四川丹巴独狼沟金矿成因矿物学及指针矿物学特征

凡韬, 赖翔, 程文斌, 郎兴海, 陈翠华, 张海军, 向杨燕, 张燕, 蔡姬敏, 马天祺, 王春林, 彭中山, 张超, 潘亮, 金山. 2025. 四川丹巴独狼沟金矿成因矿物学及指针矿物学特征. 西北地质, 58(2): 209-224. doi: 10.12401/j.nwg.2024121
引用本文: 凡韬, 赖翔, 程文斌, 郎兴海, 陈翠华, 张海军, 向杨燕, 张燕, 蔡姬敏, 马天祺, 王春林, 彭中山, 张超, 潘亮, 金山. 2025. 四川丹巴独狼沟金矿成因矿物学及指针矿物学特征. 西北地质, 58(2): 209-224. doi: 10.12401/j.nwg.2024121
FAN Tao, LAI Xiang, CHENG Wenbin, LANG Xinghai, CHEN Cuihua, ZHANG Haijun, XIANG Yangyan, ZHANG Yan, CAI Jimin, MA Tianqi, WANG Chunlin, PENG Zhongshan, ZHANG Chao, PAN Liang, JIN Shan. 2025. Genetic Mineralogy and Prospecting Mineralogy of the Dulanggou Gold Deposit in Danba, Sichuan Province. Northwestern Geology, 58(2): 209-224. doi: 10.12401/j.nwg.2024121
Citation: FAN Tao, LAI Xiang, CHENG Wenbin, LANG Xinghai, CHEN Cuihua, ZHANG Haijun, XIANG Yangyan, ZHANG Yan, CAI Jimin, MA Tianqi, WANG Chunlin, PENG Zhongshan, ZHANG Chao, PAN Liang, JIN Shan. 2025. Genetic Mineralogy and Prospecting Mineralogy of the Dulanggou Gold Deposit in Danba, Sichuan Province. Northwestern Geology, 58(2): 209-224. doi: 10.12401/j.nwg.2024121

四川丹巴独狼沟金矿成因矿物学及指针矿物学特征

  • 基金项目: 四川省地质矿产勘查开发局科技项目(SCDZ-KJXM202410),自然资源部新一轮找矿突破战略行动科技支撑项目(ZKKJ202427)和四川省自然学科基金重点项目(2024NSFSC1954)联合资助。
详细信息
    作者简介: 凡韬(1981−),男,高级工程师,主要从事矿产地质调查和地球化学研究工作。E−mail:176139304@qq.com
    通讯作者: 赖翔(1989−),男,博士后,主要从事矿物学、矿相学、矿床学研究工作。E−mail:312910037@qq.com
  • 中图分类号: P618.51

Genetic Mineralogy and Prospecting Mineralogy of the Dulanggou Gold Deposit in Danba, Sichuan Province

More Information
  • 四川丹巴独狼沟金矿床位于扬子地块西缘,是近年来大渡河金成矿带中发现的一个大型金矿床。区别于典型的造山型金矿,独狼沟金矿中主要的载金矿物为碲铋矿物,在成矿带中也较为特殊,极具研究价值。为精细厘定独狼沟金矿的成因类型,明确矿床深部及外围的找矿方向,笔者从成因矿物学和指针矿物学的角度出发,通过电子探针(EPMA)和激光剥蚀–电感耦合等离子质谱仪(LA-ICP-MS)对独狼沟金矿中的黄铁矿、磁黄铁矿、闪锌矿进行微区化学成分分析,利用二阶聚类判别黄铁矿和磁黄铁矿的指针矿物标识特征。测试结果显示,黄铁矿中Ni和Se含量分别为0×10–6~991.72×10–6和32.42×10–6~131.02×10–6,平均分别为326.06×10–6和77.74×10–6;磁黄铁矿中Ni含量为13.90×10–6~647.62×10–6,平均为324.02×10–6;闪锌矿中Fe、Zn 平均含量分别为8.77%和54.24%。黄铁矿和闪锌矿的地球化学特征显示独狼沟金矿属于热液型矿床。矿物温度计表明独狼沟金矿成矿温度较高,属于中高温矿床。成矿主阶段的流体logfS2值为−11.6~−4.5,而logfTe2值为−13.0~−7.9。磁黄铁矿和黄铁矿均形成于石英–绢云母–磁黄铁矿阶段,但磁黄铁矿和黄铁矿中的Ni含量均具有较大差异,主成矿阶段来自深源的交代岩石圈地幔热液可能造成了部分磁黄铁矿和黄铁矿中Ni含量明显增高。因此,可将黄铁矿和磁黄铁矿作为独狼沟金矿的指示矿物。

  • 加载中
  • 图 1  研究区大地构造位置简图(a)、区域构造地质图(b)、独狼沟金矿床区域地质图(c)(据许志琴等,1992王吉勇,2016王昕,2019Ma et al.,2024修改)

    Figure 1. 

    图 2  独狼沟金矿矿区地质简图(据马天祺,2024修改)

    Figure 2. 

    图 3  独狼沟金矿矿石组构特征

    Figure 3. 

    图 4  独狼沟金矿矿物生成顺序图

    Figure 4. 

    图 5  碲铋系列矿物(Bi:Te≥1)熔点温度相图(据Okamoto et al., 1983; Ciobanu et al., 2005修改)

    Figure 5. 

    图 6  Te-Bi体系常见矿物组合碲逸度-硫逸度二元相图(底图据Afifi et al., 1988a, 1988b

    Figure 6. 

    图 7  黄铁矿Co-Ni判别图解(底图据Zhang et al., 2016

    Figure 7. 

    图 8  黄铁矿微量元素二阶聚类分析图解

    Figure 8. 

    图 9  磁黄铁矿微量元素二阶聚类分析图解

    Figure 9. 

    表 1  黄铁矿LA-ICP-MS分析结果(10–6

    Table 1.  Analysis results of Pyrite using LA-ICP-MS (10–6)

    样品编号SMnFeCoNiCuSeAgWAuPbBi
    3730-14W-1#-1@PY-1536402.291.84462838.59370.27319.751.0137.820.1118.560.420.18
    3730-14W-1#-1@PY-2531040.561.62468047.03458.09374.802.5854.270.1212.821.401.62
    3730-14W-1#-1@PY-3533759.731.27465498.92359.54310.009.8240.890.209.910.590.35
    3780-3E-#-2@PY-6538059.6930.87460980.72328.05551.361.7536.670.305.911.220.75
    3780-3E-#-2@PY-7563697.1020.29435864.16298.8460.090.4332.420.9411.544.462.94
    3780-3E-#-2@PY-8561674.3146.14437284.20421.37393.751.9439.281.2233.320.0621.5131.68
    3830-01E-1#-1@PY-11546966.1417.05451871.45429.30530.31117.430.2157.730.690.46
    3830-01E-1#-1@PY-12546445.9714.58452311.60468.13580.33121.070.0046.921.310.80
    3830-01E-1#-1@PY-13561691.23255.80436480.90617.56730.88101.630.0058.782.391.281.19
    3830-1@PY-19550661.554.20449010.86186.6124.162.1472.020.2126.870.940.66
    3830-1@PY-20548940.552.83450538.77307.5940.346.0979.820.5745.0215.949.21
    3830-1@PY-21553965.949.07445527.70209.1727.0813.5677.730.00152.010.150.05
    3930-1E-1@PY-45538646.4611.58460068.13394.12160.797.9062.800.16369.770.540.49
    3930-1E-1@PY-46547659.0285.04451343.51489.01187.798.0660.400.1277.120.062.3411.59
    3930-1E-1@PY-47537956.0218.30461195.35385.53191.320.9971.0174.652.261.53
    4075-12E-1#-2-Py-62537400.1919.36461848.72487.5738.621.68113.1751.870.810.56
    4075-12E-1#-2-Py-63546772.365.53452679.36360.7629.870.5494.830.2040.081.300.76
    4075-12E-1#-2-Py-64541004.3910.06458406.99366.0129.7693.590.5664.322.301.87
    4075-YM1-9#-1-Py-78527842.2511.92470966.52322.40698.231.59107.090.1224.320.078.871.61
    4075-YM1-9#-1-Py-79536916.614.52461707.73323.63732.005.0167.970.04197.861.790.230.14
    4075-YM1-9#-1-Py-80557472.8626.84440502.04432.15829.7316.0487.010.22542.5861.580.360.09
    4113-3-12E-1#-1-PY-108534367.373.38464214.17476.75724.1984.470.34102.790.210.30
    4113-3-12E-1#-1-PY-109544944.593.81453589.61497.19760.610.6487.440.5196.640.500.66
    4113-3-12E-1#-1-PY-110549612.423.45448513.92644.80991.720.63131.020.7477.821.851.61
    4113-3-12E-2-PY-137541483.5315.84457622.08472.42200.241.17106.051.3867.0912.474.15
    4113-3-12E-2-PY-138541762.127.94457370.68443.44173.5713.51105.580.16101.414.150.540.24
    4113-3-12E-2-PY-139539877.249.70459196.46460.27189.8921.16116.10108.105.130.350.21
    4113-4-1-1#-12E-2-PY-149539848.553.96458851.78517.32675.7366.780.762.867.394.85
    4113-4-1-1#-12E-2-PY-150536467.172.88462253.46449.63738.370.1362.200.981.440.216.764.02
    4113-4-1-1#-12E-2-PY-151553326.162.39445345.90620.98625.0054.800.356.141.000.85
    4113-12-1-PY-162543357.7810.42456110.05283.09113.6370.430.2440.941.150.99
    4113-12-1-PY-163539913.915.60459456.90350.41148.230.7964.630.1846.361.241.45
    4113-12-1-PY-164547200.168.52452285.40258.1497.3058.7583.060.800.43
    4115-12E-14E-2-PY-170539919.0226.43459939.9117.952.4785.240.260.300.19
    4115-12E-14E-2-PY-171524012.4126.12475836.8740.547.2162.620.460.720.620.10
    4115-12E-14E-2-PY-172512947.4444.69486896.4051.2449.870.250.640.340.06
    4190-4-PY-198563433.6935.43435229.16538.51133.46510.4381.821.200.471.301.72
    4190-4-PY-199559569.9821.99439268.03492.86162.93344.1780.520.550.462.081.45
    4190-4-PY-200548879.1024.77449989.07533.00140.36315.3194.630.411.050.770.67
     主:“−”表示低于检出限。
    下载: 导出CSV

    表 2  磁黄铁矿LA-ICP-MS分析结果(10–6

    Table 2.  Analysis results of Pyrrhotite using LA-ICP-MS (10–6)

    编号SMnFeCoNiCuSeMoAgPbBi
    3730-9W-7#-1@PYr-8363870.464.78635699.45181.31174.3822.3942.410.700.260.46
    3730-9W-7#-1@PYr-9362958.584.28636626.77180.06168.6821.0537.390.610.110.030.18
    3730-9W-7#-1@PYr-10365464.064.73634118.64179.91161.9521.9737.210.730.160.48
    3730-14W-1#-1@PYr-16361057.653.83638227.36340.87301.528.1440.210.750.350.11
    3730-14W-1#-1@PYr-17358088.331.76641198.31348.88309.291.6842.070.490.130.06
    3730-14W-1#-1@PYr-18362228.431.96637081.01341.69289.662.5043.030.600.130.12
    3780-3E-#-2@PYr-19357016.92642088.21303.82491.654.3145.230.530.351.721.67
    3780-3E-#-2@PYr-20358089.66641081.28302.88466.580.0046.260.380.160.990.67
    3780-3E-#-2@PYr-21356993.13642152.96277.60517.590.0052.200.350.600.32
    3830-01E-1#-1@PYr-33356218.837.93642751.53401.82515.560.7474.411.081.091.64
    3830-01E-1#-1@PYr-34358816.925.45640193.65398.30511.930.0063.220.840.912.19
    3830-01E-1#-1@PYr-35355081.447.33643933.92388.13508.770.0055.930.422.581.74
    3930-1E-1@PYr-65354280.563.32645146.25331.65142.4419.3268.340.510.18
    3930-1E-1@PYr-66357925.8617.10641456.96348.66154.204.5072.090.920.67
    3930-1E-1@PYr-67361569.3827.00637809.66333.16146.434.2574.730.770.450.13
    4000-12E-1#-1@PYr-68357913.812.30641571.25422.7716.400.0060.100.693.130.77
    4000-12E-1#-1@PYr-69360731.68638707.59432.7913.901.1265.061.0018.492.63
    4000-12E-1#-1@PYr-70357296.325.31642198.08407.9021.580.3963.191.430.820.21
    4075-8E-YM-1@PYr-77355089.792.82643403.39428.54613.190.0048.871.220.380.350.12
    4075-8E-YM-1@PYr-78349980.003.04648688.23439.71631.371.2454.320.770.150.971.03
    4075-8E-YM-1@PYr-79353007.03643921.46447.36647.625.5458.910.470.600.43
    4075-12E-1#-2-Pyr-98369387.772.51630100.92338.6128.0913.2898.561.850.401.122.19
    4075-12E-1#-2-Pyr-99369751.642.35629771.90331.4217.605.4894.081.540.570.40
    4075-12E-1#-2-Pyr-100361365.755.00638144.35339.8824.7317.6195.320.090.11
    4075-YM1-9#-1-Pry-111352273.4126.99646799.89260.89536.838.3664.311.710.080.12
    4075-YM1-9#-1-Pry-112358264.9458.42640734.09260.42569.8215.2674.890.00
    4075-YM1-9#-1-Pry-113366807.6040.04631910.28259.95592.758.3691.734.262.92
    4113-1-12E-1#-1-Pry-114362377.995.60636519.34421.30541.924.52111.040.18
    4113-1-12E-1#-1-Pry-115361037.294.86637929.93391.36530.850.0088.310.960.503.934.66
    4113-1-12E-1#-1-Pry-116364894.112.83633777.17391.14532.843.06102.361.001.221.190.16
    4113-3-12E-1-PYR-146358596.153.24640756.19353.46154.315.11107.681.111.20
    4113-3-12E-1-PYR-147357341.36642027.92364.56152.673.0394.821.701.191.67
    4113-3-12E-1-PYR-148352809.89646564.33367.41162.940.0080.320.37
    4113-4-1#-12E-1-PYR-161356011.33642996.34334.00592.090.0056.160.480.70
    4113-4-1#-12E-1-PYR-162357257.51641740.77337.55579.190.6460.770.130.08
    4113-4-1-1#-12E-2-PYR-169350526.21648438.09358.99620.120.0043.150.950.380.581.16
    4113-4-1-1#-12E-2-PYR-170358556.98640396.17357.97618.101.0746.341.716.398.35
    4113-4-1-1#-12E-2-PYR-171355985.53642987.83366.52609.042.3942.290.280.41
    4190-5-PYR-191357355.395.01642084.47363.98104.339.0774.390.790.32
    4190-5-PYR-192355057.68644354.71364.29105.6814.5494.000.890.25
    4190-5-PYR-193358049.74641327.79370.2899.3215.9882.650.591.350.64
    4190-4-PYR-198349108.77650293.31348.1691.9022.6475.660.460.180.18
    4190-4-PYR-199347533.26651888.29345.0588.3524.0885.050.390.53
    4190-4-PYR-200349946.133.87649499.14351.4898.7823.6772.110.260.15
     注:“−”表示低于检出限。
    下载: 导出CSV

    表 3  闪锌矿的电子探针分析结果(%)

    Table 3.  Analysis results of sphalerite using EPMA (%)

    编号 S Ag Zn Fe Mn Cu Se Cd Ge Total
    Sph218 32.867 0.015 54.208 8.435 0 0.005 0.026 3.696 0 99.316
    Sph219 32.264 0.005 54.118 8.841 0.013 0.006 0.005 3.772 0 99.058
    Sph221 33.024 0 54.138 9.123 0.005 0 0 3.701 0 100.030
    Sph222 33.244 0 54.507 8.665 0 0.006 0 3.693 0 100.163
    下载: 导出CSV
  • [1]

    陈光远, 孙岱生, 殷辉安. 成因矿物学与找矿矿物学[M]. 重庆: 重庆出版社, 1987.

    CHEN Guangyuan, SUN Daisheng, YIN Huian. Genetic Mineralogy and Prospecting Mineralogy edited[M]. Chongqing: Chongqing Publishing House, 1987.

    [2]

    陈华勇, 肖兵, 张世涛, 等. 蚀变矿物勘查标识体系[M]. 北京: 科学出版社, 2021.

    CHEN Huayong, XIAO Bin, ZHANG Shitao, et al. Alteration Mineral Exploration and Identification System[M]. Beijing: Beijing Publishing House, 2021.

    [3]

    凡韬, 王春林, 杨波, 等. 四川丹巴县独狼沟金矿床成因: 来自同位素证据[J]. 地质与勘探, 2023, 593): 481496.

    FAN Tao, WANG Chunlin, YANG Bo, et al. Genesis of the Dulanggou gold deposit in Danba County of Sichuan Province: Based on isotopic evidence[J]. Geology and Exploration, 2023, 593): 481496.

    [4]

    丁坤, 王瑞廷, 王智慧, 等. 南秦岭柞水山阳矿集区王家坪金矿床地质特征及矿床成因探讨[J]. 西北地质, 2022, 551): 167178.

    DING Kun, WANG Ruiting, WANG Zhihui, et al. Geological Characteristics and Genesis of the Wangjiaping Gold Deposit in Zhashui-Shanyang Ore Concentration area of South Qinling[J]. Northwestern Geology, 2022, 551): 167178.

    [5]

    凡韬. 四川丹巴独狼沟金矿床构造叠加晕研究及深部盲矿预测[D]. 成都: 成都理工大学, 2017.

    FAN Tao. Structural Superposition Halo Study and Prediction of Blind Deposits in the Dulanggou Gold Minefield, Danba, Sichuan Province[D]. Chengdu: Chengdu University of Technology, 2017.

    [6]

    冯李强, 顾雪祥, 章永梅, 等. 山东蓬莱石家金矿床含金黄铁矿微量元素地球化学特征及其对成矿流体的约束[J]. 西北地质, 2023, 565): 262277.

    FENG Liqiang, GU Xuexiang, ZHANG Yongmei, et al. Trace Element Geochemical Characteristics of Gold−Bearing Pyrite from the Shijia Gold Deposit in Penglai, Shandong Province and Its Constraints on Ore−Forming Fluids[J]. Northwestern Geology, 2023, 565): 262277.

    [7]

    葛战林, 顾雪祥, 章永梅, 等. 南秦岭柞水−山阳矿集区金盆梁金矿床载金硫化物矿物学特征及成矿指示[J]. 西北地质, 2023, 565): 278293.

    GE Zhanlin, GU Xuexiang, ZHANG Yongmei, et al. Mineralogical Characteristics and Metallogenic Indication of Gold−Bearing Sulfides in the Jinpenliang Gold Deposit, Zhashui−Shanyang Ore Cluster Area, South Qinling[J]. Northwestern Geology, 2023, 565): 278293.

    [8]

    侯林, 丁俊, 汪雄武, 等. 川西丹巴铜炉房金矿区泥盆系危观群黑色岩系地球化学特征及其地质意义[J]. 吉林大学学报(地球科学版), 2012, 42S2): 205215.

    HOU Lin, DING Jun, WANG Xiongwu, et al. Geochemistry and Metallogenic Significance of the Devonian Black Rock Series from the Tonglufang Gold Deposit in Danba Area, Western Sichuan Province[J]. Journal of Jilin University (Earth Science Edition), 2012, 42S2): 205215.

    [9]

    刘家军, 王大钊, 翟德高, 等. 低熔点亲铜元素(LMCE)熔体超常富集贵金属的机制及其识别标志[J]. 岩石学报, 2016, 379): 26292656.

    LIU Jiajun, WANG Dazhao, ZHAI Degao, et al. Super-enrichment mechanisms of precious metals by low-melting point copper-philic element (LMCE) melts[J]. Acta Petrologica Sinica, 2016, 379): 26292656.

    [10]

    刘仕玉, 刘玉平, 叶霖, 等. 滇东南都龙超大型锡锌多金属矿床黄铁矿LA-ICPMS微量元素组成研究[J]. 岩石学报, 2021, 374): 11961212.

    LIU Shiyu, LIU Yuping, YE Lin, et al. LA-ICPMS trace elements of pyrite from the super-large Dulong Sn-Zn polymetallic deposit, southeastern Yunnan, China[J]. Acta Petrologica Sinica, 2021, 374): 11961212.

    [11]

    刘星兰. 四川省丹巴县独狼沟金碲铋矿床成矿流体特征研究[D]. 成都: 成都理工大学, 2024.

    LIU Xinglan. A Study on the Characteristics of Ore-Forming Fluids in the Dulangou Au-Te-Bi Deposit, Danba County, Sichuan Province[D]. Chengdu: Chengdu University of Technology, 2024.

    [12]

    马天祺. 大渡河流域典型碲化物型金矿床矿物学特征及其指示意义[D]. 成都: 成都理工大学, 2024.

    MA Tianqi. Mineralogical Characteristics and Indicative Significance of Typical Telluride-type Gold Deposits in the Dadu River Basin[D]. Chengdu: Chengdu University of Technology, 2024.

    [13]

    马天祺, 张燕, 陈翠华, 等. 四川丹巴独狼沟金矿中金与碲铋矿物的赋存状态及金的富集机制[J]. 岩石矿物学杂志, 2023, 424): 541554.

    MA Tianqi, ZHANG Yan, CHEN Cuihua, et al. The occurrence state of gold and tellurium-bismuth minerals and enrichment mechanism of gold in Dulanggou gold deposit of Danba, Sichuan Province[J]. Acta Petrologica et Mineralogica, 2023, 424): 541554.

    [14]

    梅建明. 浙江遂昌治岭头金矿床黄铁矿的化学成分标型研究[J]. 现代地质, 2000, 141): 5155.

    MEI Jianming. Chemical typomorphic characteristic of pyrites from Zhilingtou gold deposit, Suichang, Zhejiang[J]. Geoscience, 2000, 141): 5155.

    [15]

    申俊峰, 李胜荣, 马广钢, 等. 玲珑金矿黄铁矿标型特征及其大纵深变化规律与找矿意义[J]. 地学前缘, 2013, 203): 5575.

    SHEN Junfeng, LI Shengrong, MA Guanggang, et al. Typomorphic characteristics of pyrite from the Linglong gold deposit: Its vertical variation and prospecting significance[J]. Earth Science Frontiers, 2013, 203): 5575.

    [16]

    宋明伟, 彭义伟, 陈友良, 等. 四川康定偏岩子造山型金矿床成因: 石英微量元素和硫化物S同位素证据[J]. 成都理工大学学报(自然科学版), 2024, 514): 596613.

    SONG Mingwei, PENG Yiwei, CHEN Youliang, et al. Genesis of the Pianyanzi orogenic gold deposit in Kangding, Sichuan: Evidence from quartz trace elements and sulfide S isotopes[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2024, 514): 596613.

    [17]

    宋英昕, 李胜荣, 申俊峰, 等. 胶东三山岛北部海域金矿床石英热释光和晶胞参数特征及其找矿意义[J]. 地学前缘, 2021, 282): 305319.

    SONG Yingxin, LI Shengrong, SHEN Junfeng, et al. Characteristics and prospecting significance of thermoluminescence patterns and cell parameters of quartz from the undersea gold deposit off northern Sanshandao, Jiaodong Peninsula[J]. Earth Science Frontiers, 2021, 282): 305319.

    [18]

    王吉勇. 大渡河地区三碉金矿床地质特征及成因探讨[D]. 成都: 成都理工大学, 2016.

    WANG Jiyong. Discussion on geological characteristics and genesis of Sandiao gold deposit in Dadu river area[D]. Chengdu: Chengdu University of Technology, 2016.

    [19]

    王京彬, 王玉往, 李庆哲, 等. 造山型金矿容矿建造分类、成矿模式及找矿勘查[J]. 地质学报, 2024, 983): 898919.

    WANG Jingbin, WANG Yuwang, LI Qingzhe, et al. Classification of host rock formation, metallogenic model, and exploration of orogenic gold deposits[J]. Acta Geologica Sinica, 2024, 983): 898919.

    [20]

    王庆飞, 邓军, 赵鹤森, 等. 造山型金矿研究进展: 兼论中国造山型金成矿作用[J]. 地球科学, 2019, 446): 21552186.

    WANG Qingfei, DENG Jun, ZHAO Hesen, et al. Review on Orogenic Gold Deposits[J]. Earth Science, 2019, 446): 21552186.

    [21]

    王昕. 四川丹巴地区洛河洞金矿床地质特征及成因探讨[D]. 成都: 成都理工大学, 2019.

    WANG Xin. Geological Characteristics and Genesis of Luohedong Gold Deposit in Danba Area, Sichuan Province[D]. Chengdu: Chengdu University of Technology, 2019.

    [22]

    许志琴, 侯立玮, 王宗秀, 等. 中国松潘—甘孜造山带的造山过程[M]. 北京: 地质出版社, 1992.

    XU Zhiqin, HOU Liwei, WANG Zongxiu, et al. The orogenic process of the Songpan-Ganzi orogenic belt in China[M]. Beijing: Geological Publishing House, 1992.

    [23]

    赵鹤森, 王庆飞, 凡韬, 等. 金矿成矿模式与勘查技术方法—扬子西缘深成丹巴金矿蚀变矿物填图: 对造山型金矿找矿勘查的启示[A]. 首届全国矿产勘查大会论文集C]. 中国地球物理学会, 2021.

    [24]

    赵鹤森. 扬子克拉通西缘丹巴—冕宁造山型金矿带成因机制[D]. 北京: 中国地质大学 (北京), 2019.

    ZHAO Hesen. Genetic Mechanism of Danba-Mianning Orogenic Gold Belt on Western Marigin of Yangtze Craton[D]. Beijing: China University of Geosciences (Beijing), 2019.

    [25]

    郑博, 李成禄, 于雷, 等. 黑龙江省多宝山地区二道坎银铅锌矿床黄铁矿标型特征及其S、Pb同位素研究[J/OL]. 现代地质, 2024, 1−37.

    ZHENG Bo, LI Chenglu, YU Lei, et al. Typomorphic characteristics and stable isotopes of pyrite from the Erdankan Ag-Pb-Zn deposit in Duobaoshan region of Heilongjiang Province[J/OL]. Geoscience, 2024, 1−37.

    [26]

    邹发. 大渡河流域不同部位典型金矿床矿石特征与成矿过程分析[D]. 成都: 成都理工大学, 2016.

    ZOU Fa. Discussion on ore characters and process of the gold mine in Feature correlation of Dadu river basin in different mine[D]. Chengdu: Chengdu University of Technology, 2016.

    [27]

    Afifi A M, Kelly W C, Essene E J. Phase relations among tellurides, sulfides, and oxides: Ⅰ. Thermodynamical data and calculated equilibria[J]. Economic Geology, 1988a, 83: 377394. doi: 10.2113/gsecongeo.83.2.377

    [28]

    Afifi A M, Kelly W C, Essene E J. Phase relations among tellurides, sulfides, and oxides: Ⅱ. Application to telluride-bearing ore deposits[J]. Economic Geology, 1988b, 83: 395404. doi: 10.2113/gsecongeo.83.2.395

    [29]

    Alt J C, Shanks III W C S, Jackson M C. Cycling of sulfur in subduction zones: the geochemistry of sulfur in the Mariana Island Arc and back-arc trough[J]. Earth and Planetary Science Letters, 1993, 119: 477494. doi: 10.1016/0012-821X(93)90057-G

    [30]

    Alt J C, Shanks III W C S. Stable isotope compositions of serpentinite seamounts in the Mariana forearc: serpentinization processes, fluid sources and sulfur metasomatism[J]. Earth and Planetary Science Letters, 2006, 242: 272285. doi: 10.1016/j.jpgl.2005.11.063

    [31]

    Alt J C, Garrido C J, Shanks III W C S, et al. Recycling of water, carbon, and sulfur during subduction of serpentinites: a stable isotope study of Cerro del Almirez, Spain[J]. Earth and Planetary Science Letters, 2012, 327−328: 5060. doi: 10.1016/j.jpgl.2012.01.029

    [32]

    Andrea R, Tomkins A G, Oliver N, et al. Sulfur isotope and PGE systematics of metasomatized mantle Wedge[J]. Earth and Planetary Science Letters, 2018, 497: 181192.

    [33]

    Arehart G B. Characteristics and origin of sediment-hosted disseminated gold deposits: A review[J]. Ore Geology Reviews, 1996, 116): 383403. doi: 10.1016/S0169-1368(96)00010-8

    [34]

    Bralia A, Sabatini G, Troja F. A revaluation of the Co/Ni ratioin pyrite as geochemical tool in ore genesis problems: Evidences from southern Tuscany pyritic deposits[J]. Mineralium Deposita, 1979, 14(3): 353−374.

    [35]

    Ciobanu C L, Birch W D, Cook N J, et al. Petrogenetic significance of Au-Bi-Te-S associations: The example of Maldon, Central Victorian gold province, Australia[J]. Lithos, 2010, 116: 117. doi: 10.1016/j.lithos.2009.12.004

    [36]

    Ciobanu C L, Cook N J, Pring A. Bismuth tellurides as gold scavengers[A]. In: Mao J W, Bierlein F P (eds.). Mineral Deposit Research: Meeting the Global Challenge[M]. Berlin: Spriner, 2005, 1383−1386.

    [37]

    Ciobanu C L, Cook N J, Spry P G. Preface: Special issue: Telluride and selenide minerals in gold deposits: How and why?[J]. Mineralogy and Petrology, 2006, 873): 163169.

    [38]

    Danyushevsky L V, Robinson P, Gilbert S, et al. Routine quantitative multi-element analysis of sulphide minerals by laser ablation ICP-MS: Standarcdevelopment and consideration of matrix effects[J]. Geochemistry: Exploration, Environment, Analysis, 2011, 11: 5160.

    [39]

    Deditius A P, Utsunomiya S, Reich M, et al. Trace metal nanoparticles in pyrite[J]. Ore Geology Reviews, 2011, 421): 3246. doi: 10.1016/j.oregeorev.2011.03.003

    [40]

    Fan L, Wang G Z, Holzheid A, et al. Systematic variations in trace element composition of pyrites from the 26°S hydrothermal field, Mid-Atlantic Ridge[J]. Ore Geology Reviews, 2022, 148: 105006.

    [41]

    Fu B, Touret J L R. From granulite fluids to quartz-carbonate megashear zones: The gold rush[J]. Geoscience Frontiers, 2014, 55): 747758. doi: 10.1016/j.gsf.2014.03.013

    [42]

    Giuliani A, Fiorentini M L, Martin L A J, et al. Sulfur isotope composition of metasomatized mantle xenoliths from the Bultfontein kimberlite (Kimberley, South Africa): Contribution from subducted sediments and the effect of sulfide alteration on S isotope systematics[J]. Earth and Planetary Science Letters, 2016, 445: 114124. doi: 10.1016/j.jpgl.2016.04.005

    [43]

    Goldfarb R J, Groves D I. Orogenic gold: common or evolving fluid and metal sources through time[J]. Lithos, 2015, 233: 226. doi: 10.1016/j.lithos.2015.07.011

    [44]

    Hou L, Peng H J, Ding J, et al. Textures and In Situ Chemical and Isotopic Analyses of Pyrite, Huijiabao Trend, Youjiang Basin, China: Implications for Paragenesis and Source of Sulfur[J]. Economic Geology, 2016, 1112): 331353. doi: 10.2113/econgeo.111.2.331

    [45]

    Keith M, Haase K M, Schwarz-Schampera U, et al. Effects of temperature, sulfur, and oxygen fugacity on the composition of sphalerite from submarine hydrothermal vents[J]. Geology, 2014, 428): 699702.

    [46]

    Labidi J, Cartigny P, Jackson M G. Multiple sulfur isotope composition of oxidized Samoan melts and the implications of a sulfur isotope ‘mantle array’ in chemical geodynamics[J]. Earth and Planetary Science Letters, 2015, 417: 2839. doi: 10.1016/j.jpgl.2015.02.004

    [47]

    Liu Y S, Hu Z C, Gao S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 2571−2): 3443. doi: 10.1016/j.chemgeo.2008.08.004

    [48]

    Lusk J, Calder B O E. The composition of sphalerite and associated sulfides in reactions of the Cu-Fe-Zn-S, Fe-Zn-S and Cu-Fe-S systems at 1 bar and temperatures between 250 and 535 ℃[J]. Chemical Geology, 2004, 2033−4): 319345.

    [49]

    Ma T Q, Chen C H, Zhang Y, et al. Mineralogy and mineral chemistry of Bi-Te minerals: Constraints on mineralization process of the Dulanggou gold deposit, Dadu River Metallogenic Belt, China[J]. Ore Geology Reviews, 2024, 169: 106091.

    [50]

    Meinert L D. Gold in skarns related to epizonal intrusions[J]. Reviews in Economic Geology, 2000, 13: 347375.

    [51]

    Nesbitt B E. Phanerozoic gold deposits in tectonically active continental margins[A]. In: Foster R P (ed). Gold Metallogeny and Exploration[M]. Blackie and Sons Ltd, Glasgow, 1991, 104−132.

    [52]

    Okamoto H and Massalski T B. The Au-Bi(gold-bismuth) system[J]. Bulletin of Alloy Phase Diagrams, 1983, 44): 401407. doi: 10.1007/BF02868093

    [53]

    Pacey A, Wilkinson J J, Cooke D R, et al. Chlorite and epidote mineral chemistry in prophyry ore systems: a case study of the Northparkes District, New South Wales, Australia[J]. Economic Geology, 2020, 1154): 701727. doi: 10.5382/econgeo.4700

    [54]

    Phillips G N, Powell R. Formation of gold deposits: a metamorphic devolatilization model[J]. Journal of Metamorphic Geology, 2010, 28: 689718. doi: 10.1111/j.1525-1314.2010.00887.x

    [55]

    Reich M, Deditius A, Chryssoulis S, et al. Pyrite as a record of hydrothermal fluid evolution in a porphyry copper system: A SIMS/EMPA trace element study[J]. Geochimica et Cosmochimica Acta, 2013, 104: 4262.

    [56]

    Saager R, Meyer M, Muff R. Gold distribution in supracrustal rocks from Archean greenstone belts of southern Africa and from Paleozoic ultramafic complexes of the European Alps metallogenic and geochemical implications[J]. Economic Geology, 1982, 77: 124. doi: 10.2113/gsecongeo.77.1.1

    [57]

    Tomkins A G. Windows of metamorphic sulfur liberation in the crust: implications for gold deposit genesis[J]. Geochimica et Cosmochimica Acta, 2010, 74: 32463259. doi: 10.1016/j.gca.2010.03.003

    [58]

    Tooth B, Brugger J, Ciobanu C L, et al. Modeling of gold scavenging by bismuth melts coexisting with hydrothermal fluids[J]. Geology, 2008, 3610): 815818. doi: 10.1130/G25093A.1

    [59]

    Van Ryt M R, Sanislav I V, Dirks, P H G M, et al. Alteration paragenesis and the timing of mineralised quartz veins at the world-class Geita Hill gold deposit, Geita Greenstone Belt, Tanzania[J]. Ore Geology Reviews, 2017, 91: 765779. doi: 10.1016/j.oregeorev.2017.08.023

    [60]

    Van Ryt M R, Sanislav I V, Dirks, P H G M, et al. Biotite chemistry and the role of halogens in Archaean greenstone hosted gold deposits: A case study from Geita Gold Mine, Tanzania[J]. Ore Geology Reviews, 2019, 111: 102982. doi: 10.1016/j.oregeorev.2019.102982

    [61]

    Wang R, Cudahy T, Laukamp C, et al. White mica as a hyperspectral tool in exploration for the Sunrise Dam and Kanowna Belle gold deposits, Western Australia[J]. Economic Geology, 2017, 1125): 11531176. doi: 10.5382/econgeo.2017.4505

    [62]

    Wilkinson J J, Baker M J, Cooke D R, et al. Exploration targeting in porphyry Cu systems using propylitic mineral chemistry: a case study of the EI Teniente Deposit, Chile[J]. Economic Geology, 2020, 1154): 771791. doi: 10.5382/econgeo.4738

    [63]

    Wilkinson J J, Chang Z S, Cooke D R et al. The chlorite proximitor: a new tool for detecting prophyry ore deposits[J]. Journal of Geochemical Exploration, 2015, 152: 1026. doi: 10.1016/j.gexplo.2015.01.005

    [64]

    Wilson S A, Koenig A E, Ridley W I. Development of sulfide calibration standards for the laser ablation inductively-coupled plasma mass spectrometry[J]. Journal of Analytical Atomic Spectrometry, 2002, 17: 406409. doi: 10.1039/B108787H

    [65]

    Yardley B W D, Cleverley J S. The role of metamorphic fluids in the formation of ore deposits. Geological Society[J]. London, Special Publications, 2013, 393: 117134.

    [66]

    Zhang P, Huang X W, Cui B, et al. Re-Os isotopic and trace element compositions of pyrite and origin of the Cretaceous Jinchang porphyry Cu-Au deposit, Heilongjiang Province, NE China[J]. Journal of Asian Earth Sciences, 2016, 129: 6780. doi: 10.1016/j.jseaes.2016.07.032

    [67]

    Zhang Y, Chen H, Cheng J, et al. Pyrite geochemistry and its implications on Au-Cu skarn metallogeny: An example from the Jiguanzui deposit, Eastern China[J]. American Mineralogist, 2022, 10710): 19101925. doi: 10.2138/am-2022-8118

    [68]

    Zhao H S, Wang Q F, Groves D I, et al. A Rare Phanerozoic Amphibolite Hosted Gold Deposit at Danba, Yangtze Craton, China: Significance to Fluid and Metal Sources for Orogenic Gold Systems[J]. Mineralium Deposita, 2019, 54: 133152.

    [69]

    Zhao J H, Zhou M F. Neoproterozoic Adakitic plutons in the northern margin of the Yangtze block, China: Partial melting of a thickened lower crust and implications for secular crustal evolution[J]. Lithos, 2008, 104: 231248. doi: 10.1016/j.lithos.2007.12.009

    [70]

    Zhou M F, Yan D P, Vasconcelos P M, et al. Structural and geochronological constraints on the tectono-thermal evolution of the Danba domal terrane, eastern margin of the Tibetan Plateau[J]. Journal of Asian Earth Sciences, 2008, 33: 414427. doi: 10.1016/j.jseaes.2008.03.003

    [71]

    Zhong R C, Brugger J, Tomkins AG, et al. Fate of gold and base metals during metamorphic devolatilization of a pelite[J]. Geochimica et Cosmochimica Acta, 2015, 171: 338352. doi: 10.1016/j.gca.2015.09.013

  • 加载中

(9)

(3)

计量
  • 文章访问数:  48
  • PDF下载数:  8
  • 施引文献:  0
出版历程
收稿日期:  2024-10-29
修回日期:  2024-11-28
录用日期:  2024-12-11
刊出日期:  2025-04-20

目录