Characteristics of Primary Halos and Deep Prospecting Prediction of the Nagengkangqieer Silver Deposit in Eastern of East Kunlun
-
摘要:
那更康切尔地区位于东昆仑造山带东段的沟里金矿田,为青海省首次发现的一处大型独立银矿床。随着银矿找矿工作向深部探索,开展钻孔原生晕预测深部找矿是目前较为直观且有效的方法。本研究通过系统采集那更康切尔银矿Ⅺ矿带0勘探线7个钻孔919件样品进行地球化学测试,分析了Au、Ag、Cu、Pb、Zn、W、Sn、Mo、As、Sb、Hg、F、Mn、Bi、Co等15种元素。用聚类分析方法研究了元素组合特征,运用格里戈良法研究了原生晕分带特征。结果表明,矿体自上而下原生晕轴向分带序列为Au→Hg→Ag→Mo→Mn→Sn→Sb→As→Pb→Zn→W→Bi→Cu→F→Co,总结了矿床异常元素的分带规律,确定成矿近矿晕元素为Ag、Pb、Zn、Au、Sb、Sn、Cu,前缘晕元素为Hg、As、(F),尾晕元素为Mo、Co、Mn、(Bi)、(W)。且存在前缘晕、近矿晕和尾晕元素相叠加的特征,以及异常向深部延伸未显示歼灭的现象,说明矿体深部沿轴向仍有延伸,结合物化探特征,并与区域矿床对比研究分析认为,Ⅺ矿带北延部分矿体向深部仍有延伸,深部找矿潜力较大。
Abstract:Nagengkangqieer area is located in the Gouli Gold Orefield in the eastern segment of the East Kunlun orogenic belt. It is the first large independent silver deposit discovered in Qinghai province. As exploration for silver minerals delves deeper, analyzing drilling primary halos to predict deep-seated mineralization stands as a current direct and effective method. In this study, We systematically collected 919 samples from 7 drill holes within the Ⅺ mineralized belt of the Nagengkangqieer silver deposit, and analyzed 15 elements including Au, Ag, Cu, Pb, Zn, W, Sn, Mo, As, Sb, Hg, F, Mn, Bi, Co. Cluster analysis was utilized to examine element combination features while the Grigoriev method was employed to study primary halo zoning characteristics. The results revealed an axial zoning sequence of the primary halo from surface to a depth is: Au→Hg→Ag→Mo→Mn→Sn→Sb→As→Pb→Zn→W→Bi→Cu→F→Co. We summarized zoning patterns of abnormal elements within the deposit and identified Ag, Pb, Zn, Au, Sb, Sn, and Cu as near-mine halo elements; Hg, As, and (F) as frontier-halo elements; Mo, Co, Mn, (Bi), and (W) as tail-halo elements. There are characteristics of near-mine halo, frontier-halo and tail-halo elements overlapping, as well as no signs of extermination in the deep part of the anomaly, indicating that the mineral body has further extension along the axis in the deep part. Combined with geophysical and geochemical characteristics, and compared with regional mineral deposits, it is believed that the mineralized body in the northern extension of the Ⅺ mineral belt extends further into the depths, and there is great potential for deep-seated mineral exploration.
-
-
图 1 沟里地区构造位置(a)和地质简图(b)(据井国正等,2023修改)
Figure 1.
图 2 那更地区地质简图(据秦阳等,2020修改)
Figure 2.
图 3 那更矿区0勘探线剖面图(据四川省冶金地质勘查局水文工程大队,2016)
Figure 3.
表 1 0号勘探线各元素地球化学参数及异常下限统计结果
Table 1. Element geochemical parameters and anomaly threshold in the exploration line 0
参数 Ag Pb Zn Au As Cu Sb W 最大值 750000 6.56 11 0.2 0.29 4.68 0.15 0.53 最小值 31 8740 5940 1040 23500 586 547 42.4 均值X 241.9957 26.8361 74.6406 2.2755 13.7945 11.8498 3.1757 1.8321 方差S 193.3603 7.4512 20.5115 1.6596 11.5114 3.6501 2.5419 0.8453 X+2s 628.7163 41.7385 115.6635 5.5946 36.8172 19.15 83.2597 3.5226 内带 8000 300 500 200 6000 400 1400 64 中带 4000 150 250 100 3000 200 700 32 外带 2 000 75 125 5.59 36.8 19 8.25 3.5 参数 Sn Co Mo Bi Hg F Mn 最大值 1.08 0.4 0.27 0.009 0.0029 293 0 最小值 668 75.3 34.8 8.95 0.74 86200 13600 均值X 2.9796 1.8174 2.1225 0.0927 0.0135 818.0682 718.0818 方差S 0.7710 1.1241 0.9368 0.0495 0.0068 261.9012 344.5459 X+2s 4.5216 4.0656 3.9961 0.1918 0.0272 1341.871 1407.174 内带 100 20 60 200 40 5360 10000 中带 50 10 30 100 20 2680 5000 外带 4.5 4 3.9 0.19 0.02 1340 1407 注:Au、Ag含量为10−9,其余元素含量为10−6。 表 2 0号勘探线原生晕分带指数计算表
Table 2. Zoning indexes of primary halo along exploration line 0
项目 中段
(m)Au Ag As Sb Cu Pb Zn F Sn Bi Hg W Mo Co Mn 线金属量
(W)4000 5925.534 3774922.40 41737.84 190.150 485.30 0 11492.66 5608.80 1277.441 20.6286 9.0584 74.512 355.8697 25.5188 104892.92 3900 4227.189 3197095.10 66069.46 4252.798 1923.77 25655.68 20089.34 217662.17 2407.905 0 12.2174 212.589 509.3604 50.8476 415715.98 3800 2857.168 2736119.68 81828.24 3580.658 7456.95 40263.37 47626.24 478785.37 2295.890 1.5417 5.0397 28.116 446.4377 0 220434.24 3700 1737.341 2240097.65 77222.87 2125.791 9455.56 32863.63 32947.50 697989.97 1378.366 48.384 5.8905 401.871 603.0008 5576.638 134228.90 3600 532.510 1737863.08 34291.45 1415.688 14770.81 21176.09 34605.15 1015713.42 2049.399 166.435 2.9495 200.353 349.1887 8294.752 162565.42 3500 432.806 1280964.58 23085.97 282.789 16574.75 18994.02 10519.42 1137849.68 673.212 117.8607 1.7655 221.664 172.8212 9257.629 86915.96 标准化
数据4000 5925534 3774922 4713784 190150.0 48530 0 1149266 5608.80 1277441 206286 905840 745120 3558697 25518.8 1048929.2 3900 4227189 3197095 6606946 4252798 192377 2565568 2008934 217662.17 2407905 0 1221740 2125890 5093604 50847.6 4157159.8 3800 2857168 2736120 8182824 3580658 745695 4026337 4762624 478785.37 2295890 15417 503970 281160 4464377 0 2204342.4 3700 1737341 2240098 7722287 2125791 945556 3286363 3294750 697989.97 1378366 483840 589050 40.8710 6030008 5576638 1342289.0 3600 532510 1737863 3429145 1415688 1477081 2117609 3460515 1015713.42 2049399 1664350 294950 2003530 3491887 8294752 1625654.2 3500 421806 1280965 2308597 282789 1657475 1899402 1051942 1137849.68 673212 1178607 176550 2216640 1728212 9257629 869159.6 分带指数
(D)4000 0.257233 0.163873 0.181188 0.008255 0.002107 0 0.049891 0.000244 0.055455 0.008955 0.039323 0.032346 0.154487 0.001108 0.045535 3900 0.110297 0.083419 0.172389 0.110947 0.005020 0.066941 0.052417 0.005679 0.062827 0 0.031878 0.055469 0.132903 0.001327 0.108469 3800 0.076940 0.073680 0.220351 0.096422 0.020081 0.108423 0.128250 0.012893 0.061825 0.000415 0.013571 0.007571 0.120219 0 0.059360 3700 0.041775 0.053864 0.185685 0.051115 0.022736 0.079248 0.079223 0.016783 0.033143 0.011634 0.014164 0.096631 0.144993 0.134092 0.032757 3600 0.015386 0.050212 0.099078 0.040903 0.042677 0.061184 0.099984 0.029347 0.059213 0.048088 0.008522 0.057888 0.100891 0.239659 0.049698 3500 0.016550 0.048982 0.088277 0.010813 0.063379 0.072630 0.040224 0.043509 0.025742 0.045068 0.006751 0.084761 0.066084 0.353995 0.033235 分带序列 由浅至深: Au→Hg→Ag→Mo→Mn→Sn→Sb→As→Pb→Zn→W→Bi→Cu→F→Co 注:Au、Ag含量为10−9,其余元素含量为10−6。 表 3 那更Ⅺ矿体0号勘探线原生晕特征指示元素垂向地球化学参数
Table 3. Vertical geochemical parameters of primary halo characteristics of exploration lines 0 in Nageng Ⅺ ore body
标高(m) ω(As)/ω(Co) ω(Hg)/ω(Co)* 1000 ω(As*Hg)/ω(Co*Mo)*100 ω(As+Hg)/ω(Co+Mo) 4000 2.81 6.99 2.05 1.44 3900 19.63 18.439 25.48 8.12 3800 33.44 14.92 23.37 10.67 3700 4.50 3.53 7.39 3.71 3600 1.81 0.29 0.76 1.69 3500 0.43 0.30 0.17 0.40 表 4 主要银矿床特征对比表
Table 4. Comparison table of characteristics of main silver deposits
矿床名称 主要
矿种矿床(点)特征 成矿
时代矿床成因 规模 备注 那更康切尔沟银矿床 银 赋矿围岩为金水口岩群和上三叠统鄂拉山组;NW—SE向断裂为本区主要控矿、赋矿断裂,近东西向断层为区域内控岩及导矿构造;发现银矿(化)带 18 条、1条金矿化蚀变带,圈定银矿体 69条、铅锌矿体 13 条、金矿体 2 条;矿体呈囊状、似层状,已探明银(333+334)银资源量 5070.56 tT3 浅成低温热液型 大型 范兴竹,2022 哈日扎地区银多金属矿床 银铅锌 赋矿围岩为上三叠统鄂拉山组、早泥盆世似斑状二长花岗岩、三叠纪花岗闪长岩和二长花岗岩;NW—SE向断裂为本区主要控矿、赋矿断裂;共圈 8 条矿(化)带,截止 2018年共估算出铜铅锌锡资源量 46.43万 t,金资源量 2.09 t,银资源量 1026.51 tT3 热液脉型 大型 范兴竹,2022 乌兰乌珠尔-十字嵩银多金属矿床 银铅锌 赋矿围岩为泥盆纪似斑状二长花岗岩、二长花岗岩及正长花岗岩;NW 向和近 EW 向线性构造是控矿构造;共圈定矿体15 条,矿体严格受 sb3、sb11、sb9等含矿构造蚀变带控制,估算银资源量约 4000 t,铅锌资源量约10万tT3 热液脉型 大型 马忠元等,2024 那更康切尔北银矿床 银 赋矿围岩为上三叠统鄂拉山组;近SN向断裂为本区主要控矿断裂;发现4 条破碎蚀变带,带内圈出3条银矿体,矿体长100~200 m,宽1~2.6 m,Ag品位为40.3×10-6~ 1270 ×10-6,平均品位为383.65 ×10-6T3 浅成低温热液型 小型 范兴竹,2022 -
[1] 陈晓东, 李佑国, 李敏同, 等. 东昆仑造山带那更康切尔沟银矿床典型硫化特征及其指示意义[J]. 矿物学报, 2019, 39(1): 64−74.
CHEN Xiaodong, LI Youguo, LI Mintong, et al. Characteristics of representative sulfides from the Nagengkangqieergou silver deposit in the Eastern Kunlun Orogenic Belt and their implications[J]. Acta Mineralogica Sinica,2019,39(1):64−74.
[2] 窦光源, 谈艳, 许远平, 等. 青海那更康切尔沟银多金属矿区土壤地球化学特征及找矿前景[J]. 黄金, 2018, 39(2): 8−12.
DOU Guangyuan,TAN Yan,XU Yuanping,et al. Soil Geochemical Characteristics and Prospecting Potential of Nagengkangqieergou Silver Polymetallic Deposit in Qinghai Province[J]. Gold,2018,39(2):8−12.
[3] 段启超, 庞绪成, 纵瑞, 等. 河南省灵宝市董家埝银矿原生晕特征及地质意义[J]. 黄金科学技术, 2020, 28(4): 497−508.
DUAN Qichao, PANG Xucheng, ZONG Rui, et al. Primary Halo Characteristics and Geological Significance of the Dongjianian Silver Deposit in Lingbao City, Henan Province[J]. Gold Science and Technology,2020,28(4):497−508.
[4] 范兴竹. 青海省东昆仑东段银多金属矿床成矿作用研究[D]. 长春: 吉林大学, 2022.
FAN Xingzhu. Research on metallogenesis of Ag Polymetallic deposits in the east segment of the East Kunlun Orogenic Belt, Qinghai Province[D]. Changchun: Jilin University, 2022.
[5] 谷子成. 东昆仑那更康切尔沟银多金属矿床成矿地质特征及成因探讨[D]. 北京: 中国地质大学, 2021.
GU Zicheng. Metallogenic geological characteristics and genesis of the Nagengkangqieergou Ag-polymetallic deposit, East Kunlun Orogen, NW China[D]. Beijing: China University of Geosciences, 2021.
[6] 郝迪, 孙彪, 孟菲蓉. 甘肃省寨上金矿床原生地球化学晕特征及其地质意义[J]. 西北地质, 2021, 54(4): 88−99.
HAO Di, SUN Biao, MENG Feirong. The Primary Halo Research of Zhaishang Gold Deposit in Gansu Province[J]. Northwestern Geology,2021,54(4):88−99.
[7] 贺昌坤, 陈诚, 许德如, 等. 广东京村金矿床原生晕分带特征对深部找矿预测的启示[J]. 地质学报, 2020, 94(12): 3761−3775. doi: 10.3969/j.issn.0001-5717.2020.12.016
HE Changkun, CHEN Cheng, XU Deru, et al. The characteristics of primary halos zoning of the Jingcun gold deposit in Guangdong Province: implications for deep prospecting[J]. Acta Geologica Sinica,2020,94(12):3761−3775. doi: 10.3969/j.issn.0001-5717.2020.12.016
[8] 井国正, 王晓云, 张志强, 等. 东昆仑东段中-晚三叠世区域岩浆-热液成矿系统[J]. 地质科技通报, 2023, 42(1): 89−111.
JING Guozheng, WANG Xiaoyun, ZHANG Zhiqiang, et al. Middle-Late Triassic regional-scale magmatic -hydrothermal metallogenic system in the eastern segment of the East Kunlun[J]. Bulletin of Goloegical Sience and Technolocgy,2023,42(1):89−111.
[9] 李惠, 张国义, 禹斌, 等. 金矿区深部盲矿预测的构造叠加晕模型及找矿效果[M]. 北京: 地质出版社, 2006.
LI Hui, ZHANG Guoyi, YU Bin, et al. Structural Superimposed Halo Model for Blind Ore Prediction in Deep Gold Mining Area and Its Prospecting Effect [M]. Beijing: Geological Publishing House, 2006.
[10] 李敏同, 陈晓东, 许远平, 等. 东昆仑那更康切尔沟银矿床银矿物特征及成矿元素沉淀机制浅析[J]. 地质论评, 2018, 64(3): 723−736.
LI Mintong, CHEN Xiaodong, XU Yuanping, et al. Characteristics of Silver Minerals of Nagengkangqieergou Silver Deposit in Eastern Kunlun Orogenic Belt and a Brief Analysis of the Precipitation Mechanism of Ore-forming Elements[J]. Geological Review,2018,64(3):723−736.
[11] 李彦强, 段建华, 何学昭, 等. 青海白日其利金矿床构造叠加晕特征及深部找矿预测[J]. 西北地质, 2022, 55(4): 316−323. doi: 10.19751/j.cnki.61-1149/p.2022.04.025
LI Yanqiang, DUAN Jianhua, HE Xuezhao, et al. The Features Structural Superimposed Halos of Bairiqili Gold Deposit in Qinghai and Its Deep Prediction[J]. Northwestern Geology,2022,55(4):316−323. doi: 10.19751/j.cnki.61-1149/p.2022.04.025
[12] 刘嘉情, 钟世华, 李三忠, 等. 基于机器学习和全岩成分识别东昆仑祁漫塔格斑岩–矽卡岩矿床成矿岩体和贫矿岩体[J]. 西北地质, 2023, 56(6): 41−56.
LIU Jiaqing, ZHONG Shihua, LI Sanzhong, et al. Identification of Mineralized and Barren Magmatic Rocks for the Pophryry−Skarn Deposits from the Qimantagh, East Kunlun: Based on Machine Learning and Whole−Rock Compositions[J]. Northwestern Geology,2023,56(6):41−56.
[13] 刘玉军, 刘彩乐, 任智斌, 等. 青海达达肯乌拉山铅锌矿床原生晕深部找矿预测[J]. 西北地质, 2018, 51(1): 238−246. doi: 10.3969/j.issn.1009-6248.2018.01.023
LIU Yujun, LIU Caile, REN Zhibin, et al. Deep Prospecting Prediction of the Dadakenwulashan Lead-zinc Deposit in Qinghai by Using Primary Halo Method[J]. Northwestern Geology,2018,51(1):238−246. doi: 10.3969/j.issn.1009-6248.2018.01.023
[14] 吕鹏瑞.黑龙江省高松山金矿床原生晕地球化学特征及深部成矿预测[D].北京: 中国地质大学(北京), 2012.
LV Pengrui.Geochemistry of primary halos and evalution of deep mineralization in the Gaosongshan gold deposit, Heilongjiang Province[D]. Beijing: China University of Geosciences (Beijing), 2012.
[15] 马忠元, 李军, 赵建鹏, 等. 东昆仑乌兰乌珠尔-十字嵩银多金属矿床成因研究[J]. 地质找矿论丛, 2024, 39(2): 160−168.
MA Zhongyuan,LI Jun,ZHAO Jianpeng,et al. Discussion on Genesis of Wulanwuzhuer-Shizisong Ag-polymetallic Deposit in East Kunlunshan Area[J]. Contributions to Geology and Mineral Resources Research,2024,39(2):160−168.
[16] 秦阳, 谢万洪, 吴秉东, 等. 青海东昆仑那更康切尔银矿构造叠加晕模式研究与深部预测[J]. 矿产与地质, 2020, 34(1): 128−135.
QIN Yang, XIE Wanhong, WU Bingdong, et al. The structural superposition halo model study and deep ore forecast for Nagengkangqieer Silver deposit in East Kunlun Mountains, Qinghai[J]. Mineral Resources and Geology,2020,34(1):128−135.
[17] 邵跃. 热液矿床岩石测量(原生晕法)找矿[M]. 北京: 地质出版社, 1997.
SHAO Yue. Rock survey of hydrothermal deposit(primary halo method)prospecting [M]. Beijing: Geological Publishing House, 1997.
[18] 四川省冶金地质勘查局. 青海省都兰县那更康切尔地区银多金属矿调查评价报告[R]. 2016.
Metallurgical Geological & Exploration Bureau of Sichuan Province. The report of investigation and evaluation of silver polymetallic mineral in Ngengkangqieer area, Dulan country, Qinghai Province[R]. 2016.
[19] 童永军, 陈静, 韩光, 等. 东昆仑那更康切尔沟银矿床成矿流体特征及来源[J]. 矿物岩石, 2023, 43(2): 50−57.
TONG Yongjun, CHEN Jing, HAN Guang, et al. Characteristics and Sources of Ore-forming Fluids in Nagengkangqieergou Silver Deposit, East Kunlun[J]. Mineralogy and Petrology,2023,43(2):50−57.
[20] 王新雨, 王书来, 吴锦荣, 等. 青海省牛苦头铅锌矿床成矿时代研究: 来自成矿岩体年代学和黄铁矿Re–Os地球化学证据[J]. 西北地质, 2023, 56(6): 71−81.
WANG Xinyu, WANG Shulai, WU Jinrong, et al. Mineralization Age and Ore forming–Source of Niukutou Pb–Zn Deposit, Qinghai: Evidence from Geochronology of Ore–forming Rock Bodies and Re–Os Geochemistry of Pyrite[J]. Northwestern Geology,2023,56(6):71−81.
[21] 魏江, 李惠, 禹斌, 等. 再论构造叠加晕找盲矿三个核心理论的创新性及应用效果[J]. 矿产勘查, 2024, 15(1): 82−91.
WEI Jiang, LI Hui, YU Bin, et al. Re-discussion on the innovation and application effect of three core theories of blind ore prospecting by structural superimposed halo[J]. Mineral Exploration,2024,15(1):82−91.
[22] 谢升浪, 孔维宾, 李鑫, 等. 东昆仑地区那更康切尔北银多金属矿地球化学特征及找矿前景[J]. 矿产勘查, 2020, 11(5): 880−889. doi: 10.3969/j.issn.1674-7801.2020.05.004
XIE Shenglang, KONG Weibin, LI Xin, et al. Geochemical characteristics and ore-prospecting potential of silver polymetallic deposits in the northern Nagengkangqieer, East Kunlun[J]. Mineral Exploration,2020,11(5):880−889. doi: 10.3969/j.issn.1674-7801.2020.05.004
[23] 徐崇文, 魏俊浩, 周红智, 等. 东昆仑东段那更康切尔银矿硫-铅同位素特征与找矿模型[J]. 地质通报, 2020, 39(5): 712−727. doi: 10.12097/j.issn.1671-2552.2020.05.012
XU Chongwen, WEI Junhao, ZHOU Hongzhi, et al. S-Pb isotope characteristics and prospecting model of theNagengkangqieer silver deposit in the eastern segment of East Kunlun Mountain[J]. Geological Bulletin of China,2020,39(5):712−727. doi: 10.12097/j.issn.1671-2552.2020.05.012
[24] 杨涛, 周洪兵, 郑振华, 等. 东昆仑那更康切尔银多金属矿床地质特征及成因类型[J]. 西北地质, 2017, 50(4): 186−199.
YANG Tao, ZHOU Hongbing, ZHENG Zhenhua, et al. Geological Characteristics and Genetic Type of the Nagengkangqieer Silver Polymetallic Deposit in East Kunlun[J]. Northwestern Geology,2017,50(4):186−199.
[25] 叶庆森. 指示元素垂向分带序列计算方法述评[J]. 物探化探计算技术, 2014, 36(3): 335−341. doi: 10.3969/j.issn.1001-1749.2014.03.15
YE Qingsen. A review of the computing methods on vertical zoning sequence of indicator element[J]. Computing Techniques For Geophysical And Geochemical Exploration,2014,36(3):335−341. doi: 10.3969/j.issn.1001-1749.2014.03.15
[26] 于小亮, 蔡成龙, 张世龙, 等. 青海那更康切尔沟银多金属矿地质特征、矿床成因及找矿标志[J]. 能源与环保, 2018, 40(7): 114−117+122.
YU Xiaoliang,CAI Chenglong,ZHANG Shilong,et al. Geological characteristics,genesis and prospecting indicators of Nagenkangqieergou Silver polymetallic deposit in Dulan County,Qinghai Province[J]. China Energy and Environmental Protection,2018,40(7):114−117+122.
[27] 赵财胜. 青海东昆仑造山带金、银成矿作用[D]. 长春: 吉林大学, 2004.
ZHAO Caisheng. Gold, Silver Metallogeny in Eastern Kunlun Orogenic Belt, Qinghai Province [D]. Changchun: Jilin University, 2004.
[28] 赵云川, 周洪兵, 刘宏, 等. 青海那更银多金属矿矿床地质特征及成矿模式浅析[J]. 四川地质学报, 2023, 43(1): 47−53+63. doi: 10.3969/j.issn.1006-0995.2023.01.007
ZHAO Yunchuan, ZHOU Hongbing, LIU Hong, et al. Geological Characteristics and Metallogenic Model of NagengSilver Polymetallic Deposit, Qinghai Province[J]. Sichuan Journal of Geology,2023,43(1):47−53+63. doi: 10.3969/j.issn.1006-0995.2023.01.007
[29] 钟世华, 黄宇, 刘永乐, 等. 东昆仑志留纪—泥盆纪关键金属成矿大爆发[J]. 地质通报, 2025, 44(4): 574−586.
ZHONG Shihua, HUANG Yu, LIU Yongle, et al. Silurian-Devonian critical metal mineralization boom of the East Kunlun Orogenic Belt[J]. Geological Bulletin of China,2025,44(4):574−586.
[30] Aliyari Farhang, Yousefi Tohid, Abedini Ali, et al. Primary geochemical haloes and alteration zoning applied to gold exploration in the Zarshuran Carlin-type deposit, northwestern Iran[J]. Journal of Geochemical Exploration, 2021, 106864.
[31] An W T, Chen J P, Li Y C, et al. The superposition characteristics of primary halo in the Daping gold deposit, Yunnan Province, China and its significance for exploration[J]. Journal of Geochemical Exploration,2021,228:106809. doi: 10.1016/j.gexplo.2021.106809
[32] Hossam A Helba, Khalil I Khalil, Mo'nes M Mamdouh, et al. Zonation in primary geochemical haloes for orogenic vein-type gold mineralization in the Quartz Ridge prospect, Sukari gold mine area, Eastern Desert of Egypt[J]. Journal of Geochemical Exploration,2020,209:106378.
[33] Wu Jinjian, Zeng Qingdong, Santosh M, et al. Deep ore-forming fluid characteristics of the Jiaodong gold province: Evidence from the Qianchen gold deposit in the Jiaojia gold belt[J]. Ore Geology Reviews,2022,145:104911.
[34] Zheng C J, Luo X R, Wen M L, et al. Axial primary halo characterization and deep orebody prediction in the Ashele copper-zinc deposit, Xinjiang, NW China[J]. Journal of Geochemical Exploration,2020,213:106509. doi: 10.1016/j.gexplo.2020.106509
-