Research on the Relationship between Fault and Gold Mineralization in the Middle-south Section of Zhaoping Fault Zone in Jiaodong Peninsula
-
摘要:
招平断裂是胶东金矿的重要控矿构造,中-南段是近年来找矿热点地区,笔者在对招平断裂中-南段内金矿成矿特征及断裂构造特征进行系统分析基础上,初步探讨了断裂构造与金成矿之间的关系。蚀变岩型金矿主要赋存在主断裂下盘的绢英岩化蚀变带中,断层缓倾处是成矿的有利部位;石英脉型金矿多呈脉群产出于次级断裂中。蚀变岩型金矿金的赋存状态由浅部向深部,裂隙金、晶隙金占比减少,包体金占比增加。主断裂由中心向两侧发育绢英岩化、硅化、钾化等,且下盘矿化蚀变明显强于上盘。地化剖面显示,Au与Ag、Pb、Bi正相关,且明显受断裂控制。
Abstract:Zhaoping fault is an important ore-controlling structure of Jiaodong gold deposit. The middle-south section is a hot spot for prospecting in recent years. Based on the systematic analysis of the metallogenic characteristics and fault structure characteristics of gold deposits in the middle-south section of Zhaoping fault, this paper preliminarily discusses the relationship between fault structure and gold mineralization. Altered rock type gold deposits mainly occur in the quartz-sericite alteration zone of the footwall of the main fault, and the gentle dip of the fault is the favorable part of mineralization. Quartz vein type gold deposits mostly occur in secondary faults as vein groups. The occurrence state of gold in altered rock type gold deposits is from shallow to deep, the proportion of fissure gold and crystal fissure gold decreases, and the proportion of inclusion gold increases. The main fault develops quartz-sericite, silicification and potassic alteration from the center to both sides, and the mineralization alteration of the footwall is obviously stronger than that of the hanging wall. Geochemical profiles show that Au is positively correlated with Ag, Pb and Bi, and is obviously controlled by faults.
-
-
表 1 招平断裂带中-南段金矿物粒度特征
Table 1. The grain size characteristics of gold minerals in the middle-south section of the Zhaoping fault zone
粒度(mm)/百分比(%) 微粒(≤0.01) 细粒(0.01~0.037) 中粒(0.037~0.074) 粗粒(0.074~0.295) 巨粒(>0.295) 大尹格庄 41.24 32.65 18.9 6.87 0.34 姜家窑 19.28 55.42 22.89 2.41 0 山后 20.17 39.5 25.21 15.13 0 北泊 47.6 40 5.5 6.9 0 上庄 54.5 41.2 3.4 0.9 0 表 2 招平断裂带中-南段金矿床不同标高金矿物赋存状态对比表
Table 2. The comparison table of gold mineral occurrence state in different elevations of gold deposits in the middle-south section of the Zhaoping fault zone
金矿床/金赋
存状态(%)大尹
格庄夏甸 山后 北泊 标高(m) 包体 6.87 5 20.17 11.03 浅部
(+120~−120 )晶隙 74.23 66.6 57.98 72.41 裂隙 18.9 28.4 21.85 17.56 包体 49.9 51 50.5 45.5 深部
(−400~−826 )晶隙 43.3 44.9 43.2 49 裂隙 6.8 5.1 6.3 5.5 表 3 招平主断裂构造-蚀变-矿化分带特征表(据徐述平,2009修改)
Table 3. The Zhaoping main fault structure-alteration-mineralization zoning characteristics table
位置 带号 构造分带 蚀变分带 组构特征 矿化分带 金矿化
强度岩石名称 备注 断裂上盘 4 前寒武纪变质岩石 钾化、弱硅化 不同种类岩石组构特征不同 弱黄铁矿化 极弱 角闪岩、麻粒岩、大理岩、花岗岩、TTG片麻岩等 局部产出小规模含金石英脉群 3 碎裂状(片麻状)花岗岩 钾化、弱硅化 浅肉红色,变余碎裂结构、块状构造 星散状黄铁矿化 弱 碎裂状(片麻状)花岗岩 局部矿区缺失该构造-蚀变分带,断层泥以上为大理岩、斜长角闪岩等 2 长英质碎裂岩 硅化、绢云
母化灰-浅灰绿色,变余碎裂结构、斑杂构造、块状构造 星散状黄铁矿化 弱 绢英岩化长英质碎裂岩 1 长英质角砾岩 绢英岩化 灰-浅灰绿色,变余角砾结构、斑杂构造 星散状黄铁矿化 弱 绢英岩化长英质角砾岩 主裂面 0 断层泥 黏土化 灰黑色(已固结),青灰色、灰白色(未固结) 局部含少量石墨 弱 断层泥、高岭土、黏土 相互混杂、胶结,与上下围岩多呈渐变接触,部分接触面角度不规则,局部有煌斑岩等脉岩侵入 断层角砾 硅化、碳酸盐化、绢英岩化等 棱角状、次棱角状、磨圆状,角砾状结构,块状构造 弱黄铁矿化 角闪岩角砾、大理岩质角砾、长英质角砾等 碎裂状变质岩、少量碎裂状花岗岩 灰白色、灰黑色,碎裂结构、(弱)糜棱结构,块状构造 弱黄铁矿化 碎裂岩类、各类碎斑 断裂下盘 1 糜棱岩化构造透镜体(构造片岩) 黄铁绢英岩化 灰-浅灰绿色,变余糜棱结构、条带状构造 浸染状矿化 中等 黄铁绢英岩化糜棱岩 局部糜棱岩(化)不明显 2 花岗质角砾岩 黄铁绢英岩化 灰-浅灰绿色,变余角砾结构、斑杂状构造 浸染状、团块状、短脉状矿化 强 黄铁绢英岩化角砾岩 金矿化主要部位 3 花岗质碎裂岩 黄铁绢英岩化 灰-灰白色,变余碎裂结构、斑杂状构造、脉状、网脉状构造 细脉浸染状、网脉状矿化 强 黄铁绢英岩化花岗质碎裂岩、黄铁绢英岩化碎裂岩 4 碎裂状花岗岩 钾化、硅化、弱绢英岩化 浅肉红色,变余碎裂结构、块状构造、细脉状构造 细脉状矿化 弱 碎裂状花岗岩、钾化花岗岩 局部出现中等
矿化5 玲珑序列花岗岩 钾化等 花岗结构,块状构造 不明显 极弱 花岗岩 煌斑岩等脉岩
侵入注:带号0代表主断裂,带号数值越高表示距离主断裂越远。 表 4 招平断裂带金成矿与断层活动性测年统计
Table 4. The statistics of Zhaoping fault zone gold mineralization and fault dating
矿区/地点 测年结果(Ma) 矿物 岩石 方法 来源 备注 玲珑 117.98±1.20 白云母 黄铁绢英岩 Ar-Ar 王来明等,2020 金成矿时代 玲珑 119.40±1.24 白云母 石英脉 Ar-Ar 王来明等,2020 玲珑 121.79±2.64 白云母 石英脉 Ar-Ar 王来明等,2020 玲珑 101±4 绢云母 黄铁绢英岩 Rb-Sr 张振海等,1994 玲珑 111.4±2.8 绿泥石等蚀变矿物和绢英岩 Rb-Sr 张振海等,1994 玲珑 126.6±7.5 石英包裹体 Rb-Sr 李华芹等,1993 玲珑 123.7±1.5 黑云母 黑云母二长岩 Ar-Ar 申玉科2016 玲珑 121.6±2.4 石英晶粒 石英脉 Rb-Sr Li et al., 2008 玲珑 120±6.7 黄铁矿 绢云母蚀变带 Rb-Sr Li et al., 2008 玲珑 119.9±1.3 绢云母 绢云母化裂隙带 Rb-Sr Li et al., 2008 玲珑 121.4±2.4 绢云母 绢云母蚀变带 Rb-Sr Li et al., 2008 玲珑 120.0±4.6 独居石 硫化物石英脉 U-Pb Deng et al., 2020 玲珑 112±2 水白云母 金矿石 Rb-Sr 骆万成等,1987 金成矿时代 玲珑 111±2 水白云母 金矿石 K-Ar 骆万成等,1987 玲珑 121.8±3.5 黄铁矿 (石英脉)矿石 Rb-Sr 杨进辉等, 2000 玲珑 121.6±8.1 黄铁矿 (石英脉)矿石 Rb-Sr 杨进辉等, 2000 玲珑 122.5±3.1 黄铁矿 (石英脉)矿石 Rb-Sr 杨进辉等, 2000 阜山 121.1±0.3 白云母 硫化物石英脉 Ar-Ar Zhang et al., 2020 阜山 120.0±0.2 白云母 硫化物石英脉 Ar-Ar Zhang et al., 2020 阜山 119.8±0.2 白云母 硫化物石英脉 Ar-Ar Zhang et al., 2020 大尹格庄 119.1±1.2 绢云母 黄铁绢英岩 Ar-Ar Yuan et al., 2019 大尹格庄 115.60±1.16 白云母 黄铁绢英岩 Ar-Ar 王来明等,2020 大尹格庄 118.54±1.20 白云母 黄铁绢英岩 Ar-Ar 王来明等,2020 大尹格庄 130.52±0.52 绢云母 金矿石 Ar-Ar Yang et al., 2014 大尹格庄 128.67±0.50 白云母 金矿石 Ar-Ar Yang et al., 2014 大尹格庄 133.37±0.56 绢云母 金矿石 Ar-Ar Yang et al., 2014 大尹格庄 126.80±0.59 绢云母 多金属矿石 Ar-Ar Yang et al., 2014 大尹格庄 144.8±1.8 黄铁矿 矿石等 Re-Os 李洪奎等,2016 夏甸 120.0±1.4 独居石 硫化物石英脉 U-Pb Ma et al., 2017 夏甸 116.1±0.3 白云母 浸染状矿石 Ar-Ar Zhang et al., 2020 夏甸 117.4±0.3 白云母 浸染状矿石 Ar-Ar Zhang et al., 2020 夏甸 119.3±8.4 金红石 黄铁绢英岩 U-Pb 叶广利等,2023 灵雀山 116±12 石英 硫化物石英脉 Rb-Sr 郑培玺等,2007 芝山 119±5 石英 含金石英脉 Rb-Sr 郑培玺等,2006 罗山 117.0±0.2 白云母 浸染状矿石 Ar-Ar Zhang et al., 2020 罗山 119.2±0.3 白云母 浸染状矿石 Ar-Ar Zhang et al., 2020 玲珑 122.82±1.74 白云母 断层泥 Ar-Ar 程南南等,2021 断层测年 招远市南 133.98±1.47 白云母 糜棱岩 Ar-Ar Charles et al., 2013 张美夼北 127.73±1.34 白云母 脆性正断层面 Ar-Ar Charles et al., 2013 云山观西 128.19±1.36 白云母 脆性正断层面 Ar-Ar Charles et al., 2013 水磨涧南 134.26±0.34 白云母 构造片岩 Ar-Ar 林文蔚等,2000 大尹格庄 136.86 绿泥石 断层泥 K-Ar 邓军等,1996 台上 149.2 绿泥石 断层泥 K-Ar 邓军等,1996 -
[1] doi: 10.18654/1000-0569/2021.12.05程南南, 石梦岩, 侯泉林, 等 . 胶东地区控矿剪切带脆性变形时代的Ar-Ar年代学及其对成矿的制约[J]. 岩石学报,2021 ,37 (12 ):3656 −3672 . doi: 10.18654/1000-0569/2021.12.05CHENG Nannan, SHI Mengyan, HOU Quanlin, et al . Ar-Ar Chronology of the Brittle Deformation Age for the Ore-controlling Shear Zones in the Jiaodong Peninsula and it’s Constrains on Gold Mineralization[J]. Acta Petrologica Sinica,2021 ,37 (12 ):3656 −3672 .[2] 程南南. 剪切带型金矿的成矿特征及其应力化学过程探讨[D]. 北京: 中国科学院大学, 2020. CHENG Nannan. The Metallogenic Characteristics of Shear Zone Type Gold Deposits and Discussion on its Stress Chemical Process[D]. Beijing: University of Chinese Academy of Sciences, 2020. [3] 邓军, 王庆飞, 张良, 等 . 胶东型金矿成因模型[J]. 中国科学: 地球科学,2023 ,53 (10 ):2287 −2310 .DENG Jun, WANG Qingfei, ZHANG Liang, et al . Metallogenetic Model of Jiaodong-type Gold Deposits, Eastern China[J]. Science China Earth Sciences,2023 ,53 (10 ):2287 −2310 .[4] 邓军, 徐守礼, 方云, 等. 胶东西北部构造体系及金成矿动力学[M]. 北京: 地质出版社, 1996. [5] 丁正江. 胶东中生代贵金属及有色金属矿床成矿规律研究[D]. 吉林: 吉林大学, 2014. DING Zhengjiang. Study on Metallogenic Regularity of Mesozoic Precious and Non-ferrous Deposits in Jiaodong Peninsula[D]. Jilin: Jilin University, 2014. [6] 冯李强, 顾雪祥, 章永梅, 等 . 山东蓬莱石家金矿床含金黄铁矿微量元素地球化学特征及其对成矿流体的约束[J]. 西北地质,2023 ,56 (5 ):262 −277 .FENG Liqiang, GU Xuexiang, ZHANG Yongmei, et al . Trace Element Geochemical Characteristics of Gold−Bearing Pyrite from the Shijia Gold Deposit in Penglai, Shandong Province and Its Constraints on Ore−Forming Fluids[J]. Northwestern Geology,2023 ,56 (5 ):262 −277 .[7] doi: 10.1007/s11430-020-9789-2范宏瑞, 蓝廷广, 李兴辉, 等 . 胶东金成矿系统的末端效应[J]. 中国科学: 地球科学,2021 ,64 (9 ):1504 −1523 . doi: 10.1007/s11430-020-9789-2FAN Hongrui, LAN Tingguang, LI Xinghui, et al . Conditions and Processes Leading to Large-scale Gold Deposition in the Jiaodong Province, Eastern China[J]. Science China Earth Sciences,2021 ,64 (9 ):1504 −1523 .[8] 高建伟, 刘文卿, 邓会娟, 等 . 胶东三山岛北部海域金矿蚀变特征与微量元素迁移规律[J]. 西北地质,2023 ,56 (1 ):245 −253 .GAO Jianwei, LIU Wenqing, DENG Huijuan, et al . Hydrothermal Alteration Characteristics and Migration Rules of Trace Elements in the North Sanshandao Sea Gold Deposit, Shandong, China[J]. Northwestern Geology,2023 ,56 (1 ):245 −253 .[9] 郭春影. 胶东三山岛-仓上金矿带构造-岩浆-流体金成矿系统[D]. 北京: 中国地质大学(北京), 2009. GUO Chunying. Tectonic Setting, Magmatic Sequence and Fluid of Gold Metallogenic System of the Sanshandao-Cangshang Fault in Jiaodong, China[D]. Beijing: China University of Geosciences (Beijing), 2009. [10] 郭光裕, 林卓虹. 脉状金矿床深部大比例尺统计预测理论与应用[M]. 北京: 冶金工业出版社, 2002. [11] 黄鑫 . 胶东大柳行金矿矿床特征及成因探讨[J]. 西北地质,2021 ,54 (4 ):129 −141 .HUANG Xin . Discussion on the Characteristics and Genesis of the Daliuhang Gold Deposit in Jiaodong[J]. Northwestern Geology,2021 ,54 (4 ):129 −141 .[12] 李洪奎, 耿科, 禚传源, 等 . 黄铁矿Re-Os法测年在胶东金矿中的应用初探[J]. 山东国土资源,2016 ,32 (4 ):1 −6 .LI Hongkui, GENG Ke, ZHUO Chuanyuan, et al . Preliminary Application of Pyrite Re-Os Isotopic Dating in Jiaodong Gold Deposit[J]. Shandong Land and Resources,2016 ,32 (4 ):1 −6 .[13] 李华芹, 刘家齐, 魏琳. 热液矿床流体包裹体年代学研究及其地质应用[M]. 北京: 地质出版社, 1993. [14] 林文蔚, 赵一鸣, 徐珏 . 胶东招远-平度断裂活动性质及活动时代[J]. 中国区域地质,2000 (1 ):44 −51 .LIN Wenwei, ZHAO Yiming, XU Jue . Active Properties and Age of Zhaoyuan-Pingdu Fracture Zone[J]. Regional Geology of China,2000 (1 ):44 −51 .[15] 刘国栋, 宋国政, 鲍中义, 等 . 胶东招平断裂北段深部找矿新突破及对断裂空间展布的新认识[J]. 大地构造与成矿学,2019 ,43 (2 ):226 −234 .LIU Guodong, SONG Guozheng, BAO Zhongyi, et al . New Breakthrough of Deep Prospecting in the Northern Section of the Zhaoping Fault Zone and the New Understanding of Fault Distribution in the Jiaodong District[J]. Geotectonica et Metallogenia,2019 ,43 (2 ):226 −234 .[16] 刘述敏, 张建伟, 王帅, 等. 胶西北招平断裂带南段金矿勘查模型及找矿方向[J]. 地质与勘探, 2016, 52(3): 399-406. LIU Shumin, ZHANG Jianwei, WANG Shuai, et al. Gold Exploration Model and Prospecting Direction for the Southern Section of the Zhaoping Fault Zone in Northwestern Shandong Province[J]. Geology and Exploration, 2016, 52(3): 399-406. [17] doi: 10.3969/j.issn.1674-9057.2023.03.005刘振, 杜利明, 梅贞华, 等 . 招平断裂侧伏规律的地球物理证据及其意义[J]. 桂林理工大学学报,2023 ,43 (3 ):397 −405 . doi: 10.3969/j.issn.1674-9057.2023.03.005LIU Zhen, DU Liming, MEI Zhenhua, et al . Geophysical Evidence and Significance on LateralSubduction Law of Zhaoping Fault[J]. Journal of Guilin University of Technology,2023 ,43 (3 ):397 −405 .[18] 骆万成, 伍勤生 . 应用蚀变矿物测定胶东金矿的成矿年龄[J]. 科学通报,1987 (16 ):1245 −1248 .[19] 毛先成, 王春锬, 刘占坤, 等 . 顾及构造改造的胶西北大尹格庄金矿床三维成矿预测[J]. 西北地质,2023 ,56 (5 ):72 −84 .MAO Xiancheng, WANG Chuntan, LIU Zhankun, et al . Three−Dimensional Metallogenic Prediction with Integration of Structural Reconstruction at the Dayingezhuang Gold Deposit, Northwestern Jiaodong Peninsula[J]. Northwestern Geology,2023 ,56 (5 ):72 −84 .[20] 孟银生. 胶东招平金矿带厚覆盖区深部矿床综合地球物理勘查模型与成矿预测[D]. 北京: 中国地质大学(北京), 2016. MENG Yinsheng. Multiple Geophysical Prospecting Model and Metallogenic Prediction for Deep Deposit under the Thick Overburden Area of Zhaoping Gold Ore Belt, Jiaodong Penisula[D]. Beijing: China University of Geosciences(Beijing), 2016. [21] doi: 10.11872/j.issn.1005-2518.2016.06.001牛树银, 孙爱群, 刘晓煌, 等 . 胶东地区北泊金矿构造特征及其控矿作用[J]. 黄金科学技术,2016 ,24 (6 ):1 −7 . doi: 10.11872/j.issn.1005-2518.2016.06.001NIU Shuyin, SUN Aiqun, LIU Xiaohuang, et al . Structural Characteristics and Its Ore-controlling Role of the Beibo Gold Deposit in Jiaodong Area[J]. Gold Science and Technology,2016 ,24 (6 ):1 −7 .[22] 石启慧, 章永梅, 顾雪祥, 等 . 山东蓬莱石家金矿床早白垩世镁铁质–长英质脉岩地球化学特征及其成因[J]. 西北地质,2023 ,56 (1 ):99 −116 .SHI Qihui, ZHANG Yongmei, GU Xuexiang, et al . Geochemical Characteristics and Petrogenesis of the Early Cretaceous Mafic–Felsic Dykes in the Shijia Gold Deposit, Penglai, Shandong Province[J]. Northwestern Geology,2023 ,56 (1 ):99 −116 .[23] doi: 10.3969/j.issn.1672-6979.2018.05.006单伟, 于学峰, 李洪奎, 等 . 招平断裂带中段深部结构构造-来自地震剖面的证据[J]. 山东国土资源,2018 ,34 (5 ):49 −58 . doi: 10.3969/j.issn.1672-6979.2018.05.006SHAN Wei, YU Xuefeng, LI Hongkui, et al . The Deep Structural Characteristics under the Middle of Zhaoping Fault Zone-Evidences Coming from Seismic Section Survey[J]. Shandong Land and Resources,2018 ,34 (5 ):49 −58 .[24] doi: 10.3969/j.issn.1006-6616.2016.03.031申玉科, 郭涛, 杨玉泉, 等 . 玲珑金矿田黑云母二长岩的发现及其Ar-Ar热年代学意义[J]. 地质力学学报,2016 ,22 (3 ):778 −793 . doi: 10.3969/j.issn.1006-6616.2016.03.031SHEN Yuke, GUO Tao, YANG Yuquan, et al . Discovery of Biotite Monzolite and Ar-Ar Thermochronology Significance in Linglong Gold Field[J]. Journal of Geomechanics,2016 ,22 (3 ):778 −793 .[25] 王来明. 胶东地区中生代花岗岩调查及与金矿关系研究[R]. 济南: 山东省地质调查院. 2020. [26] 徐方. 胶东地区中生代金矿床成矿规律与成矿模式[D]. 北京: 中国矿业大学(北京), 2019. XU Fang. Metallogenic Regularity and Model of Gold Deposits During Mesozoic Precious in Jiaodong Peninsula[D]. Beijing: China University of Mining and Technology(Beijing), 2019. [27] 徐述平. 招平断裂带金矿勘查模型与成矿预测[D]. 北京: 中国地质大学(北京), 2009. XU Shuping. Gold Exploration Model and Mineralization Prediction in Zhao-Ping Fault Zone[D]. Beijing: China University of Geosciences(Beijing), 2009. [28] doi: 10.3321/j.issn:0023-074X.2000.14.018杨进辉, 周新华 . 胶东地区玲珑金矿矿石和载金矿物Rb-Sr等时线年龄与成矿时代[J]. 科学通报,2000 (14 ):1547 −1553 .[29] doi: 10.3969/j.issn.1000-3657.2010.01.001杨经绥, 许志琴, 马昌前, 等 . 复合造山作用和中国中央造山带的科学问题[J]. 中国地质,2010 ,37 (1 ):1 −11 . doi: 10.3969/j.issn.1000-3657.2010.01.001YANG Jingsui, XU Zhiqin, MA Changqian, et al . Compound Orogeny and Scientific Problems Concerning the Central Orogenic Belt of China[J]. Geology in China,2010 ,37 (1 ):1 −11 .[30] 杨立强, 邓军, 王偲瑞, 等. 含矿断裂蚀变带结构: 胶东招平金矿带例析[A]. 首届全国矿产勘查大会论文集[C].2021, 955-956. [31] 杨立强, 邓军, 王中亮, 等 . 胶东中生代金成矿系统[J]. 岩石学报,2014 ,30 (9 ):2447 −2467 .YANG Liqiang, DENG Jun, WANG Zhongliang et al . Mesozoic Gold Metallogenic System of the Jiaodong Gold Province, Eastern China[J]. Acta Petrologica Sinica,2014 ,30 (9 ):2447 −2467 .[32] doi: 10.18654/1000-0569/2024.06.01杨立强, 邓军, 张良, 等 . 胶东型金矿[J]. 岩石学报,2024 ,40 (6 ):1691 −1711 . doi: 10.18654/1000-0569/2024.06.01YANG Liqiang, DENG Jun, ZHANG Liang, et al . Jiaodong-type Gold Deposit[J]. Acta Petrologica Sinica,2024 ,40 (6 ):1691 −1711 .[33] 叶广利, 杨立强, 张良, 等 . 胶东夏甸金矿床金红石成因判别与U-Pb定年[J]. 岩石学报,2023 ,39 (2 ):340 −356 .YE Guangli, YANG Liqiang, ZHANG Liang, et al . Characteristics and in Situ U-Pb Dating of Rutile in Xiadian, Jiaong Gold Provience, Eastern China[J]. Acta Petrologica Sinica,2023 ,39 (2 ):340 −356 .[34] 于晓卫, 王来明, 刘汉栋, 等 . 胶东中生代花岗岩与金矿关系及成矿期划分[J]. 地质学报,2023 ,97 (6 ):1848 −1873 .YU Xiaowei, WANG Laiming, LIU Handong, et al. The Relationship between Mesozoic Granite, Gold Deposits and the Division of Metallogenic Period in Eastern Shandong[J]. Acta Geologica Sinica,2023 ,97 (6 ):1848 −1873 .[35] 张瑞忠. 招平金矿带构造控矿机理及深部成矿预测[D]. 北京: 中国地质大学(北京), 2017. ZHANG Ruizhong. Structural Control on Gold Minerlization and Deep Metallogenic Forecast in Zhaoping Gold Belt, Jiaodong Peninsula, Eastern China[D]. Beijing: China University of Geosciences(Beijing), 2017. [36] 张振海, 张景鑫, 叶素芝. 胶东金矿同位素年龄的厘定[M]. 北京: 地质出版社, 1994. [37] 赵睿. 招平断裂带金矿勘查模型与成矿预测[D]. 北京: 中国地质大学(北京), 2016. ZHAO Rui. Tectonic Evolution and Gold Mineralization in the Jiaodong Peninsula[D]. Beijing: China University of Geosciences(Beijing), 2016. [38] doi: 10.3969/j.issn.0254-5357.2007.05.002郑培玺, 周燕, 王铁夫, 等 . 山东招远灵雀山金矿床富金石英脉铷-锶等时线年龄讨论[J]. 岩矿测试,2007 ,26 (5 ):356 −358 . doi: 10.3969/j.issn.0254-5357.2007.05.002ZHENG Peixi, ZHOU Yan, WANG Tiefu, et al . Rb-Sr Isochron Age of Sulfide-rich Quartz Veins in Lingqueshan Gold Deposit from Zhaoyuan of Shandong Province[J]. Rock and Mineralanalysis,2007 ,26 (5 ):356 −358 .[39] 郑培玺. 山东招远灵雀山金矿床地质特征及成因模式研究[D]. 吉林: 吉林大学, 2006. ZHENG Peixi. A Study on the Geology and Metallogenic Model of Lingqueshan Gold Deposit in Zhaoyuan, Shandong Province. [D]. Jilin: Jilin University, 2006. [40] doi: 10.5382/econgeo.4711Deng Jun, Qiu Kunfeng, Wang Qingfei, et al . In Situ Dating of Hydrothermal Monazite and Implications for the Geodynamic Contrals on Ore Formation in the Jiaodong Gold Province, Eastern China[J]. Economic Geology,2020 ,115 (3 ):671 −685 .[41] doi: 10.1016/j.oregeorev.2007.10.003Li Qiuli, Chen Fukun, Yang Jinhui, et al . Single Grain Pyrite Rb–Sr Dating of the Linglong Gold Deposit, Eastern China[J]. Ore Geology Reviews,2008 ,34 (3 ):263 −270 .[42] Ma Weidong, Fan Hongrui, Liu Xuan, et al . Geochronological Framework of the Xiadian Gold Deposit in the Jiaodong Province, China: Implications for the Timing of Gold Mineralization[J]. Ore Geology Reviews,2017 (86 ):196 −211 .[43] doi: 10.1016/j.gr.2012.10.011Charles Nicolas, Augier Romain, Gumiaux Charles, et al . Timing, Duration and Role of Magmatism in Wide Rift Systems: Insights from the Jiaodong Peninsula(China, East Asia)[J]. Gondwana Research,2013 ,24 (1 ):412 −428 .[44] Shan Wei, Yu Xuefeng, Li Hongkui, et al . Interaction between Structures’ Formation and Plutons Intrusion: An Seismic Profile Evident Coming from the Depth of Zhaoping Faults, Jiaodong Area[J]. Acta Geologica Sinica,2014 ,88 (2 ):112 −114 .[45] Wu Xiaodong, Zhu Guang, Yin Hao, et al. Origin of Low‐Angle Ductile/Brittle Detachments: Examples From the Cretaceous Linglong Metamorphic Core Complex in Eastern China[J]. Tectonics, 2020, 39(9). [46] doi: 10.1007/s11004-022-10031-zWang Jinli, Mao Xiancheng, Peng Cheng, et al . Three-Dimensional Refined Modelling of Deep Structures by Using the Level Set Method: Application to the Zhaoping Detachment Fault, Jiaodong Peninsula, China[J]. Mathematical Geosciences,2023 ,55 (2 ):229 −262 .[47] Xu Zhihe, Ding Zhengjiang, Gu Guanwen, et al . Deep Exploration of Jiaodong Type Gold Deposit, taking Shanhou Gold Deposit, Southern part of Zhaoping Fault as an Example[J]. Frontiers in Earth Science,2022 ,10 :1 −11 .[48] doi: 10.1016/j.gr.2013.07.001Yang Liqiang, Deng Jun, Richard J . Goldfarb, et al. 40Ar/39Ar Geochronological Constraints on the Formation of the Dayingezhuang Gold Deposit: New Implications for Timing and Duration of Hydrothermal Activity in the Jiaodong Gold Province, China[J]. Gondwana Research,2014 ,25 (4 ):1469 −1483 .[49] doi: 10.1016/j.oregeorev.2019.103038Yuan Zhongzheng, Li Zhanke, Zhao Xinfu, et al . New Constraints on the Genesis of the Giant Dayingezhuang Gold (Silver) Deposit in the Jiaodong District, North China Craton[J]. Ore Geology Reviews,2019 ,112 :103038 .[50] doi: 10.5382/econgeo.4716Zhang Liang, Roberto F. Weinberg, Yang Liqiang, et al . Mesozoic Orogenic Gold Mineralization in the Jiaodong Peninsula, China: A Focused Event at 120±2 Ma During Cooling of Pregold Granite Intrusions[J]. Economic Geology,2020 ,115 (2 ):415 −441 . -