渭河盆地主要氦源岩花岗岩的体积约束及生氦量估算:以蓝田岩基为例

胡明卿, 张乔, 杨海星, 曹毅章, 徐小虎, 马壮, 马永福, 马元. 2025. 渭河盆地主要氦源岩花岗岩的体积约束及生氦量估算:以蓝田岩基为例. 西北地质, 58(5): 24-32. doi: 10.12401/j.nwg.2024133
引用本文: 胡明卿, 张乔, 杨海星, 曹毅章, 徐小虎, 马壮, 马永福, 马元. 2025. 渭河盆地主要氦源岩花岗岩的体积约束及生氦量估算:以蓝田岩基为例. 西北地质, 58(5): 24-32. doi: 10.12401/j.nwg.2024133
HU Mingqing, ZHANG Qiao, YANG Haixing, CAO Yizhang, XU Xiaohu, MA Zhuang, MA Yongfu, MA Yuan. 2025. The Volume of Granites in Main Helium Source Rocks of Weihe Basin and the Estimation of Their Helium Production: A Case Study of the Lantian Batholith. Northwestern Geology, 58(5): 24-32. doi: 10.12401/j.nwg.2024133
Citation: HU Mingqing, ZHANG Qiao, YANG Haixing, CAO Yizhang, XU Xiaohu, MA Zhuang, MA Yongfu, MA Yuan. 2025. The Volume of Granites in Main Helium Source Rocks of Weihe Basin and the Estimation of Their Helium Production: A Case Study of the Lantian Batholith. Northwestern Geology, 58(5): 24-32. doi: 10.12401/j.nwg.2024133

渭河盆地主要氦源岩花岗岩的体积约束及生氦量估算:以蓝田岩基为例

  • 基金项目: 中国石油煤层气有限责任公司科学研究与技术开发项目(2023-KJ-22),中国地质调查局项目“氦气资源调查评价与示范”(DD20230026),陕西省自然科学基础研究计划(2024JC-YBMS-216、2024JC-YBQN-0342、S2024-JC-YB-0817)、陕西省重点研发计划(2024GH-YBXM-04),2024年度青海省“昆仑英才·高端创新创业人才”计划A类项目“柴达木盆地北缘氦气资源成藏机理及勘探开发”联合资助。
详细信息
    作者简介: 胡明卿(1976−),男,博士,高级工程师,主要从事煤层气及新能源地质研究。E−mail:hu_mq@petrochina.com.cn
    通讯作者: 张乔(1992−),男,硕士,副研究员,主要从事氦源岩及花岗岩研究。E−mail:hotrock2012zq@163.com
  • 中图分类号: P618.13

The Volume of Granites in Main Helium Source Rocks of Weihe Basin and the Estimation of Their Helium Production: A Case Study of the Lantian Batholith

More Information
  • 氦源岩评价是氦气资源评价的关键,主要包含岩石类型、生氦元素铀和钍丰度、形成年龄及体积4个关键参数。花岗岩作为主要氦源岩,其中前3个参数易于获取,而花岗岩体积这一参数一直缺乏约束。渭河盆地具有良好的氦气资源潜力,而且其南缘巨大的花岗岩基被认为是盆地内壳源氦的主要氦源,为研究这一参数提供了良好的条件。本次研究选取蓝田岩基作为对象,综合地质、地球物理资料,将其几何形态限定为接近高长宽比和薄板的椭圆柱体。根据岩体长度和厚度的幂次定律,计算得到蓝田岩基的厚度为4.7 km、体积为572 km3。放射性分析结果显示蓝田岩基的U、Th丰度平均值为5.8×106、19.0×106。通过放射性衰变原理,计算得出蓝田岩基自形成以来能产生的氦气量为2.71×108 m3。结合区域花岗岩地质特征,笔者进一步估算出渭河盆地南缘花岗岩的生氦资源总量(184×108 m3),这一结果为渭河盆地氦气资源勘探突破、氦气资源评价体系建立提供了启示和依据。

  • 加载中
  • 图 1  渭河盆地南缘花岗岩体与富氦地热井分布图(修改自李玉宏等,2018

    Figure 1. 

    图 2  蓝田岩基地质简图(修改自丁丽雪等,2010

    Figure 2. 

    图 3  蓝田岩基两期侵入体野外地质特征

    Figure 3. 

    图 4  不同深度下不同产状侵入体的厚度T、长度L与面积A之间关系(修改自Brown, 2013

    Figure 4. 

    图 5  渭河盆地航磁ΔT剩余异常等值线平面图(修改自李玉宏等,2018

    Figure 5. 

    表 1  渭河盆地南缘花岗岩基生氦量计算参数

    Table 1.  Parameters of helium production in Granitic batholiths in southern Weihe Basin

    参数 年龄t
    (Ma)*
    平面长度L
    (km)
    平面宽度W
    (km)
    平均厚度T
    (km)
    体积V
    (km3
    生氦元素 生氦速率
    (cm3/g·y)
    生氦量P
    (108 m3
    U(10−6 Th(10−6
    蓝田岩基1503154.75725.8191.26E-122.71
    宝鸡岩基213100209.5149303.9719.481.05E-1283.7
    太白岩基21460307.098903.9721.631.12E-1258.8
    翠华山岩基22730204.6217511.4719.621.97E-1224.3
    牧护关岩基15120103.65687.5921.731.56E-123.35
    老牛山岩基1525096.322164.0725.71.25E-1210.5
    华山岩基1342063.63414.728.688.29E-130.95
    合计184
    注:*年龄引自Jiang等(2010)丁丽雪等(2010)齐秋菊等(2012)吕星球等(2014)薛颖瑜等(2015)
    下载: 导出CSV
  • [1]

    常洋梅, 刘超, 孙蓓蕾. 鄂尔多斯盆地东缘石西区块氦源岩有效性评价及空间展布特征[J]. 煤田地质与勘探, 2025, 536): 129142.

    CHANG Yangmei, LIU Chao, SUN Beilei. Effectiveness assessment and spatial distribution characteristics of helium source rocks in the Shixi Block along the eastern margin of the Ordos Basin[J]. Coal Geology & Exploration, 2025, 536): 129142.

    [2]

    丁丽雪, 马昌前, 李建威, 等. 华北克拉通南缘蓝田和牧护关花岗岩体: LA-ICP-MS锆石U-Pb年龄及其构造意义[J]. 地球化学, 2010, 395): 401413.

    DING Lixue, MA Changqian, LI Jianwei, et al. LA-ICP-MS zircon U-Pb ages of the Lantian and Muhuguan granitoid plutons, southern margin of the North China craton: Implications for tectonic setting[J]. Geochimica, 2010, 395): 401413.

    [3]

    卢进才, 魏仙样, 李玉宏, 等. 汾渭盆地富氦天然气成因及成藏条件初探[J]. 西北地质, 2005, 383): 8286.

    LU Jincai, WEI Xianyang, LI Yuhong, et al. Preliminary study about genesis and pool formation conditions of rich-helium type natural gas[J]. Northwestern Geology, 2005, 383): 8286.

    [4]

    高宇, 刘全有, 朱东亚, 等. 稀有气体示踪地质流体及氦气富集研究进展[J]. 煤田地质与勘探, 2025, 536): 8495.

    GAO Yu, LIU Quanyou, ZHU Dongya, et al. Advances in research on noble gas as tracers of geofluids and helium enrichment[J]. Coal Geology & Exploration, 2025, 536): 8495.

    [5]

    韩伟, 李玉宏, 卢进才, 等. 陕西渭河盆地富氦天然气异常的影响因素[J]. 地质通报, 2014, 3311): 18361841.

    HAN Wei, LI Yuhong, LU Jincai, et al. The factors responsible for the unusual content of helium-rich natural gas in the Weihe Basin, Shaanxi Province[J]. Geological Bulletin of China, 2014, 3311): 18361841.

    [6]

    韩元红, 罗厚勇, 薛宇泽, 等. 渭河盆地地热水伴生天然气成因及氦气富集机理[J]. 天然气地球科学, 2022, 332): 277287.

    HAN Yuanhong, LUO Houyong, XUE Yuze, et al. Genesis and helium enrichment mechanism of geothermal water-associated gas in Weihe Basin[J]. Natural Gas Geoscience, 2022, 332): 277287.

    [7]

    李济远, 李玉宏, 胡少华, 等. “山西式”氦气成藏模式及其意义[J]. 西安科技大学学报, 2022, 423): 529536.

    LI Jiyuan, LI Yuhong, HU Shaohua, et al. “Shanxi-type”helium accumulation model and its essentiality[J]. Journal of Xi’an University of Science and Technology, 2022, 423): 529536.

    [8]

    李盈莹, 王博, 曹婷婷. 花岗质岩浆侵位的构造物理模拟研究进展[J]. 高校地质学报, 2023, 294): 543558.

    LI Yingying, WANG Bo, CAO Tingting. Advances on the analogue modeling of the emplacement of granitic magma[J]. Geological Journal of China Universities, 2023, 294): 543558.

    [9]

    李玉宏, 周俊林, 张文等. 渭河盆地氦气成藏条件及资源前景[M]. 北京: 地质出版社, 2018, 1−289.

    [10]

    李玉宏, 卢进才, 李金超, 等. 渭河盆地富氦天然气井分布特征与氦气成因[J]. 吉林大学学报(地球科学版), 2011, 41S1): 4753.

    LI Yuhong, LU Jincai, LI Jinchao, et al. Distribution of the Helium-Rich Wells and Helium Derivation in Weihe Basin[J]. Journal of Jilin University(Earth Science Edition), 2011, 41S1): 4753.

    [11]

    李玉宏, 王行运, 韩伟. 陕西渭河盆地氦气资源赋存状态及其意义[J]. 地质通报, 2016, 352−3): 372378.

    LI Yuhong, WANG Xingyun, HAN Wei. Mode of occurrence of helium in Weihe Basin, Shaanxi Province and its significance[J]. Geological Bulletin of China, 2016, 352−3): 372378.

    [12]

    李玉宏, 张文, 王利, 等. 亨利定律与壳源氦气弱源成藏——以渭河盆地为例[J]. 天然气地球科学, 2017, 284): 495501.

    LI Yuhong, ZHANG Wen, WANG Li, et al. Henry’s law and accumulation of crust-derived helium: A case from Weihe Basin, China[J]. Natural Gas Geoscience, 2017, 284): 495501.

    [13]

    李玉宏, 张文, 周俊林, 等. 花岗岩在氦气成藏中的双重作用: 氦源与储集[J]. 西北地质, 2022, 554): 95102.

    LI Yuhong, ZHANG Wen, ZHOU Junlin, et al. Dual contribution of granites in helium accumulation: source and reservoir[J]. Northwestern Geology, 2022, 554): 95102.

    [14]

    刘建朝, 李荣西, 魏刚峰, 等. 渭河盆地地热水水溶氦气成因与来源研究[J]. 地质科技情报, 2009, 286): 8488.

    LIU Jianchao, LI Rongxi, WEI Gangfeng, et al. Origin and Source of Soluble Helium Gas in Geothermal Water, Weihe Basin[J]. Geological Science and Technology Information, 2009, 286): 8488.

    [15]

    刘金兰, 赵斌, 王万银, 等. 利用重磁资料研究南岭于都-赣县矿集区花岗岩与断裂分布特征[J]. 地质学报, 2014, 884): 658668.

    LIU Jinlan, ZHAO Bin, WANG Wanyin, et al. A study of the granite and faults distribution based on gravity and magnetic data obtained in Yudu-Ganxian ore concentration area of Nanling[J]. Acta Geologica Sinica, 2014, 884): 658668.

    [16]

    刘金兰, 赵斌, 王万银, 等. 南岭于都—赣县矿集区银坑示范区重磁资料探测花岗岩分布研究[J]. 物探与化探, 2019, 432): 223233.

    LIU Jinlan, ZHAO Bin, WANG Wanyin, et al. A study of the distribution of granite detected by gravity and magnetic data in Yinkeng demonstration area of Nanling Yudu-Ganxian ore concentration area[J]. Geophysical and Geochemical Exploration, 2019, 432): 223233.

    [17]

    刘锐, 陈觅, 田向盛, 等. 东秦岭蓝田和牧护关岩体地球化学, 锆石SIMS U-Pb年龄及Hf同位素特征: 岩石成因及构造意义[J]. 矿物学报, 2014, 344): 469480.

    LIU Rui, CHEN Mi, TIAN Xiangsheng, et al. Geochemical, zircon SIMS U-Pb geochronological and Hf isotopic study on Lantian and Muhuguan plutons in Eastern Qinling, China: petrogenesis and tectonic implications[J]. Acta Mineralogica Sinica, 2014, 344): 469480.

    [18]

    吕星球, 王晓霞, 柯昌辉, 等. 北秦岭太白花岗岩体LA-ICP-MS锆石U-Pb测年及其地质意义[J]. 矿产地质, 2014, 331): 3752.

    LV Xingqiu, WANG Xiaoxia, KE Changhui, et al. LA-ICP-MS zircon U-Pb dating of Taibai pluton in North Qinling Mountains and its geological significance[J]. Mineral Deposits, 2014, 331): 3752.

    [19]

    彭威龙, 刘全有, 张英, 等. 中国首个特大致密砂岩型(烃类)富氦气田——鄂尔多斯盆地东胜气田特征[J]. 中国科学: 地球科学, 2022, 52(6): 1078–1085.

    PENG Weilong, LIU Quanyou, ZHANG Ying, et al. The first extra-large helium-rich gas field identified in a tight sandstone of the Dongsheng Gas Field, Ordos Basin, China[J]. Science China: Earth Sciences, 2022, 52(6): 1078–1085.

    [20]

    齐秋菊, 王晓霞, 柯昌辉, 等. 华北地块南缘老牛山杂岩体时代、成因及地质意义—锆石年龄、Hf同位素和地球化学新证据[J]. 岩石学报, 2012, 281): 279301.

    QI Qiuju, WANG Xiaoxia, KE Changhui, et al. Geochronology and origin of the Laoniushan complex in the southern margin of North China Block and their implications: New evidences from zircon dating, Hf isotopes and geochemistry[J]. Acta Petrologica Sinica, 2012, 281): 279301.

    [21]

    秦胜飞, 李济远, 梁传国, 等. 中国中西部富氦气藏氦气富集机理——古老地层水脱氦富集[J]. 天然气地球科学, 2022, 338): 15.

    QIN Shengfei, LI Jiyuan, LIANG Chuanguo, et al. Helium enrichment mechanism of helium rich gas reservoirs in central and western China-degassing and accumulation from old formation water[J]. Natural Gas Geoscience, 2022, 338): 15.

    [22]

    王亮, 张应文, 刘盛光. 区域重磁资料圈定贵州境内侵入岩体及局部地质构造[J]. 物探与化探, 2009, 333): 245250.

    WANG Liang, ZHANG Yingwen, LIU Shengguang. The application of regional gravity and magnetic data to delineation intrusive bodies and local geological structures in Guizhou Province[J]. Geophysical and Geochimical Exploration, 2009, 333): 245250.

    [23]

    王晓霞, 王涛, 齐秋菊, 等. 秦岭晚中生代花岗岩时空分布、成因演变及构造意义[J]. 岩石学报, 2011, 276): 15731593.

    WANG Xiaoxia, WANG Tao, QI Qiuju, et al. Temporal-spatial variations, origin and their tectonic siginificance of the Late Mesozoic granites in the Qinling, Central China[J]. Acta Petrologica Sinica, 2011, 276): 15731593.

    [24]

    薛颖瑜, 李双庆, 张贺, 等. 宝鸡花岗岩体锆石U-Pb年龄、地球化学和Hf同位素组成[A]. 中国矿物岩石地球化学学会第15届学术年会论文摘要集[C].2015.

    XUE Yingyu, LI Shuangqing, ZHANG He, et al. Zircon U-Pb ages, geochemistry and Hf isotopic compositions of Baoji granites[A]. Abstracts of the 15th annual meeting of Chinese Society for Mineralogy[C]. 2015.

    [25]

    尤兵, 陈践发, 肖洪, 等. 富氦天然气藏氦源岩特征及关键评价参数[J]. 天然气工业, 2022, 4211): 141154.

    YOU Bing, CHEN Jianfa, XIAO Hong, et al. Characteristics and key evaluation parameters of helium source rocks in helium-rich natural gas reservoirs[J]. Natural Gas Industry, 2022, 4211): 141154.

    [26]

    张梦婷, 李文厚, 李玉宏, 等. 渭河盆地及周缘上古生界残留地层分布及油气意义[J]. 地质科学, 2019, 542): 423433.

    ZHANG Mengting, LI Wenhou, LI Yuhong, et al. Residual stratigraphic distribution and hydrocarbon significance of Upper Paleozoic in Weihe Basin and its adjacent area[J]. China Journal of Geology, 2019, 542): 423433.

    [27]

    张乔, 周俊林, 李玉宏, 等. 渭河盆地南缘花岗岩中生氦元素(U, Th)赋存状态及制约因素研究——以华山复式岩体为例[J]. 西北地质, 2022, 553): 241256.

    ZHANG Qiao, ZHOU Junlin, LI Yuhong, et al. The Occurrence State and Restraint factors of Helium-produced Elements(U, Th) in the Granites from the Southern Margin of Weihe Basin: Evidences from Huashan Complex[J]. Northwestern Geology, 2022, 553): 241256.

    [28]

    张文. 关中和柴北缘地区战略性氦气资源成藏机理研究[D]. 北京:中国矿业大学(北京), 2019.

    ZHANG Wen. Accumulation mechanism of helium, a strategic resource, in Guanzhong and North Qaidam Basin[D]. Beijing: China University of Mining & Technology(Beijing), 2019.

    [29]

    张文, 李玉宏, 王利, 等. 渭河盆地氦气成藏条件分析及资源量预测[J]. 天然气地球科学, 2018, 292): 236244.

    ZHANG Wen, LI Yuhong, WANG Li, et al. The analysis of helium accumalation conditions and prediction of helium resource in Weihe Basin[J]. Natural Gas Geoscience, 2018, 292): 236244.

    [30]

    张雪. 渭河盆地天然气及氦气成藏条件与资源量预测[D]. 西安:长安大学, 2015, 102-119.

    ZHANG Xue, Accumulation conditions and resource prediction of natural gas and helium gas in Weihe Basin[D]. Xi’an: Chang’an University, 2015, 102-119.

    [31]

    张兴康, 叶会寿, 李正远, 等. 小秦岭华山复式岩基大夫峪岩体锆石U-Pb年龄、Hf同位素和地球化学特征[J]. 矿床地质, 2015, 342): 235260.

    ZHANG Xingkang, YE Huishou, LI Zhengyuan, et al. Zircon U-Pb ages, Hf isotopic composition and geochemistry of Dafuyu granitoid poluton from Huashan complex batholith in Xiaoqinling[J]. Mineral Deposits, 2015, 342): 235260.

    [32]

    张宗清, 张国伟, 刘敦一, 等. 秦岭造山带蛇绿岩, 花岗岩和碎屑沉积岩同位素年代学和地球化学[M]. 北京: 地质出版社, 2006.

    [33]

    张作祥, 金大伟, 白凤有, 等. 天然气中氦资源评价方法探讨[J]. 科学发现, 2018, 61): 15.

    ZHANG Zuoxiang, JIN Dawei, BAI Fengyou, et al. Discussion on Evaluation Method of Helium Resources in Natural Gas[J]. Science Discovery, 2018, 61): 15.

    [34]

    钟清, 孟小红, 刘士毅. 重力资料定位地质体边界问题的探讨[J]. 物探化探计算技术, 2007, 29S1): 3538+13+14.

    ZHONG Qing, MENG Xiaohong, LIU Shiyi. A discussion of boundry mapping by using gravity data[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2007, 29S1): 3538+13+14.

    [35]

    周俊林, 李玉宏, 魏建设, 等. 渭河盆地固市凹陷华州北地区氦气地质条件与富集模式[J]. 西北地质, 2022, 554): 3344.

    ZHOU Jinlin, LI Yuhong, WEI Jianshe, et al. Geological conditions and enrichment model of helium in North Huazhou area of Gushi Depression, Weihe Basin, China[J]. Northwestern Geology, 2022, 554): 3344.

    [36]

    Anderson S T. Economics, helium, and the U. S. Federal Helium Reserve: Summary and outlook[J]. Nat Resour Res, 2018, 27: 455477. doi: 10.1007/s11053-017-9359-y

    [37]

    Améglio L, Vigneresse J L. Geophysical imaging of the shape of granitic intrusions at depth: a review[M]. Geological Society, London, Special Publications, 1999, 168(1): 39−54.

    [38]

    Ballentine C J, Dan N B. The origin of air-like noble gases in MORB and OIB[J]. Earth & Planetary Science Letters, 2000, 1801−2): 3948.

    [39]

    Brown A A. Formation of High Helium Gases: A Guide for Explorationists[C]. AAPG Convention, New Orleans, Louisiana, USA. 2010.

    [40]

    Brown, M. Granite: From genesis to emplacement[J]. GSA bulletin, 2013, 1257-8): 10791113. doi: 10.1130/B30877.1

    [41]

    Danabalan D, Gluyas J G, Macpherson G G, et al. New High-Grade Helium Discoveries in Tanzania[C]. Yokohama, Japan: Goldschmidt Conference, 2016.

    [42]

    Danabalan D, Gluyas J G, Macpherson C G,et al. The principles of helium exploration[J]. Petroleum Geoscience, 2022,28(2), petgeo2021-029.

    [43]

    Haederle M, Atherton M P. Shape and intrusion style of the Coastal Batholith, Peru[J]. Tectonophysics, 2002, 3451−4): 1728. doi: 10.1016/S0040-1951(01)00204-9

    [44]

    Jiang Y H, Jin G D, Liao S Y, et al. Geochemical and Sr–Nd–Hf isotopic constraints on the origin of Late Triassic granitoids from the Qinling orogen, central China: implications for a continental arc to continent–continent collision[J]. Lithos, 2010, 1171−4): 183197.

    [45]

    Mahdy N M, El Kalioubi B A, Wohlgemuth-Ueberwasser C C, et al. Petrogenesis of U-and Mo-bearing A2-type granite of the Gattar batholith in the Arabian Nubian Shield, Northeastern Desert, Egypt: Evidence for the favorability of host rocks for the origin of associated ore deposits[J]. Ore Geology Reviews, 2015, 71: 5781.

    [46]

    McCaffrey K J W, Cruden A R. Dimensional data and growth models for intrusions, in Breitkreuz, C., Mock, A., and Petford, N., eds., First International Workshop: Physical Geology of Subvolcanic Systems—Laccoliths, Sills and Dikes (LASI) [M]: Freiberg, Germany, Wissenschaftliche Mitteilung Instute für Geologie Technische Universität Bergakademie Freiberg, 2002, 37–39.

    [47]

    Nie H K, Liu Q Y, Dang W, et al. Enrichment mechanism and resource potential of shale-type helium: A case study of Wufeng Formation-Longmaxi Formation in Sichuan Basin[J]. Science China Earth Sciences, 2023, 666): 12791288. doi: 10.1007/s11430-022-1045-3

    [48]

    Pacheco N. Helium, Mineral Commodity Summaries, Helium[M]. Government Printing Office, 2002: 78−79.

    [49]

    Petford N, Cruden A R, McCaffrey K J W, et al. Granite magma formation, transport and emplacement in the Earth's crust[J]. Nature, 2000, 4086813): 669673.

    [50]

    Sumita I, Ota Y. Experiments on buoyancydriven crack around the brittle-ductile transition[J]. Earth and Planetary Science Letters, 2011, 304: 337346. doi: 10.1016/j.jpgl.2011.01.032

    [51]

    Xue Y Y, Siebel W, He J F, et al. Granitoid petrogenesis and tectonic implications of the Late Triassic Baoji pluton, North Qinling orogen, China: Zircon U-Pb ages and geochemical and Sr-Nd-Pb-Hf isotopic compositions[J]. The Journal of Geology, 2018, 1261): 119139.

    [52]

    Zhang W, Li Y H, Zhao F H, et al . Using noble gases to trace groundwater evolution and assess helium accumulation in Weihe Basin, central China[J]. Geochimica et Cosmochimica Acta, 2019, 251: 229246. doi: 10.1016/j.gca.2019.02.024

    [53]

    Zhang Q, Zhou J L, Li Y H, et al. Discovery of bauxite-type helium source rock in Jinzhong basin, central North China and its resource potential evaluation[J]. China Geology, 2023, 64): 753755.

  • 加载中

(5)

(1)

计量
  • 文章访问数:  47
  • PDF下载数:  8
  • 施引文献:  0
出版历程
收稿日期:  2024-11-12
修回日期:  2025-01-02
录用日期:  2025-01-04
刊出日期:  2025-10-20

目录