岩浆铜镍矿床中硫化物的垂向物理运移机制

姚卓森. 2025. 岩浆铜镍矿床中硫化物的垂向物理运移机制. 西北地质, 58(4): 1-22. doi: 10.12401/j.nwg.2024132
引用本文: 姚卓森. 2025. 岩浆铜镍矿床中硫化物的垂向物理运移机制. 西北地质, 58(4): 1-22. doi: 10.12401/j.nwg.2024132
YAO Zhuosen. 2025. Vertical Transfer of Sulfide in the Magmatic Ni-Cu Sulfide Deposits. Northwestern Geology, 58(4): 1-22. doi: 10.12401/j.nwg.2024132
Citation: YAO Zhuosen. 2025. Vertical Transfer of Sulfide in the Magmatic Ni-Cu Sulfide Deposits. Northwestern Geology, 58(4): 1-22. doi: 10.12401/j.nwg.2024132

岩浆铜镍矿床中硫化物的垂向物理运移机制

  • 基金项目: 国家自然科学基金面上项目“岩浆铜镍矿床中硫化物的垂向物理运移机制——以喀拉通克矿床为例”(42272084),国家重点研发计划课题“大陆裂解过程中圈层相互作用与成矿物质循环”(2021YFF0804204)联合资助。
详细信息
    作者简介: 姚卓森(1990−),男,教授,博士生导师,主要从事岩浆矿床成矿动力学过程与关键金属超常富集机制的研究。E−mail:yaozhuosen@cug.edu.cn
  • 中图分类号: P611.1+1;P616

Vertical Transfer of Sulfide in the Magmatic Ni-Cu Sulfide Deposits

  • 硫化物作为亲硫元素的主要载体,其在动态多级岩浆系统内的物理运移和聚集是岩浆铜镍硫化物矿床的关键成矿过程。但目前人们对相关动力学过程的理解停留于经验认识阶段,即便仅是硫化物在多级系统内的垂向物理运移方向也仍未达成共识。小岩体成大矿模式强调富矿岩浆及矿浆的向上贯入,而岩浆通道式成矿则认为硫化物的向下渗滤和重力回流是主导机制。笔者归纳了硫化物动力学过程的全新研究手段,系统梳理了多级岩浆系统内硫化物液滴、混合液滴以及矿浆等的垂向运移过程及相关物理机制,并细致阐明了岩浆铜镍硫化物矿床中珠滴状、稀疏浸染状、稠密浸染状、豹纹网脉状、斑杂网脉状、块状、角砾状等典型矿石构造的形成过程。本研究旨在查明硫化物的垂向运移规律和物理机制,刻画成矿物质的物理富集过程,以期能达到高效圈定成矿有利部位,科学指导深边部找矿勘查的最终目的。

  • 加载中
  • 图 1  小岩体成大矿模型(a)和岩浆通道式成矿模型(b)(据汤中立等, 2015; Yao et al., 2019修改)

    Figure 1. 

    图 2  硫化物三维CT扫描结果(a)、类比模拟实验示意图(b)、硫化物液滴在岩浆湍流中发生撕裂破碎的流体动力学数值模拟结果(c)(据Robertson et al., 2015; Barnes et al., 2019a2019b; Williams et al., 2022修改)

    Figure 2. 

    图 3  岩浆体系内硫化物液滴与矿物沉降过程的示意图(据Chung et al., 2009修改)

    Figure 3. 

    图 4  硫化物液滴动力学过程与自身粒径、岩浆流动强度的示意图

    Figure 4. 

    图 5  硫化物液滴在通道中运移(a)、连通硫化物熔体在晶粥总渗滤(b)、相应的硫化物三维结构(c)及硫化物液滴在岩浆流动突扩处聚集成矿示意图(d)(据Chung et al., 2009; Mao et al., 2018修改)

    Figure 5. 

    图 6  动态岩浆流经硫化物熔体池所引起的界面失稳破碎过程(据Barnes et al., 2019a2019b修改)

    Figure 6. 

    图 7  岩浆铜镍硫化物矿床中的典型矿石构造(部分据Barnes et al., 2017修改)

    Figure 7. 

  • [1]

    柴凤梅, 张招崇, 毛景文, 等. 岩浆型Ni-Cu-PGE硫化物矿床研究的几个问题探究[J]. 矿床地质, 2005, 243): 325335.

    CHAI Fengmei, ZHANG Zhaochong, MAO Jingwen, et al. Discussion on Some Problems Concerning Magmatic Copper-Nickel-PGE Sulfide Deposits[J]. Mineral Deposits, 2005, 243): 325335.

    [2]

    侯增谦, 陈骏, 翟明国. 战略性关键矿产研究现状与科学前沿[J]. 科学通报, 2020, 6533): 36513652. doi: 10.1360/TB-2020-1417

    HOU Zengqian, CHEN Jun, ZHAI Mingguo. Current Status and Frontiers of Research on Critical Mineral Resources[J]. Chinese Science Bulletin, 2020, 6533): 36513652. doi: 10.1360/TB-2020-1417

    [3]

    蒋少涌, 温汉捷, 许成, 等. 关键金属元素的多圈层循环与富集机理: 主要科学问题及未来研究方向[J]. 中国科学基金, 2019, 332): 112118.

    JIANG Shaoyong, WEN Hanjie, XU Cheng, et al. Earth Sphere Cycling and Enrichment Mechanism of Critical Metals: Major Scientific Issues for Future Research[J]. Bulletin of National Natural Science Foundation of China, 2019, 332): 112118.

    [4]

    李世金, 孙丰月, 高永旺, 等. 小岩体成大矿理论指导与实践——青海东昆仑夏日哈木铜镍矿找矿突破的启示及意义[J]. 西北地质, 2012, 454): 185191. doi: 10.3969/j.issn.1009-6248.2012.04.017

    LI Shijin, SUN Fengyue, GAO Yongwang, et al. The Theoretical Guidance and the Practice of Small Intrusions Forming Large Deposits: The Enlightenment and Significance for Searching Breakthrough of Cu-Ni Sulfide Deposit in Xiarihamu, East Kun Lun, Qinghai[J]. Northwestern Geology, 2012, 454): 185191. doi: 10.3969/j.issn.1009-6248.2012.04.017

    [5]

    李文渊, 高永宝, 张照伟, 等. 镁铁-超镁铁质岩与花岗岩-伟晶岩“小岩体成大矿”对比——以昆仑成矿带夏日哈木和大红柳滩超大型矿床为例[J]. 地球科学与环境学报, 2023, 455): 10361048.

    LI Wenyuan, GAO Yongbao, ZHANG Zhaowei, et al. Comparison of Mafic-ultramafic and Granite-pegmatite "Small Intrusion Forming Large Deposit": Taking Xiarihamu and Dahongliutan Super-large Deposits in Kunlun Metallogenic Belt, China as Examples[J]. Journal of Earth Sciences and Environment, 2023, 455): 10361048.

    [6]

    李文渊, 张照伟, 陈博. 小岩体成大矿的理论与找矿实践意义——以西北地区岩浆铜镍硫化物矿床为例[J]. 中国工程科学, 2015, 172): 2934. doi: 10.3969/j.issn.1009-1742.2015.02.004

    LI Wenyuan, ZHANG Zhaowei, CHEN Bo. The Theory on Small Intrusions Forming Large Deposits and its Exploration Significance[J]. Strategic Study of CAE, 2015, 172): 2934. doi: 10.3969/j.issn.1009-1742.2015.02.004

    [7]

    刘平平, 秦克章, 苏尚国, 等. 新疆东天山图拉尔根大型铜镍矿床硫化物珠滴构造的特征及其对通道式成矿的指示[J]. 岩石学报, 2010, 262): 523532.

    LIU Pingping, QIN Kezhang, SU Shangguo, et al. Characteristics of Multiphase Sulfide Droplets and Their Implications for Conduit-style Mineralization of Tulargen Cu-Ni Deposit, Eastern Tianshan, Xinjiang[J]. Acta Petrologica Sinica, 2010, 262): 523532.

    [8]

    刘伟栋, 王硕, 魏翔, 等. 小岩体叠加作用在新一轮找矿突破战略行动中的应用: 以勉略宁矿集区为例[J]. 西北地质, 2024, 575): 4052.

    LIU Weidong, WANG Shuo, WEI Xiang, et al. Application of Superimposed Mineralization of Small Intrusions in the New Round of Prospecting Breakthrough Action: A Case Study of Mian-Lue-Ning Ore Concentration Area[J]. Northwestern Geology, 2024, 575): 4052.

    [9]

    吕林素, 刘珺, 张作衡, 等. 中国岩浆型Ni-Cu-(PGE)硫化物矿床的时空分布及其动力学背景[J]. 岩石学报, 2007, 2310): 25612594.

    LV Linsu, LIU Jun, ZHANG Zuoheng, et al. Temporal-spatial Distribution and Geodynamic Settings of Magmatic Ni-Cu-(PGE) Sulfide Deposits in China[J]. Acta Petrologica Sinica, 2007, 2310): 25612594.

    [10]

    罗照华, 卢欣祥, 陈必河, 等. 透岩浆流体成矿作用导论[M]. 北京: 地质出版社, 2009, 1−177.

    [11]

    秦克章, 唐冬梅, 苏本勋. 造山带岩浆铜镍硫化物矿床: 研究进展与展望[A]. 翟明国, 肖文交. 板块构造、地质事件与资源效应-地质科学若干新进展[M]. 北京: 科学出版社, 2016, 328−361.

    [12]

    秦克章, 唐冬梅, 苏本勋, 等. 北疆二叠纪镁铁-超镁铁岩铜、镍矿床的构造背景、岩体类型、基本特征、相对剥蚀程度、含矿性评价标志及成矿潜力分析[J]. 西北地质, 2012, 454): 83116. doi: 10.3969/j.issn.1009-6248.2012.04.009

    QIN Kezhang, TANG Dongmei, SU Benxun, et al. The Tectonic Setting, Style, Basic Feature, Relative Erosion Deep, Ore-bearing Evaluation Sign, Potential Analysis of Mineralization of Cu-Ni-bearing Permian Mafic-ultramafic Complexes, Northern Xinjiang[J]. Northwestern Geology, 2012, 454): 83116. doi: 10.3969/j.issn.1009-6248.2012.04.009

    [13]

    宋谢炎. 岩浆硫化物矿床研究现状及重要科学问题[J]. 矿床地质, 2019, 384): 699710.

    SONG Xieyan. Current Research Status and Important Issue of Magmatic Sulfide Deposits[J]. Mineral Deposits, 2019, 384): 699710.

    [14]

    宋谢炎, 胡瑞忠, 陈列锰. 中国岩浆铜镍硫化物矿床地质特点及其启示[J]. 南京大学学报(自然科学), 2018, 542): 221235.

    SONG Xieyan, HU Ruizhong, CHEN Liemeng. Characteristics and Inspirations of the Ni-Cu Sulfide Deposits in China[J]. Journal of Nanjing University (Natural Science), 2018, 542): 221235.

    [15]

    苏尚国, 崔晓亮, 罗照华, 等. 流体晶、流体晶矿物组合、流体岩及其研究意义[J]. 地学前缘, 2019, 256): 283289.

    SU Shangguo, CUI Xiaoliang, LUO Zhaohua, et al. Fluid Minerals, Mineral Assemblages, Fluid Rocks: Significance in the Studies of Rocks and Ore Deposits[J]. Earth Science Frontiers, 2019, 256): 283289.

    [16]

    苏尚国, 汤中立, 罗照华, 等. 岩浆通道成矿系统[J]. 岩石学报, 2014, 30(11): 3120−3130.

    SU Shangguo, TANG Zhongli, LUO Zhaohua, et al. Magmatic Conduit Metallogenic System[J]. 2014, 30(11): 3120−3130.

    [17]

    汤中立. 金川硫化铜镍矿床成矿模式[J]. 现代地质, 1990, 4: 55−64.

    TANG Zhongli. Minerogenetic Model of the Jinchuan Copper and Nickel Sulfide Deposit[J]. Geoscience, 1990, 4: 55−64.

    [18]

    汤中立. 中国岩浆硫化物矿床的主要成矿机制[J]. 地质学报, 1996, 703): 237243.

    TANG Zhongli. The Main Mineralization Mechanism of Magma Sulfide Deposits in China[J]. Acta Geologica Sinica, 1996, 703): 237243.

    [19]

    汤中立, 焦建刚, 闫海卿, 等. 小岩体成(大)矿理论体系[J]. 中国工程科学, 2015, 172): 418. doi: 10.3969/j.issn.1009-1742.2015.02.002

    TANG Zhongli, JIAO Jiangang, YAN Haiqing, et al. Theoretical System for (Large) Deposit formed by Smaller Intrusion[J]. Strategic Study of CAE, 2015, 172): 418. doi: 10.3969/j.issn.1009-1742.2015.02.002

    [20]

    汤中立, 李文渊. 金川铜镍硫化物(含铂)矿床成矿模式及地质对比[M]. 北京: 地质出版社, 1995, 1−209.

    TANG Zhongli, LI Wenyuan. Metallogenic Model and Geological Comparison of Jinchuan Copper-Nickel-(Platinum-bearing) Sulfide Deposit [M]. Beijing: Geology Press, 1995, 1−209.

    [21]

    汤中立, 钱壮志, 姜常义, 等. 岩浆硫化物矿床勘查研究的趋势与小岩体成矿系统[J]. 地球科学与环境学报, 2011, 331): 19. doi: 10.3969/j.issn.1672-6561.2011.01.001

    TANG Zhongli, QIAN Zhuangzhi, JIANG Changyi, et al. Trends of Research in Exploration of Magmatic Sulfide Deposits and Small Intrusions Metallogenic System[J]. Journal of Earth Sciences and Environment, 2011, 331): 19. doi: 10.3969/j.issn.1672-6561.2011.01.001

    [22]

    汤中立, 徐刚, 王亚磊, 等. 岩浆成矿新探索——小岩体成矿与地质找矿突破[J]. 西北地质, 2012, 454): 116. doi: 10.3969/j.issn.1009-6248.2012.04.002

    TANG Zhongli, XU Gang, WANG Yalei, et al. The New Exploration of Magmatic Mineralization: Small Intrusion Mineralization and Geological Prospecting Breakthrough[J]. Northwestern Geology, 2012, 454): 116. doi: 10.3969/j.issn.1009-6248.2012.04.002

    [23]

    汤中立, 闫海卿, 焦建刚, 等. 中国岩浆硫化物矿床新分类与小岩体成矿作用[J]. 矿床地质, 2006, 251): 19. doi: 10.3969/j.issn.0258-7106.2006.01.001

    TANG Zhongli, YAN Haiqing, JIAO Jiangang, et al. New Classification of Magmatic Sulfide Deposits in China and Ore-forming Processes of Small Intrusive Bodies[J]. Mineral Deposits, 2006, 251): 19. doi: 10.3969/j.issn.0258-7106.2006.01.001

    [24]

    王俊. 岩浆通道成矿系统中铜镍硫化物矿浆上升机制[D]. 北京: 中国地质大学(北京), 2013, 1−41.

    WANG Jun. Magmatic Conduit Metallogenic System of Jinchuan Cu-Ni (PGE) Sulfide Deposit: Evidence from Mineralogy[D]. Beijing: China University of Geosicences (Beijing), 2013, 1−41.

    [25]

    王亚磊, 李文渊, 林艳海, 等. 金川超大型铜镍矿床钴的赋存状态与富集过程研究[J]. 西北地质, 2023, 562): 133150. doi: 10.12401/j.nwg.2023023

    WANG Yalei, LI Wenyuan, LIN Yanhai, et al. Study on the Occurrence State and Enrichment Process of Cobalt in Jinchuan Giant Magmatic Ni−Cu Sulfide Deposit[J]. Northwestern Geology, 2023, 562): 133150. doi: 10.12401/j.nwg.2023023

    [26]

    王焰, 钟宏, 曹勇华, 等. 我国铂族元素、钴和铬主要矿产类型的分布特征及成矿机制[J]. 科学通报, 2020, 6533): 38253838. doi: 10.1360/TB-2020-0202

    WANG Yan, ZHONG Hong, CAO Yonghua, et al. Genetic Classification, Distribution and Ore Genesis of Major PGE, Co and Cr Deposits in China: A Critical Review[J]. Chinese Science Bulletin, 2020, 6533): 38253838. doi: 10.1360/TB-2020-0202

    [27]

    徐兴旺, 王杰, 张宝林, 等. 岩浆运移动力学及其研究进展[J]. 地球科学进展, 2006, 21: 361371. doi: 10.3321/j.issn:1001-8166.2006.04.005

    XU Xingwang, WANG Jie, ZHANG Baolin, et al. Transport Dynamics of Magma and Its Advances[J]. Advances in Earth Science, 2006, 21: 361371. doi: 10.3321/j.issn:1001-8166.2006.04.005

    [28]

    姚卓森, 秦克章. 造山带中岩浆铜镍硫化物矿床的地球物理勘探: 现状、问题与展望[J]. 地球物理学进展, 2014, 296): 28002817. doi: 10.6038/pg20140649

    YAO Zhuosen, QIN Kezhang. Geophysical Exploration for Magmatic Cu-Ni Sulfide Deposits in the Orogenic Belt: Current Status, Problems and Vistas[J]. Progress in Geophysics, 2014, 296): 28002817. doi: 10.6038/pg20140649

    [29]

    叶天竺, 韦昌山, 王玉往, 等. 勘查区找矿预测理论与方法(各论)[M]. 北京: 地质出版社, 2017, 253−273.

    [30]

    翟明国, 吴福元, 胡瑞忠, 等. 战略性关键金属矿产资源: 现状与问题[J]. 中国科学基金, 2019, 33(2), 106−111.

    ZHAI Mingguo, WU Fuyuan, HU Ruizhong, et al. Critical Metal Mineral Resources: Current Research Status and Scientific Issues[J]. Bulletin of National Natural Science Foundation of China, 2019, 33(2): 106−111.

    [31]

    张铭杰, 汤庆艳, 李文渊, 等. 岩浆镍铜铂族矿床成矿过程中流体的作用——对小岩体超大型矿床的启示[J]. 中国工程科学, 2015, 172): 4049. doi: 10.3969/j.issn.1009-1742.2015.02.006

    ZHANG Mingjie, TANG Qingyan, LI Wenyuan, et al. The Roles of Volatiles in Mineralizations of Magmatic Ni-Cu-PGE Sulfide Deposits: Implications for Potential Metallogenic Mechanism of Super-large Scale Magmatic Deposits in Small Magma[J]. [J]. Strategic Study of CAE, 2015, 172): 4049. doi: 10.3969/j.issn.1009-1742.2015.02.006

    [32]

    张照伟, 谭文娟, 杜辉, 等. 金川岩浆镍钴硫化物矿床深部找矿勘查技术研究[J]. 西北地质, 2023a, 566): 242253. doi: 10.12401/j.nwg.2023168

    ZHANG Zhaowei, TAN Wenjuan, DU Hui, et al. Study on Exploration Techniques of Deep Ore Prospecting in Jinchuan Magmatic Co–Ni Sulfide Deposit, Northwest China[J]. Northwestern Geology, 2023a, 566): 242253. doi: 10.12401/j.nwg.2023168

    [33]

    张照伟, 张江伟, 王亚磊, 等. 准噶尔北缘成矿带蕴都卡拉钴矿成矿特征[J]. 西北地质, 2023b, 561): 110. doi: 10.12401/j.nwg.2022009

    ZHANG Zhaowei, ZHANG Jiangwei, WANG Yalei, et al. Metallogenic Characteristics of Yundukala Co Deposit in Northern Margin of Junggar Metallogenic Belt, Northwest China[J]. Northwestern Geology, 2023b, 561): 110. doi: 10.12401/j.nwg.2022009

    [34]

    赵达成, 王美乐, 李章志贤, 等. 夏日哈木岩浆硫化物矿床中钴和镍关键金属的赋存状态及分布规律[J]. 西北地质, 2023, 566): 1740. doi: 10.12401/j.nwg.2023121

    ZHAO Dacheng, WANG Meile, LI Zhangzhixian, et al. The Occurrence and Distribution of Cobalt and Nickel Key Metals in the Xiarihamu Magmatic Sulfide Deposit[J]. Northwestern Geology, 2023, 566): 1740. doi: 10.12401/j.nwg.2023121

    [35]

    Arndt N T, Czamanske G K, Walker R J, et al. Geochemistry and Origin of the Intrusive Hosts of the Noril’sk-Talnakh Cu-Ni-PGE Sulfide Deposits[J]. Economic Geology, 2003, 98: 495−515.

    [36]

    Bachmann O, Huber C. Silicic Magma Reservoirs in the Earth’s Crust[J]. American Mineralogist, 2016, 101: 23772404. doi: 10.2138/am-2016-5675

    [37]

    Ballhaus C, Tredoux M, Späth A. Phase Relations in the Fe-Ni-Cu-PGE-S at Magmatic Temperature and Application to Massive Sulphide Ores of the Sudbury Igneous Complex[J]. Journal of Petrology, 2001, 42: 19111926. doi: 10.1093/petrology/42.10.1911

    [38]

    Barnes S J, Cruden A R, Arndt N, et al. The Mineral System Approach Applied to Magmatic Ni-Cu-PGE Sulphide Deposits[J]. Ore Geology Reviews, 2016, 76: 296−316.

    [39]

    Barnes S J, Le Vaillant M, Godel B, et al. Droplets and Bubbles: Solidification of Sulphide-rich Vapour-saturated Orthocumulates in the Norilsk-Talnakh Ni-Cu-PGE Ore-bearing Intrusions[J]. Journal of Petrology, 2019a, 60: 269−300.

    [40]

    Barnes S J, Mungall J E, Le Vaillant M, et al. Sulfide-silicate Textures in Magmatic Ni-Cu-PGE Sulfide Ore Deposits: Disseminated and Net-textured Ores[J]. American Mineralogist, 2017, 102: 473−506.

    [41]

    Barnes S J, Robertson J C. Time Scales and Length Scales in Magma Flow Pathways and the Origin of Magmatic Ni-Cu-PGE Ore Deposits[J]. Geoscience Frontiers, 2019b, 10(1): 77−87.

    [42]

    Barnes S J, Staude S, Le Vaillant M, et al. Sulfide-silicate Textures in Magmatic Ni-Cu-PGE Sulfide Ore Deposits: Massive, Semi-massive and Sulfide-matrix Breccia Ores[J]. Ore Geology Reviews, 2018, 101: 629−651.

    [43]

    Barnes S J, Wells M A, Verrall M R. Effects of Magmatic Processes, Serpentinization and Talc Carbonate Alteration on Sulfide Mineralogy and Ore Textures in the Black Swan Disseminated Nickel Sulfide Deposit, Yilgarn Craton[J]. Economic Geology, 2009, 104: 539−562.

    [44]

    Bentley B J, Leal L G. An Experimental Investigation of Drop Deformation and Break-up in Steady, Two-Dimensional Linear Flows[J]. Journal of Fluid Mechanics, 1986, 167: 241−283.

    [45]

    Blanks D E, Holwell D A, Barnes S J, et al. Mobilization and Fractionation of Magmatic Sulfide: Emplacement and Deformation of the Munali Ni-(Cu-Platinum Group Element) Deposit, Zambia[J]. Economic Geology, 2022, 117(8): 1709−1729.

    [46]

    Blanks D E, Holwell D A, Fiorentini M L, et al. Fluxing of Mantle Carbon as a Physical Agent for Metallogenic Fertilization of the Crust[J]. Nature Communications, 2020, 11: 4342.

    [47]

    Brenan J M, Bennett N R, Zajacz Z. Experimental Results on Fractionation of the Highly Siderophile Elements (HSE) at Variable Pressures and Temperatures during Planetary and Magmatic Differentiation[J]. Reviews in Mineralogy and Geochemistry, 2016, 81: 1−87.

    [48]

    Campbell I H. Fluid Dynamic Processes in Basaltic Magma Chambers[J]. Developments in Petrology, 1996, 15: 4576.

    [49]

    Campbell I H, Naldrett A J. The Influence of Silicate: Sulphide Ratios on the Geochemistry of Magmatic Sulphides[J]. Economic Geology, 1979, 74: 1503−1506.

    [50]

    Cashman K. Crystal Size Distribution (CSD) Analysis of Volcanic Samples: Advances and Challenges[J]. Frontiers in Earth Science, 2020, 8: 291. doi: 10.3389/feart.2020.00291

    [51]

    Cashman K, Marsh B D. Crystal Size Distribution (CSD) in Rocks and the Kinetics and Dynamics of Crystallization. II. Makaopuhi Lava Lake[J]. Contributions to Mineralogy and Petrology, 1988, 993): 292305. doi: 10.1007/BF00375363

    [52]

    Cashman K, Sparks R S J, Blundy J D. Vertically Extensive and Unstable Magmatic Systems: A Unified View of Igneous Processes[J]. Science, 2017, 355: eaag3055.

    [53]

    Chavrit D, Humler E, Morizet Y, et al. Influence of Magma Ascent Rate on Carbon Dioxide Degassing at Oceanic Ridges: Message in a Bubble[J]. Earth and Planetary Science Letters, 2012, 357−358: 376385.

    [54]

    Chen Y, Provost A, Schiano P, et al. Magma Ascent Rate and Initial Water Concentration Inferred from Diffusive Water Loss from Olivine-hosted Melt Inclusions[J]. Contributions to Mineralogy and Petrology, 2013, 165: 525541. doi: 10.1007/s00410-012-0821-x

    [55]

    Cherdantseva M, Anenburg M, Fiorenini M, et al. Carbonated Magmatic Sulfide Systems: Still or Sparkling[J]? Science Advances, 2024, 10: eadl3127.

    [56]

    Chung H Y, Mungall J E. Physical Constraints on the Migration of Immiscible Fluids Through Partially Molten Silicates, with Special Reference to Magmatic Sulfide Ores[J]. Earth and Planetary Science Letters, 2009, 286: 14−22.

    [57]

    Czamanske G, Moore J G. Composition and Phase Chemistry of Sulfide Globules in Basalt from the Mid-Atlantic Ridge Rift Valley near 37°N Lat[J]. GSA Bulletin, 1977, 884): 587599. doi: 10.1130/0016-7606(1977)88<587:CAPCOS>2.0.CO;2

    [58]

    Czamanske G, Zen’ko T E, Fedorenko V A, et al. Petrographic and Geochemical Characterization of Ore-bearing Intrusions of the Noril’sk Type, Siberia: With Discussion and Their Origin[J]. Resource Geology Speical Issue, 1995, 18: 1−48.

    [59]

    De Bremond d’Ars J, Arndt N T, Hallot E. Analog Experimental Insights into the Formation of Magmatic Sulfide Deposits[J]. Earth and Planetary Science Letters, 2001, 186: 371−381.

    [60]

    De Waal S A, Xu Z, Li C S, et al. Emplacement of Viscous Mushes in the Jinchuan Ultramafic Intrusion, Western China[J]. The Canadian Mineralogist, 2004, 42: 371−392.

    [61]

    Di Giuseppe E, Funiciello F, Corbi F, et al. Gelatins as Rock Analogs: A Systematic Study of Their Rheological and Physical Properties[J]. Tectonophysics, 2013, 473: 391403.

    [62]

    Ding X, Ripley E M, Shirey S B, et al. Os, Nd, O and S Isotope Constraints on Country Rock Contamination in the Conduit-related Eagle Cu-Ni-(PGE) Deposit, Midcontinent Rift System, Upper Michigan[J]. Geochimica et Cosmochimica Acta, 2012, 89: 10−30.

    [63]

    Distler V V, Pertsev N N, Boronikin V A. Sulfide Petrology of Basalts from Deep Sea Drilling Project Holes 504B and 505B[J]. Initial Reports of the Deep Sear Drilling Project, 1983, 69: 607−617.

    [64]

    Dobson D P, Crichton W A, Vocadlo L, et al. In Situ Measurement of Viscosity of Liquids in the Fe-FeS System at High Pressures and Temperatures[J]. American Mineralogists, 2000, 85: 1838−1842.

    [65]

    Edmonds M, Cashman K V, Holness M, et al. Architecture and Dynamics of Magma Reservoirs[J]. Philosophical Transactions A: Mathematical, Physical and Engineering Sciences, 2019, 377: 20180298.

    [66]

    Evans-Lamswood D M, Butt D P, Jackson R S, et al. Physical Controls Associated with the Distribution of Sulfides in the Voisey’s Bay Ni-Cu-Co Deposit, Labrador[J]. Economic Geology, 2000, 95: 749−769.

    [67]

    Fatehi R, Shadloo M S, Manzari M E. Numerical Investigation of Two-Phase Secondary Kelvin-Helmholtz Instability[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2014, 228(11): 913−924.

    [68]

    Francis R D. Sulfide Globules in Mid-Ocean Ridge Basalts (MORB), and the Effect of Oxygen Abundance in Fe-S-O Liquids on the Ability of Those Liquids to Partition Metals from MORB and Komatiite Magmas[J]. Chemical Geology, 1990, 853−4): 199213.

    [69]

    Galetto F, Bonaccorso A, Acocella V. Relating Dike Geometry and Injection Rate in Analogue Flux-driven Experiments[J]. Frontiers in Earth Science, 2021, 9: 665865. doi: 10.3389/feart.2021.665865

    [70]

    Garside J, Al-Dibouni M R. Velocity-voidage Relationships for Fluidization and Sedimentation in Solid-liquid Systems[J]. Industrial and Engineering Chemistry Process Design and Development, 1977, 16: 206214. doi: 10.1021/i260062a008

    [71]

    Giordano D, Russell J K, Dingwell D B. Viscosity of Magmatic Liquids: A Model[J]. Earth and Planetary Science Letters, 2008, 271: 123−134.

    [72]

    Godel B M. High-resolution X-Ray Computed Tomography and Its Application to Ore Deposits: From Data Acquisition to Quantitative Three-dimensional Measurements with Case Studies from Ni-Cu-PGE Deposits[J]. Economic Geology, 2013a, 108: 20052019. doi: 10.2113/econgeo.108.8.2005

    [73]

    Godel B M, Barnes S J, Barnes J. Deposition Mechanisms of Magmatic Sulphide Liquids: Evidence from High-resolution X-Ray Computed Tomography and Trace Element Chemistry of Komatiite-hosted Disseminated Sulphides[J]. Journal of Petrology, 2013b, 54: 1455−1481.

    [74]

    Gonnermann H, Manga M. Dynamics of Magma Ascent in the Volcanic Conduit[A]. Fagents S A, Gregg T K P, Lopes R M C. Modeling Volcanic Processes: the Physics and Mathematics of Volcanism[M]. Cambridge University Press, 2012, 55−84.

    [75]

    Gonnermann H, Taisne B. Magma Transport in Dykes[A]. Sigurdsson H, Houghton B, Mcnutt S R, et al. The Encyclopedia of Volcanoes, 2nd edn[M]. London, Academic Press, 2015, 215−224.

    [76]

    Gudmundsson A. Magma Chambers: Formation, Local Stresses, Excess Pressures, and Compartments[J]. Journal of Volcanology and Geothermal Research, 2012, 237−238: 1941.

    [77]

    Heinrich C A, Connolly J A D. Physical Transport of Magmatic Sulfides Promotes Copper Enrichment in Hydrothermal Ore Fluids[J]. Geology, 2022, 50(10): 1101−1105.

    [78]

    Holzheid A. Separation of Sulfide Melt Droplets in Sulfur Saturated Silicate Liquids[J]. Chemical Geology, 2010, 274: 127135. doi: 10.1016/j.chemgeo.2010.03.005

    [79]

    Holwell D A, Fiorentini M L, Knott T R, et al. Mobilisation of Deep Crustal Sulfide Melts as a First Order Control on Upper Lithospheric Metallogeny[J]. Nature Communications, 2022, 13: 573.

    [80]

    Houle M G, Lesher C M. Komatiite-associated Ni-Cu-(PGE) Deposits, Abitibi Greenstone Belt, Superior Province, Canada[J]. Reviews in Economic Geology, 2011, 17: 89−121.

    [81]

    Huber C, Su Y, Nguyen C T, et al. A New Bubble Dynamics Model to Study Bubble Growth, Deformation, and Coalescence[J]. Journal of Geophysical Research: Solid Earth, 2014, 119: 216−239.

    [82]

    Hui H J, Zhang Y X. Toward a General Viscosity Equation for Natural Anhydrous and Hydrous Silicate Melts[J]. Geochimica et Cosmochimica Acta, 2007, 71: 403−416.

    [83]

    Huppert H E, Sparks R S T. Double-diffusive Convection Due to Crystallization in Magmas[J]. Annual Review of Earth and Planetary Sciences, 1984, 12: 11−37.

    [84]

    Huppert H E, Turner J S, Sparks R S J. Replenished Magma Chambers: Effects of Compositional Zonation and Input Rates[J]. Earth and Planetary Science Letters, 1982, 57: 345−357.

    [85]

    Iacono-Marziano G, Ferraina C, Gaillard F, et al. Assimilation of Sulfate and Carbonaceous Rocks: Experimental Study, Thermodynamic Modeling and Application to the Noril’sk-Talnakh Region (Russia)[J]. Ore Geology Reviews, 2017, 90: 399413. doi: 10.1016/j.oregeorev.2017.04.027

    [86]

    Iacono-Marziano G, Le Vaillant M, Godel B M, et al. The Critical Role of Magma Degassing in Sulphide Melt Mobility and Metal Enrichment[J]. Nature Communications, 2022, 13: 2359.

    [87]

    Jackson M D, Blundy J, Sparks R S J. Chemical Differentiation, Cold Storage and Remobilization of Magma in the Earth’s Crust[J]. Nature, 2018, 564: 405−409.

    [88]

    Iacono-Marziano G, Morizet Y, Le Trong E, et al. New Experimental Data and Semi-empirical Parameterization of H2O-CO2 Solubility in Mafic Melts[J]. Geochimica et Cosmochimica Acta, 2012, 97: 123. doi: 10.1016/j.gca.2012.08.035

    [89]

    Jaupart C, Brandeis G, Allègre C J. Stagnant Layers at the Bottom of Convecting Magma Chambers[J]. Nature, 1984, 308: 535538. doi: 10.1038/308535a0

    [90]

    Kavanagh J L, Engwell S L, Martin S A. A Review of Laboratory and Numerical Modelling in Volcanology [J]. Solid Earth, 2018, 9: 531−571.

    [91]

    Kavanagh J L, Menand T, Sparks R. An Experimental Investigation of Sill Formation and Propagation in Layered Elastic Media[J]. Earth and Planetary Science Letters, 2016, 245: 799−813.

    [92]

    Kavanagh J L, Rogers B D, Boutelier D, et al. Controls on Sill and Dyke-sill Hybrid Geometry and Propagation in the Crust: The Role of Fracture Toughness[J]. Tectonophysics, 2017, 698: 109−120.

    [93]

    Khakhar D V, Ottino J M. Deformation and Break-up of Slender Drops in Linear Flows[J]. Journal of Fluid Mechanics, 1986, 166: 265−285.

    [94]

    Kiseeva K S, Wood B J. A Simple Model for Chalcophile Element Partitioning Between Sulphide and Silicate Liquids with Geochemical Applications[J]. Earth and Planetary Science Letters, 2013, 383: 68−81.

    [95]

    Kiseeva K S, Wood B J. The Effects of Composition and Temperature on Chalcophile and Lithophile Element Partitioning into Magmatic Sulphides[J]. Earth and Planetary Science Letters, 2015, 424: 280−294.

    [96]

    Kress V, Greene L E, Ortiz M D, et al. Thermochemistry of Sulfide Liquids IV: Density Measurements and the Thermodynamics of O-S-Fe-Ni-Cu Liquids at Low to Moderate Pressures[J]. Contributions to Mineralogy and Petrology, 2008, 156: 785−797.

    [97]

    Krivolutskaya N A, Gongalsky B I, Kedrovskaya T B, et al. Geology of the Western Flanks of the Oktyabr’skoe Deposit, Noril’sk District, Russia: Evidence of a Closed Magmatic System[J]. Minerallium Deposita, 2019, 54: 611−630.

    [98]

    Kyle J R, Ketcham R A. Application of High Resolution X-ray Computed Tomography to Mineral Deposit Origin, Evaluation, and Processing[J]. Ore Geology Reviews, 2015, 65: 821−839.

    [99]

    Lesher C M, Campbell I H. Geochemical and Fluid Dynamic Modeling of Compositional Variations in Archean Komatiite-hosted Nickel Sulfide Ores in Western Australia[J]. Economic Geology, 1993, 88: 804−816.

    [100]

    Lesher C E, Spera F J. Thermodynamic and Transport Properties of Silicate Melts and Magma[A]. Sigurdsson H, Houghton B, Mcnutt S R, et al. The encyclopedia of volcanoes, 2nd edn[M]. London, Academic Press, 2015, 113−142.

    [101]

    Le Vaillant M, Barnes S J, Mungall J M. Role of De-gassing of the Noril’sk Nickel Deposits in the Permo-Triassic Mass Extinction Event[J]. Proceedings of the National Academy of Sciences, 2017, 114: 2485−2490.

    [102]

    Li C S, Lightfoot P C, Naldrett A J. Contrasting Petrological and Geochemical Relationships in the Voisey’s Bay and Mushuan Intrusions, Labrador, Canada: Implications for Ore Genesis[J]. Economic Geology, 2000, 95: 771−799.

    [103]

    Li C S, Naldrett A J. Geology and Petrology of the Voisey’s Bay Intrusion: Reaction of Olivine with Sulfide and Silicate Liquids[J]. Lithos, 1999, 47: 1−31.

    [104]

    Li C S, Naldrett A J, Ripley E M. Critical Factors for the Formation of a Nickel-copper Deposit in an Evolved Magma System: Lessons from a Comparison of the Pants Lake and Voisey’s Bay Sulfide Occurrences in Labrador, Canada[J]. Mineralium Deposita, 2001, 36: 85−92.

    [105]

    Li C S, Ripley E M, Naldrett A J. A new Genetic Model for the Giant Ni-Cu-PGE Sulfide Deposits Associated with the Siberian Flood Basalts[J]. Economic Geology, 2009, 104: 291−301.

    [106]

    Lightfoot P C, Keays R. R. Siderophile and Chalcophile Metal Variations in Flood Basalts from the Siberian Trap, Noril’sk Region: Implications for the Origin of the Ni-Cu-PGE Sulfide Ores. Economic Geology, 2005, 100: 439−462.

    [107]

    Lightfoot P C, Naldrett A J, Gorbachev N S, et al. Chemostratigraphy of Siberian Trap Lavas, Noril’sk District: Implications for the Source of Flood Basalt Magmas and Their Associated Ni-Cu Mineralization[J]. Ontario Geological Survey Special Publication, 1994, 5: 283−312.

    [108]

    Maier W D, Barnes S J, De Waal S A. Exploration for Magmatic Ni-Cu-PGE Sulphide Deposits: A Review of Recent Advances in the Use of Geochemical Tools, and Their Application to Some South African Ores[J]. South African Geology, 1998, 101: 237−253.

    [109]

    Marsh B D. Crystal Size Distribution (CSD) in Rocks and the Kinetics and Dynamics of Crystallization. I. Theory[J]. Contributions to Mineralogy and Petrology, 1988, 993): 277291. doi: 10.1007/BF00375362

    [110]

    Marsh B D. On the Interpretation of Crystal Size Distributions in Magmatic Systems[J]. Journal of Petrology, 1998, 394): 553599. doi: 10.1093/petroj/39.4.553

    [111]

    Maier W D, Li C S, De Waal S A. Why Are There No Major Ni-Cu Sulfide Deposits in Large Layered Mafic-ultramafic Intrusions[J]? The Canadian Mineralogist, 2001, 39: 547−556.

    [112]

    Mao Y J, Barnes S J, Duan J. Morphology and Particle Size Distribution of Olivines and Sulphides in the Jinchuan Ni-Cu Sulphide Deposits: Evidence for Sulphide Percolation in a Crystal Mush[J]. Journal of Petrology, 2018, 59: 1701−1730.

    [113]

    Mao Y J, Barnes S J, Godel B, et al. Sulfide Ore Formation of the Kalatongke Ni-Cu Deposit as Illustrated by Sulfide Textures[J]. Economic Geology, 2022, 117(8): 1761−1778.

    [114]

    Martin D, Nokes R. Crystal Settling in a Vigorously Convecting Magma Chamber[J]. Nature, 1988, 332: 534536. doi: 10.1038/332534a0

    [115]

    Martin D, Nokes R. A Fluid-dynamical Study of Crystal Settling in Convecting Magmas[J]. Journal of Petrology, 1989, 30: 14711500. doi: 10.1093/petrology/30.6.1471

    [116]

    Mavrogenes J, O’Neil H S C. The Relative Effects of Pressure, Temperature and Oxygen Fugacity on the Solubility of Sulfide in Mafic Magmas[J]. Geochimica et Cosmochimica Acta, 1999, 63: 11731180. doi: 10.1016/S0016-7037(98)00289-0

    [117]

    Mungall J E, Brenan J M. Partitioning of Platinum-group Elements and Au Between Sulfide Liquid and Basalt and the Origins of Mantle-crust Fractionation of the Chalcophile Elements[J]. Geochimica et Cosmochimica Acta, 2014, 125: 265−289.

    [118]

    Mungall J E, Brenan J M, Godel B, et al. Transport of Metals and Sulphur in Magmas by Flotation of Sulphide Melt on Vapour Bubbles[J]. Nature Geoscience, 2015, 8: 216−219.

    [119]

    Mungall J E, Su S G. Interfacial Tension between Magmatic Sulfide and Silicate Liquids: Constraints on Kinetics of Sulfide Liquation and Sulfide Migration Through Silicate Rocks[J]. Earth and Planetary Science Letters, 2005, 234: 135−149.

    [120]

    Naldrett A J. Magmatic sulfide deposits: geology, geochemistry and exploration[M]. Berlin: Springer, 2004.

    [121]

    Naldrett, A. J. From the mantle to the bank: the life of a Ni-Cu-(PGE) sulfide deposit[J]. South African Journal of Geology, 2010, 113: 132. doi: 10.2113/gssajg.113.1-1

    [122]

    Naldrett A J. Key Factors in the Genesis of Noril’sk, Sudbury, Jinchuan, Voisey’s Bay and Other World-class Ni-Cu-PGE Deposits: Implications for Exploration[J]. Australian Journal of Earth Sciences, 1997, 44: 283315. doi: 10.1080/08120099708728314

    [123]

    Naldrett A J, Asif M, Krstic S. The Composition of Mineralization at the Voisey’s Bay Ni-Cu Sulfide Deposit, with Special Reference to Platinum-group Elements[J]. Economic Geology, 2000, 95: 845−865.

    [124]

    Naldrett A J, Fedorenko V A, Lightfoot P C, et al. Ni-Cu-PGE Deposits of Noril’sk Region, Siberia: Their Formation in Conduits for Flood Basalt Volcanism[J]. Transactions of the Institution of Mining and Metallurgy, 1995, 104: 18−36.

    [125]

    Naldrett A J, Lightfoot P C, Fedorenko V A, et al. Geology and Geochemistry of Intrusions and Flood Basalts of the Noril’sk Region, USSR, with Implications for the Origin of the Ni-Cu Ores. Economic Geology, 1992, 87: 975−1004.

    [126]

    Niu Y L, Batiza R. In Situ Densities of MORB Melts and Residual Mantle: Implications for Buoyancy Forces Beneath Mid-Ocean Ridges[J]. The Journal of Geology, 1991, 99(5): 767−775.

    [127]

    Park J W, Campbell I H, Chiaradia M, et al. Crustal Magmatic Controls on the Formation of Porphyry Copper Deposits[J]. Nature Reviews Earth and Environment, 2021, 2: 542−557.

    [128]

    Parmigiani A, Faroughi S, Huber C, et al. Bubble Accumulation and Its Role in the Evolution of Magma Reservoirs in the Upper Crust. Nature, 2016, 532: 492−495.

    [129]

    Patočka V, Tosi N, Calzavarini E. Residence Time of Inertial Particles in 3D Thermal Convection: Implications for Magma Reservoirs[J]. Earth and Planetary Science Letters, 2022, 591: 117622. doi: 10.1016/j.jpgl.2022.117622

    [130]

    Patten C G C, Hector S, Kilias S, et al. Transfer of Sulfur and Chalcophile Metals via Sulfide-volatile Compound Drops in the Christiana-Santorini-Kolumbo Volcanic Field[J]. Nature Communications, 2024, 15: 4968.

    [131]

    Poppe S, Gilchrist J, Breard E C P, et al. Analog Experiments in Volcanology: Towards Multimethod, Upscaled and Integrated Models[J]. Bulletin of Volcanology, 2022, 84: 52.

    [132]

    Rad’ko V A. Model of the Dynamic Differentiation of Intrusive Traps in the Northwestern Siberian Platform[J]. Geologiya I Geofizika, 1991, 11: 1927.

    [133]

    Randolph A, Beckman J, Kraljevich Z. Crystal Size Distribution Dynamics in a Classified Crystallizer: Part I. Experimental and Theoretical Study of Cycling in a Potassium Chloride Crystallizer[J]. AIChE Journal, 1977, 234): 500510. doi: 10.1002/aic.690230415

    [134]

    Richardson J F, Zaki W N. Sedimentation and Fluidisation, Part I [J]. Transactions of the Institution of Chemical Engineers, 1954, 32: 35−53.

    [135]

    Ripley E M, Li C S. Sulfide Saturation in Mafic Magmas: Is External Sulfur Required for Magmatic Ni-Cu-(PGE) Ore Genesis[J]? Economic Geology, 2013, 108: 45−58.

    [136]

    Robertson J C, Barnes S J, Le Vaillant M. Dynamics of Magmatic Sulphide Droplets during Transport in Silicate Melts and Implications for Magmatic Sulphide Ore Formation[J]. Journal of Petrology, 2015, 56: 2445−2472.

    [137]

    Rosenfeld L, Lavrenteva O M, Spivak R, et al. Deformation of a Partially Engulfed Compound Drop Slowly Moving in an Immiscible Viscous Fluid[J]. Physics of Fluids, 2011, 23: 023101.

    [138]

    Roy-Barman M, Wasserburg G J, Papanastassiou D A, Chaussidon M. Osmium Isotopic Compositions and Re-Os Concentrations in Sulfide Globules from Basaltic Glasses[J]. Earth and Planetary Science Letters, 1998, 154(1−2): 331−347.

    [139]

    Rutherford M J. Magma Ascent Rates[J]. Reviews in Mineralogy and Geochemistry, 2008, 69: 241271. doi: 10.2138/rmg.2008.69.7

    [140]

    Saumur B M, Cruden A R. Ingress of Magmatic Ni-Cu Sulphide Liquid into Surrounding Brittle Rocks: Physical & Structural Controls[J]. Ore Geology Reviews, 2017, 90: 439−445.

    [141]

    Saumur B M, Cruden A R, Boutelier D. Sulfide Liquid Entrainment by Silicate Magma: Implications for the Dynamics and Petrogenesis of Magmatic Sulfide Deposits[J]. Journal of Petrology, 2015, 56: 2473−2490.

    [142]

    Shadloo M S, Yildiz M. Kelvin-Helmholtz Instability by SPH[A]. In: Oñate E, Owen D R J (Eds). International Conference on Particle-based Methods-Fundamentals and Applications[C]. 2011, 831−842.

    [143]

    Sili G, Urbani S, Acocella V. What Controls Sill Formation: An Overview from Analogue Models[J]. Journal of Geophysical Research: Solid Earth, 2019, 124: 82058222. doi: 10.1029/2018JB017005

    [144]

    Song X Y, Daniushevsky L V, Keays R R, et al. Structural, Lithological and Geochemical Constraints on the Dynamic Magma Plumbing System and the Jinchuan Ni-Cu Sulfide Deposit, NW China[J]. Mineralium Deposita, 2012, 47: 277−297.

    [145]

    Stacey F D, Anderson O L. Electrical and Thermal Conductivities of Fe-Ni-Si Alloy under Core Conditions[J]. Physics of the Earth and Planetary Interiors, 2001, 124: 153−162.

    [146]

    Stokes G G. On the Effect of the Internal Friction of Fluids on the Motion of Pendulums[J]. Transactions of the Cambridge Philosophical Society, 1981, 9: 8106.

    [147]

    Suckale J, Hager B H, Elkins-Tanton L, et al. It Takes Three to Tango: 2. Bubble Dynamics in Basaltic Volcanoes and Ramifications for Modelling Normal Strombolian Activity[J]. Journal of Geophysical Research, 2010, 115: B07410.

    [148]

    Tang Q Y, Zhang M J, Wang Y K, et al. The Origin of the Zhubu Mafic-ultramafic Intrusion of the Emeishan Large Igneous Province, SW China: Insights from Volatile Compositions and C-Hf-Sr-Nd Isotopes[J]. Chemical Geology, 2017, 469: 47−59.

    [149]

    Terasaki H, Kato T, Urakawa S, et al. The Effect of Temperature, Pressure, and Sulfur Content on Viscosity of the Fe-FeS Melt[J]. Earth and Planetary Science Letters, 2001, 190: 93101. doi: 10.1016/S0012-821X(01)00374-0

    [150]

    Urbani S, Acocella V, Rivalta E. What Drives the Lateral Versus Vertical Propagation of Dikes? Insights from Analogue Models[J]. Journal of Geophysical Research: Solid Earth, 2018, 123: 36803697. doi: 10.1029/2017JB015376

    [151]

    Virtanen V J, Heinonen J S, Molnar F, et al. Fluids as Primary Carriers of Sulphur and Copper in Magmatic Assimilation[J]. Nature Communications, 2021, 12: 6609.

    [152]

    Vukmanovic Z, Fiorentini M L, Reddy S M, et al. Microstructural Constraints on Magma Emplacement and Sulfide Transport Mechanisms[J]. Lithosphere, 2019, 11: 73−90.

    [153]

    Wang W Y, Li Y. Redox Control of the Partitioning of Platinum and Palladium into Magmatic Sulfide Liquids[J]. Communications Earth and Environment, 2024, 5: 190.

    [154]

    Wei B, Wang C Y, Arndt N T, et al. Textural Relationship of Sulfide Ores, PGE, and Sr-Nd-Os Isotope Compositions of the Triassic Piaohechuan Ni-Cu Sulfide Deposit in NE China[J]. Economic Geology, 2015, 110: 2041−2062.

    [155]

    Williams K M, Kavanagh J L, Dennis D J C. Focused Flow during the Formation and Propagation of Sills: Insights from Analogue Experiments[J]. Earth and Planetary Science Letters, 2022, 584: 117492.

    [156]

    Xu X W, Peters S G, Liang G H, et al. Elastic Stress Transmission and Transformation (ESTT) by Confined Liquid: A New Mechanics for Fracture in Elastic Lithosphere of the Earth[J]. Tectonophysics, 2016, 672−673: 129−138.

    [157]

    Xue S C, Deng J, Wang Q F, et al. The Redox Conditions and C Isotopes of Magmatic Ni-Cu Sulfide Deposits in Convergent Tectonic Settings: The Role of Reduction Process in Ore Genesis. Geochimica et Cosmochimica Acta, 2021, 306: 210−225.

    [158]

    Yao Z S, Mungall J E. Flotation Mechanism of Sulphide Melt on Vapour Bubbles in Partially Molten Magmatic Systems[J]. Earth and Planetary Science Letters, 2020, 542: 116298.

    [159]

    Yao Z S, Mungall J E. Transport and Deposition of Immiscible Sulfide Liquid during Lateral Magma Flow[J] Earth-Science Reviews, 2022, 227: 103964.

    [160]

    Yao Z S, Mungall J E. Kinetic Controls on the Sulfide Mineralization of Komatiite-associated Ni-Cu-(PGE) Deposits[J]. Geochimica et Cosmochimica Acta, 2021a, 305: 185−211.

    [161]

    Yao Z S, Mungall J E. Linking the Siberian Flood Basalts and Giant Ni-Cu-PGE Sulfide Deposits at Norilsk[J]. Journal of Geophysical Research: Solid Earth, 2021b, 126: e2020JB020823.

    [162]

    Yao Z S, Mungall J E, Qin K Z. A Preliminary Model for the Migration of Sulfide Droplets in a Magmatic Conduit and the Significance of Volatiles[J]. Journal of Petrology, 2019, 60: 2281−2316.

    [163]

    Yao Z S, Qin K Z, Mungall J. E. Tectonic Controls on Ni and Cu Contents of Primary Mantle-derived Magma for the Formation of Magmatic Sulfide Deposits[J]. American Mineralogist, 2018, 103: 1545−1567.

    [164]

    Zhang M D, Li Y. Breaking of Henry’s Law for Sulfide Liquid-basaltic Melt Partitioning of Pt and Pd[J]. Nature Comunications, 2021, 12: 5994.

    [165]

    Zhang M J, Tang Q Y, Cao C H, et al. The Origin of Permian Pobei Ultramafic Complex in the Northeastern Tarim Craton, Western China: Evidences from Chemical and C-He-Ne-Ar Isotopic Compositions of Volatiles[J]. Chemical Geology, 2017, 469: 85−96.

    [166]

    Zhang M J, Tang Q Y, Hu P Q, et al. Noble Gas Isotopic Constraints on the Origin and Evolution of the Jinchuan Ni-Cu-(PGE) Sulfide Ore-bearing Ultramafic Intrusion, Western China[J]. Chemical Geology, 2013, 339: 301−312.

    [167]

    Zhang Y X. Toward a Quantitative Model for the Formation of Gravitational Magmatic Sulfide Deposits[J]. Chemical Geology, 2015, 391: 5673. doi: 10.1016/j.chemgeo.2014.10.025

  • 加载中

(7)

计量
  • 文章访问数:  48
  • PDF下载数:  6
  • 施引文献:  0
出版历程
收稿日期:  2024-11-15
修回日期:  2024-12-28
录用日期:  2024-12-31
刊出日期:  2025-08-20

目录