Coupling Relationship between Neogene Tectonism and Sedimentation and Its Controlling of Helium Accumulation in Huazhou Exploration Area, Gushi Sag, Weihe Basin
-
摘要:
氦气是广泛应用于高新技术产业的稀缺性资源,而中国氦气供应长期依赖进口。渭河盆地固市凹陷华州探区氦气成藏地质条件优越,是氦气勘探的有利区带。氦气探井钻探成果表明,断裂体系和有利储集相带的空间展布与相互配置关系是氦气富集成藏的关键,对新近纪构造运动与沉积作用耦合关系开展研究,将有助于进一步查明区内断裂活动规律与沉积相空间展布特征,对于明确氦气资源勘探部署具有重要意义。结合邻区已积累的多种低温热年代学数据,区内钻井、录井、测井、岩心、地震及C-He同位素值等资料综合分析结果显示,秦岭造山带新近纪以来的多阶段快速隆升事件导致研究区断陷作用加剧,发育秦岭北缘深大断裂并伴生有一系列次级断层,为深部氦气及烃类载体气向上运移提供有利的运移通道;蓝田–灞河组下段的巨厚砾岩层是上新世时期秦岭造山带快速隆升的沉积响应结果,以发育扇三角洲扇根亚相为主,而上段岩性主要为砂岩、砂质泥岩及泥岩互层,发育扇中–扇缘沉积亚相。蓝田–灞河组层段所采气样的C、He同位素特征显示,研究区内发育有煤型甲烷气且氦气来源以壳源为主;张家坡期主要以发育浅湖相沉积体系为特征,薄层砂岩体有望成为氦气成藏的有利储集相带。张家坡组发育的厚层泥岩被认为是区内有利的生物气烃源岩层段及区域重要盖层,自下而上可构成完整的氦气成藏生运储盖组合,可作为氦气勘探的重要区带。
Abstract:Helium is a rare resource and is widely used in the high-tech field. However, the helium supply in China heavily depends on imports. The Huazhou exploration area of Gushi Sag in Weihe basin is a favorable area for helium exploration, which has superior geological conditions for helium accumulation. The drilling results of helium exploration well indicate that the spatial distribution and mutual configuration relationship of the fault systems and favorable reservoir zones are the key to helium-rich gas accumulation. Clarifying the coupling relationship between Neogene tectonism and sedimentation will help to further ascertain the regularity of fault activity and characteristics of the spatial distribution of sedimentary facies of the study area, which is of great significance for clearing the exploration and deployment of helium resource. Combining with the various low-temperature thermochronology data accumulated of the adjacent area, this study conducts a comprehensive analysis of drilling logging, well logging, core samples, seismic, and carbon and helium isotope data. The results indicate that the multiple rapid uplift events of the Qinling orogenic belt aggravated the faulted effect and produced a series of secondary faults developed by deep major faults of the northern margin of Qinling Mountains, which can provide favorable migration channels for the upward migration of the deep helium and hydrocarbon carrier gas. The thick conglomerate layer of the lower Lantian-Bahe Formation is the sedimentary response of the rapid uplift of Qinling orogenic belt, and the Formation mainly developed the fan-delta root subfacies. The lithology of the upper Lantian-Bahe Formation is mainly characterized by the interbeds of sandstone, sandy mudstone, and mudstone, and the Formation mainly developed the middle and marginal sub-facies. Moreover, the carbon and helium isotope values of gas samples from Lantian-Bahe Formation indicate that coal-type methane gas is developed in this area and the helium is mainly the type of crustal source. Zhangjiapo Formation is mainly characterized by lacustrine facies, and the thin sandstone bodies in the Formation can be expected to be favorable facies zone for helium accumulation. The thick-bedded mudstone developed in the Zhangjiapo Formation is considered to be a favorable source rock segment of biogas and important cap in this area. Zhangjiapo Formation has a complete combination of generation, transport, storage, and cap for helium accumulation from bottom to top and can be used as an important zone for helium exploration.
-
Key words:
- Weihe basin /
- Gushi Sag /
- Huazhou exploration area /
- tectonism /
- sedimentary characteristics /
- helium accumulation
-
-
图 2 秦岭造山带北缘华山、太白岩体年龄–高程变化图(a、b)(据Liu et al., 2013修改)与渭河盆地及周缘新生代构造演化示意图(c)(据王建强等, 2015; Dong et al., 2022修改)
Figure 2.
图 3 华州探区近南北向地震剖面地质解释图(据蔡鑫磊等,2025修改)
Figure 3.
图 4 氦气探井地层柱状图及岩心和显微照片(据蔡鑫磊等,2025修改)
Figure 4.
图 6 研究区富氦天然气成藏模式图(据蔡鑫磊等,2025修改)
Figure 6.
表 1 氦气探井及邻区地热井井口气气体组分与碳及氦同位素值统计表
Table 1. The statistic table of gas components and carbon and helium isotope values of geothermal wells in adjacent areas and Helium exploration well
井名 地层
层位甲烷
(%)δ13C1值
(‰)氦气含量
(%)3He/4He值
(10−7)载体气
类型氦气成
因类型中海井 蓝田–灞河组或高陵群
混合开采9.24 –23.84 9.226 1.08 煤型气 壳源为主,部分样品中
混入极少量幔源氦御温泉 31.47 –25.80 3.019 1.09 煤型气 中医学院 82.86 –30.80 0.115 1.49 煤型气 渭热1井 87.12 –35.05 0.142 0.95 煤型气 渭热2井 64.29 –36.37 0.207 1.31 煤型气 72.41 –35.89 0.201 0.85 煤型气 渭热4井 69.25 –52.16 0.334 1.19 生物气 渭热7井 张家坡组 99.47 –64.97 0.000 1.39 生物气 渭热8井 89.16 –62.63 0.000 1.88 生物气 辛热1井 97.91 –65.63 0.003 0.87 生物气 华阴R1井 蓝田–灞河组或高陵群
混合开采31.89 / 3.007 / / 华县1井 60.05 –30.59 0.540 / 煤型气 华县2井 71.70 –33.47 2.110 / 煤型气 富华农邦 59.07 / 5.080 / / 氦气探井 蓝田–灞河组 2.67 –33.90 0.008 1.96 煤型气 26.06 –24.52 1.708 / 煤型气 -
[1] 白相东. 秦岭北缘断裂带活动性对地质灾害影响研究[D]. 哈尔滨: 中国地震局工程力学研究所, 2018, 1−153. BAI Xiangdong. Influence study from the activity of the northern margin fault zone of Qinling Mountains on geological hazard[D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration, 2018, 1−153. [2] 蔡鑫磊. 渭河盆地一热两气资源勘探开发研究[M]. 北京: 科学出版社, 2017. [3] 蔡鑫磊, 李谦益, 李正, 等 . 渭河盆地氦气资源研究进展与勘探开发关键技术[J]. 岩性油气藏,2025 ,37 (5 ):1 −11 .CAI Xinlei, LI Qianyi, LI Zheng, et al . Research progress and key techniques of exploration and development of helium resource in Weihe Basin[J]. Lithologic Reservoirs,2025 ,37 (5 ):1 −11 .[4] 常洋梅, 刘超, 孙蓓蕾 . 鄂尔多斯盆地东缘石西区块氦源岩有效性评价及空间展布特征[J]. 煤田地质与勘探,2025 ,53 (6 ):129 −142 .CHANG Yangmei, LIU Chao, SUN Beilei . Effectiveness assessment and spatial distribution characteristics of helium source rocks in the Shixi Block along the eastern margin of the Ordos Basin[J]. Coal Geology & Exploration,2025 ,53 (6 ):129 −142 .[5] 陈五泉 . 渭河盆地固市凹陷烃源岩特征及生物气资源潜力评价[J]. 西安石油大学学报(自然科学版),2015 ,30 (4 ):23 −27 .CHEN Wuquan . Characteristics of hydrocarbon source rock and resource potential evaluation of biological gas in Gushi Sag, Weihe Basin[J]. Journal of Xi'an Shiyou University (Natural Science Edition),2015 ,30 (4 ):23 −27 .[6] 董云鹏, 杨钊, 孙圣思, 等 . 秦岭隆升过程及其如何控制气候环境?[J]. 地球科学,2022 ,47 (10 ):3834 −3836 .DONG Yunpeng, YANG Zhao, SUN Shengsi, et al . Qinling Uplift Process and How to control the climate environment?[J]. Earth Science,2022 ,47 (10 ):3834 −3836 .[7] doi: 10.12401/j.nwg.2024114冯旭亮, 汪啸东, 罗姣, 等 . 鄂尔多斯盆地地热和氦气资源远景: 来自居里面深度的证据[J]. 西北地质,2025 ,58 (3 ):22 −32 . doi: 10.12401/j.nwg.2024114FENG Xuliang, WANG Xiaodong, LUO Jiao, et al . Geothermal and Helium Resource Prospects in the Ordos Basin: Insight from the Curie Point Depths[J]. Northwestern Geology,2025 ,58 (3 ):22 −32 .[8] doi: 10.3969/j.issn.1671-2552.2014.11.022韩伟, 李玉宏, 卢进才, 等 . 陕西渭河盆地富氦天然气异常的影响因素[J]. 地质通报,2014 ,33 (11 ):1836 −1841 . doi: 10.3969/j.issn.1671-2552.2014.11.022HAN Wei, LI Yuhong, LU Jincai, et al . The factors responsible for the unusual content of helium-rich natural gas in the Weihe Basin, Shaanxi Province[J]. Geological Bulletin of China,2014 ,33 (11 ):1836 −1841 .[9] doi: 10.11764/j.issn.1672-1926.2021.09.009韩元红, 罗厚勇, 薛宇泽, 等 . 渭河盆地地热水伴生天然气成因及氦气富集机理[J]. 天然气地球科学,2022 ,33 (2 ):277 −287 . doi: 10.11764/j.issn.1672-1926.2021.09.009HAN Yuanhong, LUO Houyong, XUE Yuze, et al . Genesis and helium enrichment mechanism of geothermal water-associated gas in Weihe Basin[J]. Natural Gas Geoscience,2022 ,33 (2 ):277 −287 .[10] doi: 10.11781/sysydz202201001何发岐, 王付斌, 王杰, 等 . 鄂尔多斯盆地东胜气田氦气分布规律及特大型富氦气田的发现[J]. 石油实验地质,2022 ,44 (1 ):1 −10 . doi: 10.11781/sysydz202201001HE Faqi, WANG Fubin, WANG Jie, et al . Helium distribution of Dongsheng Gas Field in Ordos Basin and discovery of a super large helium-rich gas field[J]. Petroleum Geology and Experiment,2022 ,44 (1 ):1 −10 .[11] 李玉宏, 卢进才, 李金超, 等 . 渭河盆地天然气成因特征及其意义[J]. 西安石油大学学报: 自然科学版,2011 ,26 (5 ):11 −16 .LI Yuhong, LU Jincai, LI Jinchao, et al . Genetic characteristics of the natural gas in Weihe Basin and its significance[J]. Journal of Xi'an Shiyou University (Natural Science Edition),2011 ,26 (5 ):11 −16 .[12] 李玉宏, 周俊林, 张文, 等. 渭河盆地氦气成藏条件及资源前景[M]. 北京: 地质出版社, 2018. [13] 李玉宏, 李济远, 周俊林, 等 . 国内外氦气资源勘探开发现状及其对中国的启示[J]. 西北地质,2022 ,55 (3 ):233 −240 .LI Yuhong, LI Jiyuan, ZHOU Junlin, et al . Exploration and Development Status of World Helium Resources and Its Implications for China[J]. Northwestern Geology,2022 ,55 (3 ):233 −240 .[14] 李云波, 王成涛, 宋党育, 等 . 我国富氦盆地成藏模式对煤系氦气富集和勘探的启示[J]. 煤田地质与勘探,2025 ,53 (6 ):22 −47 .LI Yunbo, WANG Chengtao, SONG Dangyu, et al . Implications of helium accumulation models in helium-rich basins in China for the enrichment and exploration of helium in coal measures[J]. Coal Geology & Exploration,2025 ,53 (6 ):22 −47 .[15] 李智超. 渭河盆地新生代岩相古地理及环境演化[D]. 西安: 西北大学, 2017, 1-175. LI Zhichao. The lithofacies paleogeography and paleoenviromental evolution of the Cenozoic in the Weihe basin, China[D]. Xi’an: Northwest University, 2017, 1-175. [16] 刘护军. 渭河盆地的形成演化与东秦岭的隆升[D]. 西安: 西北大学, 2004, 1−70. LIU Hujun. Formation and Evolution of the Weihe River Basin and Uplift of the Eastern Qinling Mountains[D]. Xi’an: Northwest University, 2004, 1−70. [17] doi: 10.3969/j.issn.1006-6616.2014.01.006刘建朝, 张林, 王行运, 等 . 固市凹陷非常规水溶甲烷气成因及来源[J]. 地质力学学报,2014 ,20 (1 ):61 −69 . doi: 10.3969/j.issn.1006-6616.2014.01.006LIU Jianchao, ZHANG Lin, WANG Xingyun, et al . Genesis and sources of non-conventional water soluble methane gas in Gushi sag[J]. Journal of Geomechamics,2014 ,20 (1 ):61 −69 .[18] doi: 10.3969/j.issn.0001-5733.2010.10.014刘建辉, 张培震, 郑德文, 等 . 秦岭太白山新生代隆升冷却历史的磷灰石裂变径迹分析[J]. 地球物理学报,2010 ,53 (10 ):2405 −2414 . doi: 10.3969/j.issn.0001-5733.2010.10.014LIU Jianhui, ZHANG Peizhen, ZHENG Dewen, et al . The cooling history of Cenozoic exhumation and uplift of the Taibai Mountain, Qinling, China: evidence from the apatite fission track (AFT) analysis[J]. Chinese Journal of Geophysics,2010 ,53 (10 ):2405 −2414 .[19] doi: 10.12090/j.issn.1006-6616.2018.24.01.007刘林, 芮会超 . 渭河盆地结构特征及演化研究[J]. 地质力学学报,2018 ,24 (1 ):60 −69 . doi: 10.12090/j.issn.1006-6616.2018.24.01.007LIU Lin, RUI Huichao . Exploration on structural characteristics of the Weihe basin and its evolution[J]. Journal of Geomechanics,2018 ,24 (1 ):60 −69 .[20] doi: 10.3969/j.issn.1009-6248.2005.03.012卢进才, 魏仙样, 李玉宏, 等 . 汾渭盆地富氦天然气成因及成藏条件初探[J]. 西北地质,2005 ,38 (3 ):82 −86 . doi: 10.3969/j.issn.1009-6248.2005.03.012LU Jincai, WEI Xianyang, LI Yuhong et al . Preliminary study about genesis and pool formation conditions of rich-helium type natural gas[J]. Northwestern Geology,2005 ,38 (3 ):82 −86 .[21] 彭威龙, 刘全有, 张英, 等 . 中国首个特大致密砂岩型(烃类)富氦气田: 鄂尔多斯盆地东胜气田特征[J]. 中国科学: 地球科学,2022 ,52 (6 ):1078 −1085 .PENG Weilong, LIU Quanyou, ZHANG Ying, et al . The first extra-large helium-rich gas field identified in a tight sandstone of the Dongsheng Gas Field, Ordos Basin, China[J]. Science China: Earth Sciences,2022 ,52 (6 ):1078 −1085 .[22] doi: 10.3969/j.issn.0001-5717.2017.01.009祁凯, 任战利, 崔军平, 等 . 鄂尔多斯盆地渭北隆起岐山-麟游地区中新生代构造热演化及地质响应——来自裂变径迹分析的证据[J]. 地质学报,2017 ,91 (1 ):151 −162 . doi: 10.3969/j.issn.0001-5717.2017.01.009QI Kai, REN Zhanli, CUI Junping, et al . The Meso-cenozoic tectonic thermal evolution of the Qishan-Linyou areas in Weibei uplift of Ordos basin and its response in geology: evidence from fission-track analysis[J]. Acta Geological Sinica,2017 ,91 (1 ):151 −162 .[23] doi: 10.3787/j.issn.1000-0976.2023.12.015秦胜飞, 陶刚, 罗鑫, 等 . 氦气富集与天然气成藏差异、勘探误区[J]. 天然气工业,2023 ,43 (12 ):138 −151 . doi: 10.3787/j.issn.1000-0976.2023.12.015QIN Shengfei, TAO Gang, LUO Xin, et al . Difference between helium enrichment and natural gas accumulation and misunderstandings in helium exploration[J]. Natural Gas Industry,2023 ,43 (12 ):138 −151 .[24] 任战利, 崔军平, 郭科, 等 . 鄂尔多斯盆地渭北隆起抬升期次及过程的裂变径迹分析[J]. 科学通报,2015 ,60 (14 ):1298 −1309 .REN Zhanli, CUI Junping, GUO Ke, et al . Fission-track analysis of uplift times and processes of the Weibei Uplift in the Ordos Basin[J]. Chinese Science Bulletin,2015 ,60 (14 ):1298 −1309 .[25] doi: 10.3969/j.issn.0001-5717.2020.07.003任战利, 刘润川, 任文波, 等 . 渭河盆地地温场分布规律及其控制因素[J]. 地质学报,2020 ,94 (7 ):1938 −1949 . doi: 10.3969/j.issn.0001-5717.2020.07.003REN Zhanli, LIU Runchuan, REN Wenbo, et al . Distribution of geothermal field and its controlling factors in the Weihe basin[J]. Acta Geologica Sinca,2020 ,94 (7 ):1938 −1949 .[26] doi: 10.12401/j.nwg.2022039司庆红, 曾威, 刘行, 等 . 临汾–运城盆地氦气富集要素及成藏条件[J]. 西北地质,2023 ,56 (1 ):129 −141 . doi: 10.12401/j.nwg.2022039SI Qinghong, ZENG Wei, LIU Xing, et al . Analysis of Helium Enrichment Factors and Reservoir Forming Conditions in Linfen–Yuncheng Basin[J]. Northwestern Geology,2023 ,56 (1 ):129 −141 .[27] doi: 10.3321/j.issn:0253-3219.2005.09.017万景林, 王瑜, 李齐, 等 . 太白山中新生代抬升的裂变径迹年代学研究[J]. 核技术,2005 ,9 :712 −716 . doi: 10.3321/j.issn:0253-3219.2005.09.017WAN Jinglin, WANG Yu, LI Qi, et al . Apatite fission track study of Taibai Mountain uplift in the Mesozoic-Cenozoic[J]. Nuclear Techniques,2005 ,9 :712 −716 .[28] doi: 10.3969/j.issn.1671-2552.2015.10.024王建强, 刘池洋, 高飞, 等 . 陕西渭河盆地前新生界地质特征及其油气意义[J]. 地质通报,2015 ,34 (10 ):1981 −1991 . doi: 10.3969/j.issn.1671-2552.2015.10.024WANG Jianqiang, LIU Chiyang, GAO Fei, et al . Pre-Cenozoic geological characteristics and oil-gas significance in Weihe basin, Shaanxi Province[J]. Geological Bulletin of China,2015 ,34 (10 ):1981 −1991 .[29] 王兴. 渭河盆地地热资源赋存与开发[M]. 西安: 陕西科学技术出版社, 2005. [30] doi: 10.12401/j.nwg.2023070魏泽坤, 冯旭亮, 马佳月, 等 . 鄂尔多斯盆地东南部重磁场特征及其氦气勘探意义[J]. 西北地质,2023 ,56 (5 ):98 −110 . doi: 10.12401/j.nwg.2023070WEI Zekun, FENG Xuliang, MA Jiayue, et al . Characteristics of Gravity and Magnetic Field and their Significance of Helium Resources Exploration in the Southeastern Ordos Basin[J]. Northwestern Geology,2023 ,56 (5 ):98 −110 .[31] 肖霖. U-Th/He热年代学: 方法及其在秦岭新生代隆升中的应用[D]. 北京: 中国地震局地质研究所, 2018, 1−120. XIAO Lin. U-Th /He thermochronology: method and its application in the Cenozoic uplift of the Qinling Range[D]. Beijing: Institute of Geology, China Earthquake Administration, 2018, 1−120. [32] doi: 10.12017/dzkx.2018.049杨鹏, 任战利, 张金功, 等 . 新生代渭河盆地沉积-构造迁移与渭北隆起及东秦岭耦合关系探讨[J]. 地质科学,2018 ,53 (3 ):876 −892 . doi: 10.12017/dzkx.2018.049YANG Peng, REN Zhanli, ZHANG Jingong, et al . Discussion of the coupling relationships between the Cenozoic sedimentary-tectonic migration of the Weihe Basin and the uplift of the Weibei and East Qinling areas[J]. Chinese Journal of Geology,2018 ,53 (3 ):876 −892 .[33] 张国伟, 张本仁, 袁学诚, 等. 秦岭造山带与大陆动力学[M]. 北京: 科学出版社, 2001. [34] 张瀚之. 碎屑锆石反映的晚中新世以来渭河盆地沉积物物源变化和环境变迁[D]. 南京: 南京大学, 2017, 1−152. ZHANG Hanzhi. Variation of sediment provenance and paleoenviroment in the Weihe basin since late Miocene revealed by detrital zircon dating[D]. Nanjing: Nanjing University, 2017, 1−152. [35] doi: 10.12401/j.nwg.2022042张健, 张海华, 贺君玲, 等 . 东北地区氦气成藏条件与资源前景分析[J]. 西北地质,2023 ,56 (1 ):117 −128 . doi: 10.12401/j.nwg.2022042ZHANG Jian, ZHANG Haihua, HE Junling, et al . Analysis of Helium Accumulation Conditions and Resource Prospect in Northeast China[J]. Northwestern Geology,2023 ,56 (1 ):117 −128 .[36] 张雪. 渭河盆地天然气及氦气成藏条件与资源量预测[D]. 西安: 长安大学, 2015, 1−153. ZHANG Xue. Accumulation Conditions and Resource Prediction of Nature Gas and Helium Gas in Weihe Basin[D]. Xi’an: Chang’an University, 2015, 1−153. [37] 周俊林, 李玉宏, 魏建设, 等 . 渭河盆地固市凹陷华州北地区氦气地质条件与富集模式[J]. 西北地质,2022 ,55 (4 ):33 −44 .ZHOU Junlin, LI Yuhong, WEI Jianshe, et al . Geological Conditions and Enrichment Model of Helium in North Huazhou Area of Gushi Depression, Weihe Basin, China[J]. Northwestern Geology,2022 ,55 (4 ):33 −44 .[38] doi: 10.3969/j.issn.1671-1505.2004.01.012朱筱敏, 杨俊生, 张喜林 . 岩相古地理研究与油气勘探[J]. 古地理学报,2004 ,6 (1 ):101 −109 . doi: 10.3969/j.issn.1671-1505.2004.01.012ZHU Xiaomin, YANG Junsheng, ZHANG Xilin . Lithofacies paleogeography and Petroleum exploration[J]. Journal of Palaeogeography,2004 ,6 (1 ):101 −109 .[39] 邹易, 罗情勇, 陈践发, 等 . 含氦−富氦气藏氦气竞争溶解物理模拟实验研究[J]. 煤田地质与勘探,2025 ,53 (6 ):96 −108 .ZOU Yi, LUO Qingyong, CHEN Jianfa, et al . Physical simulation experiments on competitive dissolution of helium in helium-containing to helium-rich gas reservoirs[J]. Coal Geology & Exploration,2025 ,53 (6 ):96 −108 .[40] doi: 10.1007/s11053-017-9359-yAnderson S T . Economics, helium, and the US Federal Helium Reserve: summary and outlook[J]. Natural Resources Research,2018 ,27 :455 −477 .[41] Brown A A. Formation of High Helium Gases: A Guide for Explorationists[C]. AAPG Convention, New Orleans, Louisiana, USA, 2010. [42] doi: 10.1306/07111817343Brown A A . Origin of helium and nitrogen in the Panhandle-Hugoton field of Texas, Oklahoma, and Kansas, United States[J]. AAPG Bulletin,2019 ,103 (2 ):369 −403 .[43] doi: 10.1016/j.earscirev.2020.103226Caracciolo L . Sediment generation and sediment routing systems from a quantitative provenance analysis perspective: Review, application and future development[J]. Earth-Science Reviews,2020 ,209 :103226 .[44] doi: 10.2113/gselements.11.3.189Chew D, Spikings R . Geochronology and thermochronology using apatite: Time and temperature of lower crust to surface[J]. Elements,2015 ,11 :189 −194 .[45] doi: 10.1029/2020TC006416Clinkscales C, Kapp P, Thomson S, et al . Regional exhumation and tectonic history of the Shanxi Rift and Taihangshan, North China[J]. Tectonics,2021 ,40 (3 ):e2020TC006416 .[46] doi: 10.1130/B26406.1Dickinson W R, Gehrels G E . U-Pb ages of detrital zircons in Jurassic eolian and associated sandstones of the Colorado Plateau: Evidence for transcontinental dispersal and intraregional recycling of sediment[J]. Geological Society of America Bulletin,2009 ,121 (3-4 ):408 −433 .[47] Ding L, Kapp P, Cai F, et al . Timing and mechanisms of Tibetan Plateau uplift[J]. Nature Reviews Earth & Environment,2022 ,3 (10 ):652 −667 .[48] doi: 10.1016/j.jseaes.2011.03.002Dong Yunpeng, Zhang Guowei, Neubauer F, et al . Tectonic evolution of the Qinling orogen, China: Review and synthesis[J]. Journal of Asian Earth Sciences,2011 ,41 (3 ):213 −237 .[49] Dong Yunpeng, Shi Xiaohui, Sun Shengsi, et al . Co-Evolution of the Cenozoic Tectonics, Geomorphology, Environment and Ecosystem in the Qinling Mountains and Adjacent Areas, Central China[J]. Geosystems and Geoenvironment,2022 ,1 (2 ):1 −19 .[50] doi: 10.1130/B25805.1Enkelmann E, Ratschbacher L, Jonckheere R, et al . Cenozoic exhumation and deformation of northeastern Tibet and the Qinling: Is Tibetan lower crustal flow diverging around the Sichuan Basin?[J]. Geological Society of America Bulletin,2006 ,118 (5-6 ):651 −671 .[51] doi: 10.1016/j.chemgeo.2022.120790Halford D T, Karolytė R, Barry P H, et al . High helium reservoirs in the Four Corners area of the Colorado Plateau, USA[J]. Chemical Geology,2022 ,596 :120790 .[52] doi: 10.1002/lno.10649Havig J R, Hamilton T L, McCormick M, et al . Water column and sediment stable carbon isotope biogeochemistry of permanently redox-stratified Fayetteville Green Lake, New York, USA[J]. Limnology and Oceanography,2018 ,63 (2 ):570 −587 .[53] doi: 10.1016/j.tecto.2014.01.011Heberer B, Anzenbacher T, Neubauer F, et al . Polyphase exhumation in the western Qinling Mountains, China: Rapid Early Cretaceous cooling along a lithospheric-scale tear fault and pulsed Cenozoic uplift[J]. Tectonophysics,2014 ,617 :31 −43 .[54] doi: 10.1016/j.tecto.2012.01.025Liu J H, Zhang P Z, Lease R O, et al . Eocene onset and late Miocene acceleration of Cenozoic intracontinental extension in the North Qinling range-Weihe graben: Insights from apatite fission track thermochronology[J]. Tectonophysics,2013 ,584 :281 −296 .[55] Rapatskaya L A, Tonkikh M E, Ustyuzhanin A O. Natural reservoir as a geological body for storing helium reserves[C]. IOP Conference. Series: Earth and Environmental Science, 2020, 408: 012060. [56] Rice D D . Composition and origins of coalbed gas[J]. Hydrocarbons from coal: AAPG Studies in Geology,1993 ,38 (1 ):159 −184 .[57] doi: 10.1016/S1876-3804(24)60039-XTao S Z, Yang Y Q, Chen Y, et al . Geological conditions, genetic mechanisms and accumulation patterns of helium resources[J]. Petroleum Exploration and Development,2024 ,51 (2 ):498 −518 .[58] doi: 10.1029/2021TC007029Wang Y Z, Li C P, Hao Y Q, et al . Multi‐Stage Growth in the North Margin of the Qinling Orogen, Central China, Revealed by Both Low-Temperature Thermochronology and River Profile Inversion[J]. Tectonics,2022 ,41 (4 ):e2021TC007029 .[59] doi: 10.1016/j.jpgl.2017.07.024Xu J, Stockli D F, Snedden J W . Enhanced provenance interpretation using combined U-Pb and (U-Th)/He double dating of detrital zircon grains from lower Miocene strata, proximal Gulf of Mexico Basin, North America[J]. Earth and Planetary Science Letters,2017 ,475 :44 −57 .[60] Zhang W B, Wang F, Wu L, et al . Mountain Growth under the Combined Effects of Paleostress and Paleoclimate: Implications from Apatite (U-Th)/He Thermochronology of Taibai Mountain, Central China[J]. Lithosphere,2022a , (1 ):8286127 .[61] doi: 10.1029/2021TC007058Zhang W B, Wang F, Wu L, et al . Reactivated Margin of the Western North China Craton in the Late Cretaceous: Constraints From Zircon (U-Th)/He Thermochronology of Taibai Mountain[J]. Tectonics,2022b ,41 (2 ):e2021TC007058 .[62] doi: 10.1016/j.gca.2019.02.024Zhang W, Li Yuhong, Zhao Fenghua, et al . Using noble gases to trace groundwater evolution and assess helium accumulation in Weihe Basin, central China[J]. Geochimica et Cosmochimica Acta,2019 ,251 :229 −246 . -