Research Progress on Copper Isotope in High-temperature Magmatic System and Its Implications for Magmatic Sulfide Deposits
-
摘要:
Cu同位素在地幔部分熔融、岩浆结晶分异以及地幔交代等高温地质过程中表现出显著的变化特征,其中在岩浆铜镍硫化物成矿系统中发现了~4‰的Cu同位素变化,不同于金属稳定同位素的分馏主要受控于温度变化的传统认识。除了陨石撞击成因的Sudbury矿床外,板内和造山带环境的铜镍矿床均显示较大的Cu同位素变化范围,在复杂的成岩–成矿过程研究中显示出巨大潜力。目前主要认识包括:①地幔Cu同位素存在不均一性,洋中脊玄武岩和科马提岩更能代表地幔源区Cu位素组成。②Cu含量与同位素之间的协同变化,以及Cu同位素在硫化物–硅酸盐之间的分馏系数的控制因素,是理解岩浆形成和演化过程中Cu同位素变化的关键因素。③目前对于俯冲带变质脱水过程中Cu同位素的分馏行为研究十分有限,因此单独利用Cu同位素判断Cu迁移路径存在较大不确定性。大部分Cu仍保存在俯冲板片中,与俯冲相关的各类岩石中Cu同位素偏离地幔值的情况可能是偶然现象。④铜镍矿床中Cu同位素的变化受控于多种地质过程或分馏机制的叠加作用,包括:地幔源区Cu同位素不均一性;地壳混染物质对于岩浆体系Cu同位素的改变;硫化物熔离和分异过程导致硫化物矿石Cu同位素的变化;岩浆体系氧化还原状态的变化:一方面Cu同位素随岩浆氧逸度的变化而变化,另一方面是氧化性的熔/流体导致原生硫化物发生分解及其二次沉淀可以导致Cu同位素变化。Cu同位素在揭示成岩–成矿过程中的关键作用日益凸显,未来应加强探讨Cu同位素与其他同位素体系(如Fe、Zn、Ni等)的协同作用,结合实验与模拟,完善岩浆铜镍硫化物矿床成矿模型,对深入理解壳幔物质循环及其资源效应具有重要意义。
Abstract:Copper isotope exhibits significant variations during high-temperature geological processes such as mantle partial melting, magmatic differentiation, and mantle metasomatism. Notably, a ~4‰ variation in Cu isotope has been observed in magmatic Ni-Cu sulfide systems, challenging the conventional understanding that fractionation of metal stable isotopes is predominantly controlled by temperature. Beyond the Sudbury deposit, which formed via meteoritic impact, Ni-Cu deposits in intraplate and orogenic settings show a wide range of Cu isotope variations, highlighting their potential for studying complex magmatic and metallogenic processes. Current insights include: ① Cu isotope in mantle is highly heterogeneous. Mid-ocean ridge basalts and komatiites better represent the Cu isotopic composition of the mantle source. ② The coupled behavior of Cu concentrations and isotopes, as well as the fractionation coefficients between sulfides and silicates, are crucial for understanding Cu isotopic changes during magma formation and evolution. ③ Research on Cu isotope fractionation during metamorphic dehydration in subduction zones remains limited, resulting in significant uncertainty in using Cu isotope to trace Cu migration paths. Since most Cu is retained in the subducting slab, Cu isotopic deviations from mantle values in subduction-related rocks may be coincidental. ④ Cu isotope variations in Ni-Cu deposits are controlled by multiple geological processes and fractionation mechanisms, including: heterogeneity in mantle Cu isotope, crustal contamination, sulfide segregation and differentiation, and redox state changes in the magmatic system. The crucial role of Cu isotopes in revealing the processes of diagenesis and mineralization is increasingly prominent. In the future, efforts should be intensified to explore the synergistic effects of Cu isotopes with other isotope systems (such as Fe, Zn, Ni, etc.), combining experiments and simulations to refine the mineralization models of magmatic Cu-Ni sulfide deposits. This has significant implications for gaining a deeper understanding of crust-mantle material cycling and its resource effects.
-
-
图 2 地外储库的Cu同位素组成(据许英奎等,2023修改)
Figure 2.
图 3 地幔橄榄岩、辉石岩和榴辉岩Cu同位素数据 (据Kempton et al., 2022修改)
Figure 3.
图 5 瑞利分馏模拟岩浆演化过程残余熔体、结晶的瞬时硫化物和堆晶硫化物的δ65Cu的变化 (据Zou et al., 2019修改)
Figure 5.
图 6 部分熔融过程以及不同类型熔体对地幔橄榄岩的影响 (据Huang et al., 2017修改)
Figure 6.
表 1 已报道的岩浆铜镍硫化物矿床的铜同位素值
Table 1. Reported copper isotopic values of magmatic Cu-Ni sulfide deposits
构造背景 矿床 矿化类型 同位素范围(‰) 文章 西伯利亚大火成岩省 Kharaelakh 块状 −1.8~− 0.9 Malitch et al., 2014 浸染状 −2.3~−1.1 Talnakh 块状 −0.6~−0.1 浸染状 −1.1~−0.1 Noril’sk-1 浸染状 −0.1~0.6 Chernogorsk 浸染状 −0.1~0 Zub-Marksheider 浸染状 −0.1 Vologochan 浸染状 −1.1~−0.4 Nizhny Talnakh 浸染状 −1~0 陆内裂谷 South Kawishiwi 浸染状 −0.36~0.45 Ripley et al., 2015 Partridge River 块状 −0.46 浸染状 −0.85~0.26 Eagle 浸染状 0.90~1.03 网脉状 0.74~1.32 块状 0.69 Tamarack 网脉状 1.21~1.29 浸染状 0.99~1.84 Marathon −1.47~1.07 Brzozowski et al., 2021b Northern −0.59~0.47 Partridge River 块状 −1.14~0.25 Smith et al., 2022 Eagle 块状 −0.43~0.15 Tamarack 块状 −0.39~1.06 中亚造山带 图拉尔根 块状 −1.08~−0.52 Zhao et al., 2017 浸染状 −1.98~0.15 图拉尔根 块状 −0.53~0.53 Zhao et al., 2019 浸染状 −0.83~0.04 喀拉通克 块状 −0.85~0.67 Tang et al., 2024b 浸染状 −0.52~0.18 块状 −0.16~0.03 Tang et al., 2020 浸染状 −1.32~0.07 白石泉 块状 −0.40~0.59 浸染状 −0.22~0.38 黄山南 块状 −0.29~−0.27 Zhao et al., 2022b 浸染状 −0.35~0.18 黄山东 浸染状 −0.69~−0.05 葫芦 块状 0.06~0.17 浸染状 −0.65~0.13 图拉尔根 浸染状 −1.17~0.05 东昆仑造山带 夏日哈木 块状 0.63~0.73 Tang et al., 2024a 浸染状 0.19~0.79 克拉通边缘裂谷带 金川 浸染状 0.26~0.96 Zhao et al., 2022a 网脉状 −0.47~1.29 块状 −0.91~0.09 陨石撞击 Sudbury −0.54~0.4 Zhu et al., 2000
Larson et al., 2003 -
[1] 李津, 唐索寒, 马健雄, 等. 金属同位素质谱分析中样品处理的基本原则与方法[J]. 岩矿测试, 2021, 40(5): 627−636.
LI Jin, TANG Suohan, MA Jianxiong, et al. Principles and Treatment Methods for Metal Isotopes Analysis[J]. Rock and Mineral Analysis,2021,40(5):627−636.
[2] 李世珍, 朱祥坤, 吴龙华, 等. 干法灰化和湿法消解植物样品的铜锌铁同位素测定对比研究[J]. 地球学报, 2011, 32(6): 754−760.
LI Shizhen, ZHU Xiangkun, WU Longhua, et al. A Comparative Study of Plant Sample Preparation by Dry Ashing and Wet Digestion for Isotopic Determination of Cu, Zn and Fe[J]. Acta Geoscientica Sinica,2011,32(6):754−760.
[3] 吕楠, 包志安, 陈开运, 等. fs-LA-MC-ICP-MS非基体匹配精确测定富铜矿物的铜同位素[J]. 中国科学(地球科学), 2022, 52(11): 2239−2253.
LV Nan,BAO Zhi’an,CHEN Kaiyun,et al. Accurate analysis of Cu isotopes by fs-LA-MC-ICP-MS with non-matrix-matched calibration[J]. Science China Earth Sciences,2022,52(11):2239−2253.
[4] 邱坦, 汤庆艳, 杨皓辰, 等. 铁同位素分馏机理以及在镁铁-超镁铁质岩浆作用和成矿作用中的应用[J]. 岩石矿物学杂志, 2024, 43(4): 1034−1051.
QIU Tan, TANG Qingyan, YANG Haochen, et al. Fractionation mechanism of iron isotope and its application in mafic-ultramafic magmatism and metallogenesis[J]. Acta Petrologica et Mineralogica,2024,43(4):1034−1051.
[5] 许英奎, 李智, 冯娟, 等. 星子碰撞增生过程中的同位素分馏研究进展[J]. 东华理工大学学报(自然科学版), 2023, 46(6): 585−596.
XU Yingkui, LI Zhi, FENG Juan, et al. Advanees in isotopic fractionation in planetesimal collisional accrelion processes[J]. Joumal of East China University of Technology(Natural Science),2023,46(6):585−596.
[6] 王倩, 侯清华, 张婷, 等. 铜同位素测定方法研究进展[J]. 矿物岩石地球化学通报, 2016, 35(3): 497-506.
WANG Qian, HOU Qinghua, ZHANG Ting, et al. Progresses of Copper Isotope Analytical Methods[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2016, 35(3): 497-506.
[7] 王跃, 朱祥坤. 铜同位素在矿床学中的应用: 认识与进展[J]. 吉林大学学报: 地球科学版, 2010, 40(4): 739−751.
WANG Yue, ZHU Xiangkun. Applications of Cu Isotopes on Studies of Mineral Deposits: a Status Report[J]. Journal of Jilin University(Earth Science Edition),2010,40(4):739−751.
[8] 王泽洲, 刘盛遨, 李丹丹, 等. 铜同位素地球化学及研究新进展[J]. 地学前缘, 2015, 22(5): 72−83.
WANG Zezhou, LIU Shengyao, LI Dandan, et al. A review of progress in copper stable isotope geochemistry[J]. Earth Science Frontiers,2015,22(5):72−83.
[9] 辛雨, 薛胜超, 王信水, 等. 汇聚环境岩浆氧化态来源的进展与展望[J]. 岩石学报, 2023, 39(9): 2817−2831. doi: 10.18654/1000-0569/2023.09.16
XIN Yu, XUE Shengchao, WANG Xinshui, et al. Progress and prospect of the oxidation state of magmas in convergent tectonic settings[J]. Acta Petrologica Sinica,2023,39(9):2817−2831. doi: 10.18654/1000-0569/2023.09.16
[10] 薛胜超, 刘金宇, 周翊, 等. 交代地幔源区与造山带铜镍成矿作用[J]. 岩石学报, 2024, 40(1): 60−78. doi: 10.18654/1000-0569/2024.01.03
XUE Shengchao, LIU Jinyu, ZHOU Xu, et al. Genetic correlation of metasomatized mantle source with Ni-Cu mineralization in orogenic belt[J]. Acta Petrologica Sinica,2024,40(1):60−78. doi: 10.18654/1000-0569/2024.01.03
[11] 朱祥坤, 王跃, 闫斌, 等. 非传统稳定同位素地球化学的创建与发展[J]. 矿物岩石地球化学通报, 2013, 32(6): 651−688.
ZHU Xiangkun, WANG Yue, YAN Bin, et al. Developments of Non-Traditional Stable Isotope Geochemistry[J]. Bulletin of Mineralogy, Petrology and Geochemistry,2013,32(6):651−688.
[12] Asael D, Matthews A, Bar-Matthews M. Copper isotope fractionation in sedimentary copper mineralization (Timna Valley, Israel)[J]. Chemical Geology,2007,243(3-4):238−254. doi: 10.1016/j.chemgeo.2007.06.007
[13] Barrat J A, Zanda B, Moynier F, et al. Geochemistry of Cl chondrites: Major and trace elements, and Cu and Zn isotopes[J]. Geochimica et Cosmochimica Acta,2012,83:79−92.
[14] Ben Othman D, Luck J M, Bodinier J L, et al. Cu-Zn isotopic variations in the Earth’s mantle[J]. Geochimica et Cosmochimica Acta,2006,70(18):A46.
[15] Bigalke M, Kersten M, Weyer S, et al. Isotopes trace biogeochemistry and sources of Cu and Zn in an intertidal soil[J]. Soil Science Society of America Journal,2013,77(2):680−691. doi: 10.2136/sssaj2012.0225
[16] Bigalke M, Weyer S, Wilcke W. Stable copper isotopes: A novel tool to trace copper behavior in hydromorphic soils[J]. Soil Science Society of America Journal. 2010, 74(1), 60-73.
[17] Bigalke M, Weyer S, Wilcke W. Stable Cu isotope fractionation in soils during oxic weathering and podzolization[J]. Geochimica et Cosmochimica Acta,2011,75(11):3119−3134. doi: 10.1016/j.gca.2011.03.005
[18] Bishop M C, Moynier F, Weinstein C, et al. The Cu isotopic composition of iron meteorites[J]. Meteoritics and Planetary Science,2012,47(2):268−276. doi: 10.1111/j.1945-5100.2011.01326.x
[19] Bohlien S R, Merzger K. Origin of granulite terrenes and the formation of the lowermost continental crust[J]. Science,1989,244:326−329. doi: 10.1126/science.244.4902.326
[20] Borrok D M, Wanty R B, Ridley W I, et al. Separation of copper, iron, and zinc from complex aqueous solutions for isotopic measurement[J]. Chemical Geology,2007,242(3):400−414.
[21] Boyle E A, John S, Abouchami W, et al. Geotraces IC1 (BATS) contamination-prone trace element isotopes Cd, Fe, Pb, Zn, Cu, and Mo intercalibration[J]. Limnology and Oceanography: methods,2012,10(9):653−665. doi: 10.4319/lom.2012.10.653
[22] Brzozowski M J, Good D J, Wu C, et al. Cu isotope systematics of conduit-type Cu-PGE mineralization in the Eastern Gabbro, Coldwell Complex, Canada[J]. Mineralium Deposita,2021b,56(4):707−724. doi: 10.1007/s00126-020-00992-8
[23] Brzozowski M J, Good D J, Wu C, et al. Iron isotope fractionation during sulfide liquid evolution in Cu–PGE mineralization of the Eastern Gabbro, Coldwell Complex, Canada[J]. Chemical Geology,2021a,576:120282. doi: 10.1016/j.chemgeo.2021.120282
[24] Busigny V, Chen J B, Philippot P, et al. Insight into hydrothermal and subduction processes from copper and nitrogen isotopes in oceanic metagabbros[J]. Earth and Planetary Science Letters,2018,498:54−64. doi: 10.1016/j.jpgl.2018.06.030
[25] Chen C F, Foley S F, Shcheka S S, et al. Copper isotopes track the Neoproterozoic oxidation of cratonic mantle roots[J]. Nature Communications,2024,15(1):4311. doi: 10.1038/s41467-024-48304-2
[26] Chen L M, Lightfoot P C, Zhu J M, et al. Nickel isotope ratios trace the process of sulfide-silicate liquid immiscibility during magmatic differentiation[J]. Geochimica et Cosmochimica Acta,2023,353:1−12. doi: 10.1016/j.gca.2023.05.013
[27] Chen Z X, Chen J B, Tamehe L S. Heavy Copper Isotopes in Arc-Related Lavas From Cold Subduction Zones Uncover a Sub-Arc Mantle Metasomatized by Serpentinite-Derived Sulfate-Rich Fluids[J]. Journal of Geophysical Research: Solid Earth,2022,127(10):e2022JB024910. doi: 10.1029/2022JB024910
[28] Day J M D, Sossi P A, Shearer C K, et al. Volatile distributions in and on the Moon revealed by Cu and Fe isotopes in the ‘Rust-y Rock’66095[J]. Geochimica et Cosmochimica Acta,2019,266:131−143. doi: 10.1016/j.gca.2019.02.036
[29] Debret B, Beunon H, Mattielli N, et al. Ore component mobility, transport and mineralization at mid-oceanic ridges: A stable isotopes (Zn, Cu and Fe) study of the Rainbow massif (Mid-Atlantic Ridge 36 14′ N)[J]. Earth and Planetary Science Letters,2018,503:170−180. doi: 10.1016/j.jpgl.2018.09.009
[30] Dhaliwal J K, Day J M D, Creech J B, et al. Volatile depletion and evolution of Vesta from coupled Cu-Zn isotope systematics[C]//European Geosciences Union (EGU) General Assembly Conference Ab-stracts, 2021: EGU21-12820.
[31] Ding S, Dasgupta R. The fate of sulfide during decompression melting of peridotite-implications for sulfur inventory of the MORB-source depleted upper mantle[J]. Earth and Planetary Science Letters,2017,459(1):183−195.
[32] Ding X, Ripley E M, Wang W Z, et al. Iron isotope fractionation during sulfide liquid segregation and crystallization at the Lengshuiqing Ni-Cu magmatic sulfide deposit, SW China[J]. Geochimica et Cosmochimica Acta,2019,261:327−341. doi: 10.1016/j.gca.2019.07.015
[33] Ehrlich S, Butler I, Halicz L, et al. Experimental study of the copper isotope fractionation between aqueous Cu(II) and covellite, CuS[J]. Chemical Geology,2004,209(3):259−269.
[34] Fang S B, Huang J, Ackerman L, et al. Copper migration and enrichment in the mantle wedge: Insights from orogenic peridotites and pyroxenites. Geochimica et Cosmochimica Acta, 2024, 380: 83-95.
[35] Fellows S A, Canil D. Experimental study of the partitioning of Cu during partial melting of Earth's mantle[J]. Earth and Planetary Science Letters,2012,337:133−143.
[36] Feng Y T, Zhang W, Hu Z C, et al. New Potential Sulfide Reference Materials for Microbeam S-Fe-Cu Isotope Measurements[J]. Geostandards and Geoanalytical Research,2023,48(1):227−244.
[37] Fernandez A, Borrok D M. Fractionation of Cu, Fe and Zn isotopes during the oxidative weathering of sulfide-rich rocks[J]. Chemical Geology,2009,264(1-4):1−12. doi: 10.1016/j.chemgeo.2009.01.024
[38] Guo H H, Xia Y, Bai R X, et al. Experiments on Cu-isotope fractionation between chlorine-bearing fluid and silicate magma: implications for fluid exsolution and porphyry Cu deposits[J]. National Science Review,2020,7(8):1319−1330. doi: 10.1093/nsr/nwz221
[39] Herzog G F, Moynier F, Albarède F, et al. Isotopic and elemental abundances of copper and zinc in lunar samples, ZagamiPele’s hairs, and a terrestrial basalt[J]. Geochimica et Cosmochimica Acta,2009,73(19):5884−5904. doi: 10.1016/j.gca.2009.05.067
[40] Hou Q H, Zhou L, Gao S, et al. Use of Ga for mass bias correction for the accurate determination of copper isotope ratio in the NIST SRM 3114 Cu standard and geological samples by MC-ICPMS[J]. Journal of Analytical Atomic Spectrometry,2016,31(1):280−287. doi: 10.1039/C4JA00488D
[41] Huang J, Liu S A, Wörner G, et al. Copper isotope behavior during extreme magma differentiation and degassing: a case study on Laacher See phonolite tephra (East Eifel, Germany)[J]. Contributions to Mineralogy and Petrology,2016a,171:1−16. doi: 10.1007/s00410-015-1217-5
[42] Huang J, Liu S A, Gao Y J, et al. Copper and zinc isotope systematics of altered oceanic crust at IODP Site 1256 in the eastern equatorial Pacific[J]. Journal of Geophysical Research: Solid Earth,2016b,121(10):7086−7100. doi: 10.1002/2016JB013095
[43] Huang J, Huang F, Wang Z C, et al. Copper isotope fractionation during partial melting and melt percolation in the upper mantle: Evidence from massif peridotites in Ivrea-Verbano Zone, Italian Alps[J]. Geochimica et Cosmochimica Acta,2017,211:48−63. doi: 10.1016/j.gca.2017.05.007
[44] Huang J, Fang S B, Guo S. Fluid-mediated Cu and Zn isotope fractionation in subduction zones and implications for arc volcanism: Constraints from high pressure veins within eclogites in the Dabie Orogen[J]. Chemical Geology,2024,663:122258. doi: 10.1016/j.chemgeo.2024.122258
[45] Ikehata K, Hirata T. Copper isotope characteristics of copper-rich minerals from the Horoman peridotite complex, Hokkaido, northern Japan[J]. Economic Geology,2012,107(7):1489−1497. doi: 10.2113/econgeo.107.7.1489
[46] Ikehata K, Hirata T. Evaluation of UV-fs-LA-MC-ICP-MS for precise in situ copper isotopic microanalysis of cubanite[J]. Analytical Sciences,2013,29(12):1213−1217. doi: 10.2116/analsci.29.1213
[47] Ikehata K, Notsu K, Hirata T. In situ determination of Cu isotope ratios in copper-rich materials by NIR femtosecond LA-MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry,2008,23(7):1003−1008. doi: 10.1039/b801044g
[48] Irrgeher J, Prohaska T, Sturgeon R E, et al. Determination of strontium isotope amount ratios in biological tissues using MC-ICPMS[J]. Analytical Methods,2013,5(7):1687−1694. doi: 10.1039/c3ay00028a
[49] Kempton P D, Mathur R, Harmon R S, et al. Cu-isotope evidence for subduction modification of lithospheric mantle[J]. Geochemistry, Geophysics, Geosystems,2022,23(8):https://doi.org/10.1029/2022GC010436. doi: 10.1029/2022GC010436
[50] Lambart S, Koornneef J M, Millet M A, et al. Highly heterogeneous depleted mantle recorded in the lower oceanic crust[J]. Nature Geoscience,2019,12(6):482−486. doi: 10.1038/s41561-019-0368-9
[51] Larner F, Rehkämper M, Coles B J, et al. A new separation procedure for Cu prior to stable isotope analysis by MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry,2011,26(8):1627−1632. doi: 10.1039/c1ja10067j
[52] Larson P B, Maher K, Ramos F C, et al. Copper isotope ratios in magmatic and hydrothermal ore-forming environments[J]. Chemical Geology,2003,201(3-4):337−350. doi: 10.1016/j.chemgeo.2003.08.006
[53] Lauwens S, Costas-Rodriguez M, Vanhaecke F. Ultra-trace Cu isotope ratio measurements via multi-collector ICP-mass spectrometry using Ga as internal standard: an approach applicable to micro-samples[J]. Analytica Chimica Acta,2018,1025:69−79. doi: 10.1016/j.aca.2018.05.025
[54] Le Roux V, Dasgupta R, Lee C T A. Recommended mineral-melt partition coefficients for FRTEs (Cu), Ga, and Ge during mantle melting[J]. American Mineralogist,2015,100(11-12):533−2544.
[55] Lee C T A, Luffi P, Chin E J, et al. Copper systematics in arc magmas and implications for crust-mantle differentiation[J]. Science,2012,336(6077):64−68. doi: 10.1126/science.1217313
[56] Li J, Tang S H, Zhu X K, et al. Basaltic and Solution Reference Materials for Iron, Copper and Zinc Isotope Measurements[J]. Geostandards and Geoanalytical Research,2018(1):163−175.
[57] Li W Q, Jackson S E, Pearson N J, et al. The Cu isotopic signature of granites from the Lachlan Fold Belt, SE Australia[J]. Chemical Geology,2009,258(1-2):38−49. doi: 10.1016/j.chemgeo.2008.06.047
[58] Li Y, Audétat A. Partitioning of V, Mn, Co, Ni, Cu, Zn, As, Mo, Ag, Sn, Sb, W, Au, Pb, and Bi between sulfide phases and hydrous basanite melt at upper mantle conditions[J]. Earth and Planetary Science Letters,2012,355:327−340.
[59] Little S H, Vance D, Mcmanus J, et al. Copper isotope signatures in modern marine sediments[J]. Geochimica et Cosmochimica Acta,2017,212:253−273. doi: 10.1016/j.gca.2017.06.019
[60] Liu S A, Li D D, Li S G, et al. High-precision copper and iron isotope analysis of igneous rock standards by MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry,2014a,29(1):122−133. doi: 10.1039/C3JA50232E
[61] Liu X C, Xiong X L, Audétat A, et al. Partitioning of copper between olivine, orthopyroxene, clinopyroxene, spinel, garnet and silicate melts at upper mantle conditions[J]. Geochimica et Cosmochimica Acta,2014b,125:1−22. doi: 10.1016/j.gca.2013.09.039
[62] Liu S A, Huang J, Liu J G, et al. Copper isotopic composition of the silicate Earth[J]. Earth and Planetary Science Letters,2015,427:95−103. doi: 10.1016/j.jpgl.2015.06.061
[63] Liu S A, Liu P P, Lv Y W, et al. Cu and Zn isotope fractionation during oceanic alteration: Implications for Oceanic Cu and Zn cycles[J]. Geochimica et Cosmochimica Acta,2019,257:191−205. doi: 10.1016/j.gca.2019.04.026
[64] Liu S Q, Li Y B, Liu J, et al. Equilibrium Cu isotope fractionation in copper minerals: a first-principles study[J]. Chemical Geology,2021,564:120060. doi: 10.1016/j.chemgeo.2021.120060
[65] Liu S A, Rudnick R L, Liu W R, et al. Copper isotope evidence for sulfide fractionation and lower crustal foundering in making continental crust[J]. Science Advances,2023,9(36). DOI: 10.1126/sciadv.adg6995.
[66] Luck J M, Othman D B, Albarède F. Zn and Cu isotopic variations in chondrites and iron meteorites: early solar nebula reservoirs and parent-body processes[J]. Geochimica et Cosmochimica Acta,2005,69(22):5351−5363. doi: 10.1016/j.gca.2005.06.018
[67] Luck J M, Othman D B, Barrat J A, et al. Coupled 63Cu and16O excesses in chondrites[J]. Geochimica et Cosmochimica Acta,2003,67(1):143−151. doi: 10.1016/S0016-7037(02)01038-4
[68] Luo C H, Wang R, Zhao Y, et al. Mobilization of Cu in the continental lower crust: A perspective from Cu isotopes[J]. Geoscience Frontiers,2023,14(5):101590. doi: 10.1016/j.gsf.2023.101590
[69] Malitch K N, Latypov R M, Badanina I Y, et al. Insights into ore genesis of Ni-Cu-PGE sulfide deposits of the Noril’sk Province (Russia): Evidence from copper and sulfur isotopes[J]. Lithos,2014,204:172−187. doi: 10.1016/j.lithos.2014.05.014
[70] Maréchal C N, Télouk P, Albarède F. Precise analysis of copper and zinc isotopic compositions by plasma-source mass spectrometry[J]. Chemical Geology,1999,156(1):251−273.
[71] Markl G, Lahaye Y, Schwinn G. Copper isotopes as monitors of redox processes in hydrothermal mineralization[J]. Geochimica et Cosmochimica Acta,2006,70(16):4215−4228. doi: 10.1016/j.gca.2006.06.1369
[72] Mason T F D, Weiss D J, Horstwood M, et al. High-precision Cu and Zn isotope analysis by plasma source mass spectrometry[J]. Journal of Analytical Atomic Spectrometry,2004,19(2):209−217. doi: 10.1039/b306958c
[73] Mathur R, Dendas M, Titley S, et al. Patterns in the Copper Isotope Composition of Minerals in Porphyry Copper Deposits in Southwestern United States[J]. Ecomomic Geology,2010,105(8):1457−1467. doi: 10.2113/econgeo.105.8.1457
[74] Mathur R, Ruiz J, Titley S, et al. Cu isotopic fractionation in the supergene environment with and without bacteria[J]. Geochimica et Cosmochimica Acta,2005,69(22):5233−5246. doi: 10.1016/j.gca.2005.06.022
[75] Mathur R, Titley S, Barra F, et al. Exploration potential of Cu isotope fractionation in porphyry copper deposits[J]. Journal of Geochemical Exploration,2009,102(1):1−6. doi: 10.1016/j.gexplo.2008.09.004
[76] Meija J, Yang L, Sturgeon R E, et al. Certification of natural isotopic abundance inorganic mercury reference material NIMS-1 for absolute isotopic composition and atomic weight[J]. Journal of Analytical Atomic Spectrometry,2010,25(3):384−389. doi: 10.1039/b926288a
[77] Moynier F, Albarède F, Herzog G F. Isotopic composition of zinc, copper, and iron in lunar samples[J]. Geochimica et Cosmochimica Acta,2006,70(24):6103−6117.
[78] Moynier F, Blichert-Toft J, Telouk P, et al. Comparative stable isotope geochemistry of Ni, Cu, Zn, and Fe in chondrites and iron meteorites[J]. Geochimica et Cosmochimica Acta,2007,7l(17):4365−4379.
[79] Moynier F, Koeberl C, Beck P, et al. Isotopic fractionation of Cu intektities[J]. Geochimica et Cosmochimica Acta,2010,74(2):799−807. doi: 10.1016/j.gca.2009.10.012
[80] Moynier F, Vance D, Fujii T, et al. The isotope geochemistry of zinc and copper[J]. Reviews in Mineralogy and Geochemistry,2017,82(1):543−600. doi: 10.2138/rmg.2017.82.13
[81] Naldrett A J, Fedorenko V A, Asif M, et al. Controls on the composition of Ni-Cu sulfide deposits as illustrated by those at Noril’sk, Siberia[J]. Economic Geology,1996,91(4):751−773. doi: 10.2113/gsecongeo.91.4.751
[82] Naldrett A J, Singh J, Krstic S, et al. The mineralogy of the Voisey’s Bay Ni-Cu-Co deposit, northern Labrador, Canada: Influence of oxidation state on textures and mineral compositions[J]. Economic Geology,2000,95(4):889−900.
[83] Neuman M, Gargano A, Shearer C K, et al. Volatile element evolution in the Martian crust: communications with the Martian surface and atmosphere[C]//Lunar and Planetary Institute, NASA Johnson Space Center, 53rd Lunar and Planetary Science Conference, Texas: Woodlands, 2022: 1385.
[84] Paquet M, Moynier F, Yokoyama T, et al. Contribution of Ryugu-like material to Earth’s volatile inventory by Cu and Zn isotop ic analysis[J]. Nature Astronomy,2023,7:182−189.
[85] Qu Y R, Liu S A. Copper isotope constraints on the origins of basaltic and andesitic magmas in the Tengchong volcanic field, SE Tibet[J]. Geoscience Frontiers,2024,15(4):101818. doi: 10.1016/j.gsf.2024.101818
[86] Ripley E M, Dong S F, Li C, et al. Cu isotope variations between conduit and sheet-style Ni-Cu-PGE sulfide mineralization in the Midcontinent Rift System, North America[J]. Chemical Geology,2015,414:59−68. doi: 10.1016/j.chemgeo.2015.09.007
[87] Ripley E M, Li C. Sulfide saturation in mafic magmas: Is external sulfur required for magmatic Ni-Cu-(PGE) ore genesis[J]. Economic Geology,2013,108(1):45−58.
[88] Ripley E M, Li C. Sulfur isotope exchange and metal enrichment in the formation of magmatic Cu-Ni-(PGE) deposits[J]. Economic Geology,2003,98(3):635−641. doi: 10.2113/gsecongeo.98.3.635
[89] Rouxel O, Fouquet Y, Ludden J N. Copper isotope systematics of the Lucky Strike, Rainbow, and Logatchev sea-floor hydrothermal fields on the Mid-Atlantic Ridge[J]. Economic Geology,2004,99(3):585−600. doi: 10.2113/gsecongeo.99.3.585
[90] Rudnick R L, Gao S. Composition of the continental crust[J]. Treatise on Geochemistry,2003,3:1−64.
[91] Savage P S, Moynier F, Chen H, et al. Copper isotope evidence for large-scale sulphide fractionation during Earth’s differentiation[J]. Geochemical Perspectives Letters,2015,1(1):53−64.
[92] Schauble E A. Applying stable isotope fractionation theory to new systems[J]. Reviews in mineralogy and geochemistry,2004,55(1):65−111. doi: 10.2138/gsrmg.55.1.65
[93] Sherman D M. Equilibrium isotopic fractionation of copper during oxidation/reduction, aqueous complexation and ore-forming processes: Predictions from hybrid density functional theory[J]. Geochimica et Cosmochimica Acta,2013,118:85−97. doi: 10.1016/j.gca.2013.04.030
[94] Shields W R, Goldich S S, Garner E L, et al. Natural variations in the abundance ratio and the atomic weight of copper[J]. Journal of Geophysical Research,1965,70(2):479−491. doi: 10.1029/JZ070i002p00479
[95] Smith J M, Ripley E M, Li C, et al. Cu and Ni Isotope Variations of Country Rock-Hosted Massive Sulfides Located Near Midcontinent Rift Intrusions[J]. Economic Geology,2022,117(1):195−211. doi: 10.5382/econgeo.4872
[96] Sullivan K, Layton-Matthews D, Leybourne M, et al. Copper Isotopic Analysis in Geological an Biological Reference Materials by MC-ICP-MS[J]. Geostandards and Geoanalytical Research,2020,44(2):349−362. doi: 10.1111/ggr.12315
[97] Sun P, Niu Y L, Chen S, et al. Copper isotope fractionation during magma differentiation: evidence from lavas on the East Pacific Rise at 10°30′N[J]. Geochimica et Cosmochimica Acta,2023,356:93−104. doi: 10.1016/j.gca.2023.07.016
[98] Takano S, Tanimizu M, Hirata T, et al. Isotopic constraints on biogeochemical cycling of copper in the ocean[J]. Nature communications,2014,5(1):1−7.
[99] Tang D M, Qin K Z, Su B X, et al. Sulfur and copper isotopic signatures of chalcopyrite at Kalatongke and Baishiquan: Insights into the origin of magmatic Ni-Cu sulfide deposits[J]. Geochimica et Cosmochimica Acta,2020,275:209−228. doi: 10.1016/j.gca.2020.02.015
[100] Tang Q Y, Bao J, Zhang Y, et al. Copper isotope fractionation during magmatic evolution in a convergent tectonic setting: Constraints from sulfide Cu-S isotopes and whole-rock PGE of the Xiarihamu Ni-Cu sulfide deposit[J]. Chemical Geology,2024a,668:122348. doi: 10.1016/j.chemgeo.2024.122348
[101] Tang D M, Qin K Z, Evans N J, et al. Sulfide copper-iron isotopic fractionation during formation of the Kalatongke magmatic Cu-Ni sulfide deposit in the Central Asian Orogenic Belt[J]. Geochemistry, Geophysics, Geosystems,2024b,25(6):e2023GC011406. doi: 10.1029/2023GC011406
[102] Taylor S R, MeLennan S M, MeCulloch M T. Geochemistry of loess, continental crustal composition and crustal model ages[J]. Geochimica et Cosmochimica Acta,1983,47(11):1897−1905. doi: 10.1016/0016-7037(83)90206-5
[103] Thompson C M, Ellwood M J. Dissolved copper isotope biogeochemistry in the Tasman Sea, SW Pacific Ocean[J]. Marine Chemistry,2014,165:1−9. doi: 10.1016/j.marchem.2014.06.009
[104] Tollan P, Hermann J. Arc magmas oxidized by water dissociation and hydrogen incorporation in orthopyroxene[J]. Nature Geoscience,2019,12(8):667−671. doi: 10.1038/s41561-019-0411-x
[105] Urey H C. The thermodynamic properties of isotopic substances[J]. Journal of the Chemical Society (London), 1947: 562−581.
[106] Vance D, Archer C, Bermin J, et al. The copper isotope geochemistry of rivers and the oceans[J]. Earth and Planetary Science Letters,2008,274(1):204−213.
[107] Wang Q, Zhou L, Feng L, et al. Use of a Cu-selective resin for Cu preconcentration from seawater prior to its isotopic analysis by MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry,2020,35(11):2732−2739. doi: 10.1039/D0JA00096E
[108] Wang Z C, Becker H, Gawronski T. Partial re-equilibration of highly siderophile elements and the chalcogens in the mantle: A case study on the Baldissero and Balmuccia peridotite massifs (Ivrea Zone, Italian Alps)[J]. Geochimica et Cosmochimica Acta,2013,108:21−44. doi: 10.1016/j.gca.2013.01.021
[109] Wang Z C, Becker H. Abundances of Ag and Cu in mantle peridotites and the implications for the behavior of chalcophile elements in the mantle[J]. Geochimica et Cosmochimica Acta,2015,160:209−226. doi: 10.1016/j.gca.2015.04.006
[110] Wang Z C, Park J W, Wang X, et al. Evolution of copper isotopes in arc systems: Insights from lavas and molten sulfur in Niuatahi volcano, Tonga rear arc[J]. Geochimica et Cosmochimica Acta,2019,250:18−33. doi: 10.1016/j.gca.2019.01.040
[111] Wang Z C, Zhang P Y, Li Y B. Copper recycling and redox evolution through progressive stages of oceanic subduction: Insights from the Izu-Bonin-Mariana forearc[J]. Earth and Planetary Science Letters,2021,574:117178. doi: 10.1016/j.jpgl.2021.117178
[112] Williams H M, Archer C. Copper stable isotopes as tracers of metal-sulphide segregation and fractional crystallisation processes on iron meteorite parent bodies[J]. Geochimica et Cosmochimica Acta,2011,75(11):3166−3178. doi: 10.1016/j.gca.2011.03.010
[113] Wohlgemuth-Ueberwasser C C, Fonseca R O C, Ballhaus C, et al. Sulfide oxidation as a process for the formation of copper-rich magmatic sulfides[J]. Mineralium Deposita,2013,48:115−127. doi: 10.1007/s00126-012-0420-9
[114] Xia Y, Kiseeva E S, Wade J, et al. The effect of core segregation on the Cu and Zn isotope composition of the silicate Moon[J]. Geochemical Perspectives Letters,2019,12:12−17.
[115] Xue S C, Deng J, Wang Q F, et al. The redox conditions and C isotopes of magmatic Ni-Cu sulfide deposits in convergent tectonic settings: The role of reduction process in ore genesis[J]. Geochimica et Cosmochimica Acta,2021,306:210−225. doi: 10.1016/j.gca.2021.05.039
[116] Xue S C, Wang Q F, Deng J, et al. Mechanism of organic matter assimilation and its role in sulfide saturation of oxidized magmatic ore-forming system: insights from C-S-Sr-Nd isotopes of the Tulaergen deposit in NW China[J]. Mineralium Deposita,2022,57(7):1123−1141. doi: 10.1007/s00126-021-01087-8
[117] Yang L, Peter C, Panne U, et al. Use of Zr for mass bias correction in strontium isotope ratio determinations using MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry,2008,23(9):1269−1274. doi: 10.1039/b803143f
[118] Yang X M, Wang S J, Zhang Y W, et al. Nickel isotope fractionation during magmatic differentiation[J]. Geochemistry, Geophysics, Geosystems,2023,24(6):e2023GC010926. doi: 10.1029/2023GC010926
[119] Zhang G L, Liu Y S, Moynier F, et al. Copper mobilization in the lower continental crust beneath cratonic margins, a Cu isotope perspective[J]. Geochimica et Cosmochimica Acta,2022,322:43−57. doi: 10.1016/j.gca.2022.01.031
[120] Zhang R Y, Liou J G, Zheng J P, et al. Petrogenesis of eclogites enclosed in mantle-derived peridotites from the Sulu UHP terrane constraints from trace elements in minerals and Hf isotopes in zircon[J]. Lithos,2009,109(3-4):176−192. doi: 10.1016/j.lithos.2008.08.002
[121] Zhang W Q, Liu C Z, Lissenberg C J, et al. Post-cumulus control on copper isotopic fractionation during oceanic intra-crustal magmatic differentiation[J]. Geochimica et Cosmochimica Acta,2024,369:35−50. doi: 10.1016/j.gca.2024.01.030
[122] Zhang Y, Bao Z, Lv N, et al. Copper Isotope Ratio Measurements of Cu-Dominated Minerals Without Column Chromatography Using MC-ICP-MS[J]. Frontiers in Chemistry,2020,8:609. doi: 10.3389/fchem.2020.00609
[123] Zhao Y, Xue C J, Liu S A, et al. Copper isotope fractionation during sulfide-magma differentiation in the Tulaergen magmatic Ni-Cu deposit, NW China[J]. Lithos,2017,286-287:206−215. doi: 10.1016/j.lithos.2017.06.007
[124] Zhao Y, Xue C J, Liu S A, et al. Redox reactions control Cu and Fe isotope fractionation in a magmatic Ni-Cu mineralization system[J]. Geochimica et Cosmochimica Acta,2019,249:42−58. doi: 10.1016/j.gca.2018.12.039
[125] Zhao Y, Liu S A, Xue C J, et al. Copper isotope evidence for a Cu-rich mantle source of the world-class Jinchuan magmatic Ni-Cu deposit[J]. American Mineralogist,2022a,107(4):673−683. doi: 10.2138/am-2021-7911
[126] Zhao Y, Liu S A, Xue C J, et al. Copper isotope fractionation in magmatic Ni-Cu mineralization systems associated with the variation of oxygen fugacity in silicate magmas[J]. Geochimica et Cosmochimica Acta,2022b,338:250−263. doi: 10.1016/j.gca.2022.09.040
[127] Zhao Y, Liu S A, Xue C J, et al. Metasomatized mantle facilitates the genesis of magmatic nickel-copper sulfide deposits in orogenic belts: A copper isotope perspective[J]. Geochimica et Cosmochimica Acta,2024a,366:128−140. doi: 10.1016/j.gca.2023.11.028
[128] Zhao Y, Wang S J, Xue C J, et al. Hidden deep sulfide cumulates beneath the Jinchuan Ni-Cu-platinum-group element deposit (China) inferred from Ni-Cu isotopes[J]. Geology,2025,53 (1):3–7.
[129] Zheng Y C, Liu S A, Wu C D, et al. Cu isotopes reveal initial Cu enrichment in sources of giant porphyry deposits in a collisional setting[J]. Geology,2019,47(2):135−138. doi: 10.1130/G45362.1
[130] Zhu X K, Guo Y, Williams R J P, et al. Mass fractionation processes of transition metal isotopes[J]. Earth and Planetary Science Letters,2002,200(1-2):47−62. doi: 10.1016/S0012-821X(02)00615-5
[131] Zhu X K, O’nions R K, Guo Y, et al. Determination of natural Cu-isotope variation by plasma-source mass spectrometry: implications for use as geochemical tracers[J]. Chemical Geology,2000,163(1-4):139−149. doi: 10.1016/S0009-2541(99)00076-5
[132] Zhu Y T, Li M, Wang Z C, et al. High-precision Copper and Zinc Isotopic Measurements in Igneous Rock Standards Using Large-geometry MC-ICP-MS[J]. Atomic Spectroscopy,2019,40(6):206−214. doi: 10.46770/AS.2019.06.002
[133] Zou Z Q, Wang Z C, Li M, et al. Copper isotope variations during magmatic migration in the mantle: Insights from mantle pyroxenites in Balmuccia peridotite massif[J]. Journal of Geophysical Research: Solid Earth,2019,124(11):11130−11149. doi: 10.1029/2019JB017990
[134] Zou Z Q, Wang Z Q, Xu Y G, et al. Contrasting Cu isotopes in mid-ocean ridge basalts and lower oceanic crust: Insights into the oceanic crustal magma plumbing systems[J]. Earth and Planetary Science Letters,2024a,627:118563. doi: 10.1016/j.jpgl.2023.118563
[135] Zou Z Q, Wang Z C, Xu Y G, et al. Deep mantle cycle of chalcophile metals and sulfur in subducted oceanic crust[J]. Geochimica et Cosmochimica Acta,2024b,370:15−28. doi: 10.1016/j.gca.2024.02.007
-