P641

Dynamic Characteristics and Trend Prediction of Groundwater Level in Xi’an City, China Based on GM (1, 1) and BP Neural Network Models

  • 地下水是干旱与半干旱地区极其珍贵的自然资源,地下水动态的精准预测与评估关乎着地下水资源的有效保护与合理利用。本研究根据西安市2010~2020年地下水位监测数据,系统分析了西安市地下水位年际、年内动态变化特征,探究了影响地下水位动态的主要因素,通过SPSS对影响地下水位动态的降水量和开采量两个主要因素进行相关性分析,并基于GM(1,1)灰度预测模型和BP神经网络模型对地下水位变动趋势进行了预测。结果表明:①2010~2016年,地下水位整体上呈下降趋势,2016~2020年间,得益于地下水压采和供水设施的不断优化完善,地下水位呈回升趋势。②降水和人为开采均对西安市地下水位变动具有显著影响;地下水位埋深是决定受降水影响程度的关键因素,其中河漫滩地区最为敏感,阶地次之,黄土塬区较弱。地下水开采量与地下水位埋深具有更强的相关性。这凸显了其在调控地下水位动态变化中的主导地位。③地下水位预测结果显示,随着地下水开采量呈现出逐年下降的趋势,研究区地下水整体处于波动上升趋势。本研究对西安市地下水动态的影响因素及预测趋势进行了研究,对地下水资源管理和可持续发展具有重要参考价值。

  • 加载中
  • 图 1  研究区及监测点位置图

    Figure 1. 

    图 2  GM(1,1)灰色模型流程图

    Figure 2. 

    图 3  BP神经网络原理图

    Figure 3. 

    图 4  BP神经网络流程图

    Figure 4. 

    图 5  2010~2020年降水量(a)、开采量(b)与地下水位平均埋深关系图

    Figure 5. 

    图 6  不同年份降水量和地下水位月变化曲线

    Figure 6. 

    图 7  地下水埋深预测结果与变化趋势图

    Figure 7. 

    表 1  2010~2020年西安市降水、开采和地下水位埋深情况表

    Table 1.  Precipitation, groundwater extraction, and groundwater level depth in Xi'an City from 2010 to 2020

    年份 降水量(mm) 降水量变幅(mm) 开采量(亿m3 地下水位埋深(m)
    2010 819 33 6.24 15.15
    2011 1002 216 6.01 14.42
    2012 659 −127 6.23 15.05
    2013 656 −130 6.37 15.48
    2014 802 16 9.57 15.11
    2015 779 −7 10.01 15.36
    2016 656 −130 10.26 15.99
    2017 823 37 10.26 15.57
    2018 728 −58 10.37 15.56
    2019 910 124 10.05 15.44
    2020 809 23 9.49 15.23
    下载: 导出CSV

    表 2  降雨量变幅、开采量变幅与地下水位埋深相关性分析表

    Table 2.  Correlation of rainfall, groundwater extraction, and mean groundwater level depth

    变量 降雨量 开采量 地下水位埋深
    降雨量 1
    开采量 −0.176 1
    地下水位埋深 −0.673* 0.843** 1
    下载: 导出CSV

    表 3  地下水开采量灰色预测模型检验

    Table 3.  Verification of groundwater extraction estimation using grey model

    年份2011201220132014201520162017201820192020
    光滑检验0.960.510.340.380.290.230.180.150.130.11
    误差检验0.110.240.290.260.180.030.0200.040.05
    下载: 导出CSV

    表 4  2025~2035年地下水开采量预测结果(亿m3

    Table 4.  Prediction results of groundwater extraction from 2025 to 2035 (108 m3)

    年份20252026202720282029203020312032203320342035
    预测结果5.715.625.535.455.365.285.215.125.044.964.89
    下载: 导出CSV

    表 5  BP网络模型预测精度

    Table 5.  Accuracy of BP network model prediction

    年份 水位实测值(m) BP网络模型
    预测值(m) 相对误差(%)
    2010 15.15 14.7656 −1.903
    2011 14.42 15.2047 −1.807
    2012 15.05 15.1268 0.086
    2013 15.48 15.1425 −1.443
    2014 15.11 15.2049 −4.906
    2015 15.36 14.7576 −5.196
    2016 15.99 15.2013 −2.273
    2017 15.57 14.7323 −4.558
    2018 15.56 15.1060 −0.805
    2019 15.44 15.0458 −2.553
    2020 15.23 14.8329 −2.607
    下载: 导出CSV
  • [1]

    党学亚, 张俊, 常亮, 等. 西北地区水文地质调查与水资源安全[J]. 西北地质, 2022, 55(3): 81−95.

    DANG Xueya, ZHANG Jun, CHANG Liang, et al. Hydrogeological Survey and Water Resources Security in Northwest China[J]. Northwestern Geology,2022,55(3):81−95.

    [2]

    李培月, 李佳慧, 吴健华, 等. 黄土-古土壤互层对土壤水分运移及土体微结构的影响[J]. 水文地质工程地质, 2024, 51(3): 1−11.

    LI Peiyue, LI Jiahui, WU Jianhua, et al. Effects of loess-paleosol interbedding on soil moisture transport and soil microstructure[J]. Hydrogeology & Engineering Geology,2024,51(3):1−11.

    [3]

    王斌, 张俊, 龙睿, 等. 40年来新疆阿克苏河流域地下水流场演化及成因模式[J]. 西北地质, 2024, 57(4): 252−261.

    WANG Bin,ZHANG Jun,LONG Rui,et al. Evolution and Genetic Pattern of Groundwater Flow Field in the Aksu River Basin of Xinjiang Over the Past 40 Years[J]. Northwestern Geology,2024,57(4):252−261.

    [4]

    杨俊岩. 西安市平原区地下水位动态及监测网优化[D]. 西安: 长安大学, 2024.

    YANG Junyan. Groundwater Level Dynamics and Monitoring Network Optimization in the Plain Area of Xi'an City, China[D]. Xi’an: Chang’an University, 2024.

    [5]

    尹立河, 王平, 王田野, 等. 西北地区地下水依赖型植被生态水文过程研究进展与展望[J]. 西北地质, 2025, 58(2): 16−30.

    YIN Lihe,WANG Ping,WANG Tianye,et al. Review on Eco-hydrological Processes of Groundwater-dependent Vegetation in NW China: Progress and Outlook[J]. Northwestern Geology,2025,58(2):16−30.

    [6]

    曾发琛. 西安市水资源供需平衡分析及优化配置研究[D]. 西安: 长安大学, 2008.

    ZENG Fachen. A Research on Supply-Requirement Analysis and Optimized Allocation of Water Resources in Xi’an City[D]. Xi’an: Chang’an University, 2008.

    [7]

    Du Xinqiang, Chang Kaiyang, Lu Xiangqin. Characteristics and causes of groundwater dynamic changes in Naoli River Plain, Northeast China[J]. Water Supply,2020,20:2603−2615. doi: 10.2166/ws.2020.157

    [8]

    Ferede M, Haile A T, Walker D, et al. Multi-method groundwater recharge estimation at Eshito micro-watershed, Rift Valley Basin in Ethiopia[J]. Hydrological Sciences Journal,2020,65:1596−1605. doi: 10.1080/02626667.2020.1762887

    [9]

    Hou M, Chen S, Chen X, et al. A Hybrid Coupled Model for Groundwater-Level Simulation and Prediction: A Case Study of Yancheng City in Eastern China[J]. Water,2023,15:1085. doi: 10.3390/w15061085

    [10]

    Hui P, Qu W, Tang J, et al. Traffic Indexes Prediction Based on Grey Prediction Model[C]. Sixth International Symposium on Computational Intelligence and Design, 2013: 244−247.

    [11]

    Kacimov A R. Dynamics of groundwater mounds: analytical solutions and integral characteristics[J]. Hydrological Sciences Journal,1997,42:329−342. doi: 10.1080/02626669709492032

    [12]

    Li H, Hou E. Groundwater dynamic response mechanism and quantity vulnerability assessment under the influence of human activities[J]. Environmental Science and Pollution Research,2020,27:22046−22064. doi: 10.1007/s11356-020-08645-z

    [13]

    Li H, Ma C, Zhou W B, et al. Characterizing the Evolution of Groundwater Flow Field and Its Driving Forces in Xi’an, China[J]. Journal of Hydrologic Engineering,2018,23(8):05018017. doi: 10.1061/(ASCE)HE.1943-5584.0001668

    [14]

    Liu D, Hu Y, Li T, et al. Complexity Diagnosis of Regional Groundwater Resources System Based on Symbolic Dynamics[J]. Journal of Hydrologic Engineering,2016,21:05015011. doi: 10.1061/(ASCE)HE.1943-5584.0001252

    [15]

    Liu J, Gao Z, Wang M, et al. Study on the dynamic characteristics of groundwater in the valley plain of Lhasa City[J]. Environmental Earth Sciences,2018,77:646. doi: 10.1007/s12665-018-7833-4

    [16]

    Ma D, Bai H. Groundwater inflow prediction model of karst collapse pillar: a case study for mining-induced groundwater inrush risk[J]. Natural Hazards,2015,76:1319−1334. doi: 10.1007/s11069-014-1551-3

    [17]

    Mu E L, Yan L, Ding A Z, et al. Determination of controlled limit value of groundwater level depth and management practice in Xi’an, China[J]. Scientific Reports,2020,10:15505. doi: 10.1038/s41598-020-72523-4

    [18]

    Pai T Y, Wu R S, Chen C H, et al. Prediction of Groundwater Quality Using Seven Types of First-Order Univariate Grey Model in the Chishan Basin, Taiwan[J]. Water, Air & Soil Pollution, 2022, 233: 481.

    [19]

    Peng J B, Sun X H, Wang W, et al. Characteristics of land subsidence, earth fissures and related disaster chain effects with respect to urban hazards in Xi’an, China[J]. Environmental Earth Sciences,2016,75:1190. doi: 10.1007/s12665-016-5928-3

    [20]

    Pradhan A M S, Kim Y T, Shrestha S, et al. Application of deep neural network to capture groundwater potential zone in mountainous terrain, Nepal Himalaya[J]. Environmental Science and Pollution Research,2021,28:18501−18517. doi: 10.1007/s11356-020-10646-x

    [21]

    Qiao J, Zhu Y, Jia X, et al. Distributions of arsenic and other heavy metals, and health risk assessments for groundwater in the Guanzhong Plain region of China[J]. Environmental Research,2020,181:108957. doi: 10.1016/j.envres.2019.108957

    [22]

    Rajmohan N, Al-futaisi A, Jamrah A. Evaluation of long-term groundwater level data in regular monitoring wells, Barka, Sultanate of Oman[J]. Hydrological Processes,2007,21(24):3367−3379.

    [23]

    Su Z, Wu J, He X, et al. Temporal Changes of Groundwater Quality within the Groundwater Depression Cone and Prediction of Confined Groundwater Salinity Using Grey Markov Model in Yinchuan Area of Northwest China[J]. Exposure and Health,2020,12:447−468. doi: 10.1007/s12403-020-00355-8

    [24]

    Wang Y Q, Wang Z F, Cheng W C. A review on land subsidence caused by groundwater withdrawal in Xi’an, China[J]. Bulletin of Engineering Geology and the Environment,2019,78:2851−2863. doi: 10.1007/s10064-018-1278-6

    [25]

    Wu J, Li Z, Zhu L, et al. Optimized BP neural network for Dissolved Oxygen prediction[J]. IFAC-Papers OnLine,2018,51:596−601.

    [26]

    Xie L. The Heat load Prediction Model based on BP Neural Network-markov Model[J]. Procedia Computer Science,2017,107:296−300. doi: 10.1016/j.procs.2017.03.108

    [27]

    Yang Y, Li P, Elumalai V, et al. Groundwater Quality Assessment Using EWQI With Updated Water Quality Classification Criteria: A Case Study in and Around Zhouzhi County, Guanzhong Basin (China)[J]. Exposure and Health,2023,15:825−840. doi: 10.1007/s12403-022-00526-9

    [28]

    Yao Y, Zhang M, Deng Y, et al. Evaluation of environmental engineering geology issues caused by rising groundwater levels in Xi'an, China[J]. Engineering Geology,2021,294:106350. doi: 10.1016/j.enggeo.2021.106350

    [29]

    Yu X, Ghasemizadeh R, Padilla I Y, et al. Patterns of temporal scaling of groundwater level fluctuation[J]. Journal of Hydrology,2016,536:485−495. doi: 10.1016/j.jhydrol.2016.03.018

    [30]

    Zeng B, Li C, Chen G, et al. Equivalency and unbiasedness of grey prediction models[J]. Journal of Systems Engineering and Electronics,2015,26:110−118. doi: 10.1109/JSEE.2015.00015

    [31]

    Zhang Q, Li P, Ren X, et al. A new real-time groundwater level forecasting strategy: Coupling hybrid data-driven models with remote sensing data[J]. Journal of Hydrology,2023,625:129962.

    [32]

    Zhou P, Wang G, Duan R. Impacts of long-term climate change on the groundwater flow dynamics in a regional groundwater system: Case modeling study in Alashan, China[J]. Journal of Hydrology, 2020, 590. 125557.

    [33]

    Zhou W, Chai J, Xu Z, et al. Historical evolution of urban water conservancy projects in Xi'an, China in the past 3, 000 years and its revelations[J]. Water Supply,2021,21:2173−2190. doi: 10.2166/ws.2021.043

    [34]

    Zhou Y, Wu J, Gao X, et al. Hydrochemical Background Levels and Threshold Values of Phreatic Groundwater in the Greater Xi’an Region, China: Spatiotemporal Distribution, Influencing Factors and Implication to Water Quality Management[J]. Exposure and Health,2023,15:757−771. doi: 10.1007/s12403-022-00521-0

    [35]

    Zhu C J, Hao Z C, Ju Q. A prediction of groundwater quality using grey system neural network united model[C]. Chinese Control and Decision Conference, 2009, 3216−3219.

  • 加载中

(7)

(5)

计量
  • 文章访问数:  28
  • PDF下载数:  15
  • 施引文献:  0
出版历程
收稿日期:  2024-10-31
修回日期:  2024-12-04
录用日期:  2024-12-05
刊出日期:  2025-06-20

目录