鄂尔多斯盆地构造热演化对富氦天然气富集的控制作用初探

韩伟, 任军峰, 李成福, 康锐, 刘家涛, 魏嘉怡, 李吉庆, 周学荣. 2025. 鄂尔多斯盆地构造热演化对富氦天然气富集的控制作用初探. 西北地质, 58(5): 1-10. doi: 10.12401/j.nwg.2025004
引用本文: 韩伟, 任军峰, 李成福, 康锐, 刘家涛, 魏嘉怡, 李吉庆, 周学荣. 2025. 鄂尔多斯盆地构造热演化对富氦天然气富集的控制作用初探. 西北地质, 58(5): 1-10. doi: 10.12401/j.nwg.2025004
HAN Wei, REN Junfeng, LI Chengfu, KANG Rui, LIU Jiatao, WEI Jiayi, LI Jiqing, ZHOU Xuerong. 2025. Preliminary Study On the Controlling Effect of Tectono-Thermal Evolution on Helium-Rich Natural Gas Enrichment in Ordos Basin. Northwestern Geology, 58(5): 1-10. doi: 10.12401/j.nwg.2025004
Citation: HAN Wei, REN Junfeng, LI Chengfu, KANG Rui, LIU Jiatao, WEI Jiayi, LI Jiqing, ZHOU Xuerong. 2025. Preliminary Study On the Controlling Effect of Tectono-Thermal Evolution on Helium-Rich Natural Gas Enrichment in Ordos Basin. Northwestern Geology, 58(5): 1-10. doi: 10.12401/j.nwg.2025004

鄂尔多斯盆地构造热演化对富氦天然气富集的控制作用初探

  • 基金项目: 陕西省自然科学基金项目“盆地热演化对壳源氦气富集成藏的控制作用——以渭河盆地为例”(S2024-JC-YB-0817),中国石油长庆油田分公司重大科技专项“鄂尔多斯盆地地震格架大剖面综合解释与基础地质研究”(2023DZZ02),2024年度青海省“昆仑英才·高端创新创业人才”计划A类项目“柴达木盆地北缘氦气资源成藏机理及勘探开发”,国家重点研发计划“富氦天然气成藏机制及氦资源分布预测技术−复杂地质介质中氦气运聚及富氦气藏封盖机制研究”(2021YFA0719003),中国地质调查局项目“全国氦气资源潜力评价与战略选区调查”(DD20221665)联合资助。
详细信息
    作者简介: 韩伟(1981−),男,正高级工程师,主要从事油气及非常规能源地质调查。E−mail:hw_198196@163.com
    通讯作者: 魏嘉怡(1993−),女,工程师,从事天然气勘探与区域地质综合研究。E−mail:weijy1993_cq@petrochina.com.cn
  • 中图分类号: P618.13

Preliminary Study On the Controlling Effect of Tectono-Thermal Evolution on Helium-Rich Natural Gas Enrichment in Ordos Basin

More Information
  • 鄂尔多斯盆地众多气田中仅东胜气田等个别气田具备氦气资源前景,说明天然气与氦气的富集过程存在一定差异,而温度对这两种气体富集均十分重要。笔者从盆地构造热演化的角度探索天然气成藏与氦气富集之间的关系。通过统计鄂尔多斯盆地基底的氦源矿物及其氦封闭温度,结合盆地构造热演化史,分析烃源岩、氦源矿物分布及天然气生成和氦气释放的时空特征,讨论天然气与氦气的富集过程。结果表明鄂尔多斯盆地内气源岩以上古生界烃源岩为主,分布集中且埋藏较浅,氦源矿物以锆石、独居石和磷灰石为主,分布分散且埋藏较深,烃源岩生气与主要氦源矿物释放氦气的温度、时间重合度较高,二者的富集过程具有时空耦合关系。此外,由于天然气生成的量大且集中,氦气释放的量小而分散,在距离烃源岩沉降中心较近的原生气藏,氦气难以富集,而距离烃源岩沉降中心较远,距离氦源基底较近的次生气藏往往有利于氦气富集成藏。本次研究将构造热演化与天然气富集成藏和氦气释放结合开展研究,开拓新思路,对完善氦气资源调查评价体系具有指示意义。

  • 加载中
  • 图 1  鄂尔多斯盆地烃源岩沉降中心及基底磁性体等分布特征

    Figure 1. 

    图 2  鄂尔多斯盆地基底主要氦源矿物的氦封闭温度区间

    Figure 2. 

    图 3  鄂尔多斯盆地油气成藏、氦气释放时期与热事件对应关系

    Figure 3. 

    图 4  天然气、氦气耦合成藏过程示意图

    Figure 4. 

    表 1  鄂尔多斯盆地烃源岩分布特征

    Table 1.  Distribution characteristics of source rocks in Ordos Basin

    烃源岩层系沉降中心成熟期
    中生界盆地西、南部环县、庆阳、店头侏罗纪—早白垩世
    上古生界盆地西、东缘及中部银川–环县、延安西北、
    绥德以东、神木
    中晚侏罗世—白垩世
    下古生界盆地西、南部鄂托克前旗、铜川张夏组成熟于中石炭世—早二叠世,马家沟组成熟于
    二叠纪—三叠纪,平凉组成熟于中晚三叠世
    中元古界盆地西南部银川、平凉、西安晚二叠世—中三叠世进入生烃门限,
    在晚侏罗世—早中白垩世生干气
    下载: 导出CSV

    表 2  鄂尔多斯盆地基底岩石中富铀、钍矿物统计(据张成立等,2021

    Table 2.  Statistics of uranium and thorium rich minerals in basement rocks of Ordos Basin

    序号井号基底岩性富铀钍矿物构造位置深度(m)
    1胜2井混合岩化黑云母花岗片麻岩磁铁矿、磷灰石、锆石、独居石伊盟隆起1749~1758
    2霍3井夕线石榴二长片麻岩锆石、钛铁矿2985~2988
    3鄂1井二长花岗岩锆石、磷灰石2796~2797.5
    4召探1井二云母片麻岩钛铁矿、锆石、独居石3515~3519
    5棋探1井石榴夕线黑云片麻岩锆石、独居石、金红石、钛铁矿天环向斜5233
    6龙探1井黑云二长片麻岩锆石、钛铁矿、独居石陕北斜坡3085
    7米131井黑云二长片麻岩锆石、磷灰石3310
    8庆深1井黑云母花岗质片麻岩锆石、磷灰石、钛铁矿、独居石4608~4610
    下载: 导出CSV
  • [1]

    常洋梅, 刘超, 孙蓓蕾. 鄂尔多斯盆地东缘石西区块氦源岩有效性评价及空间展布特征[J]. 煤田地质与勘探, 2025, 536): 129142.

    CHANG Yangmei, LIU Chao, SUN Beilei. Effectiveness assessment and spatial distribution characteristics of helium source rocks in the Shixi Block along the eastern margin of the Ordos Basin[J]. Coal Geology & Exploration, 2025, 536): 129142.

    [2]

    范立勇, 单长安, 李进步, 等. 基于磁力资料的鄂尔多斯盆地氦气分布规律[J]. 天然气地球科学, 2023, 3410): 17801789.

    FAN Liyong, SHAN Changan, LI Jinbu, et al. Distribution of helium resources in Ordos Basin based on magnetic data[J]. Natural Gas Geoscience, 2023, 3410): 17801789.

    [3]

    何发岐, 王付斌, 王杰, 等. 鄂尔多斯盆地东胜气田氦气分布规律及特大型富氦气田的发现[J]. 石油实验地质, 2022, 441): 110.

    HE Faqi, WANG Fubin, WANG Jie, et al. Helium distribution of Dongsheng gas field in Ordos Basin and discovery of a super large helium-rich gas field[J]. Petroleum Geology & Experiment, 2022, 441): 110.

    [4]

    冯旭亮, 汪啸东, 罗姣, 等. 鄂尔多斯盆地地热和氦气资源远景: 来自居里面深度的证据[J]. 西北地质, 2025, 583): 2232.

    FENG Xuliang, WANG Xiaodong, LUO Jiao, et al. Geothermal and Helium Resource Prospects in the Ordos Basin: Insight from the Curie Point Depths[J]. Northwestern Geology, 2025, 583): 2232.

    [5]

    韩伟, 李玉宏, 卢进才, 等. 陕西渭河盆地富氦天然气异常的影响因素[J]. 地质通报, 2014, 3311): 18361841. doi: 10.3969/j.issn.1671-2552.2014.11.022

    HAN Wei, LI Yuhong, LU Jincai, et al. The factors responsible for the unusual content of helium-rich natural gas in the Weihe Basin, Shaanxi Province[J]. Geological Bulletin of China, 2014, 3311): 18361841. doi: 10.3969/j.issn.1671-2552.2014.11.022

    [6]

    韩伟, 刘文进, 李玉宏, 等. 柴达木盆地北缘稀有气体同位素特征及氦气富集主控因素[J]. 天然气地球科学, 2020, 313): 385392.

    HAN Wei, LIU Wenjin, LI Yuhong, et al. Characteristics of rare gas isotopes and main controlling factors of radon enrichment in the northern margin of Qaidam Basin[J]. Natural Gas Geoscience, 2020, 313): 385392.

    [7]

    李平, 马向贤, 张明震, 等. 矿物中氦的扩散过程及控制因素研究进展[J]. 天然气地球科学, 2023, 344): 697706.

    LI Ping, MA Xiangxian, ZHANG Mingzhen, et al. Research progress on diffusion process and controlling factors of helium in minerals[J]. Natural Gas Geoscience, 2023, 344): 697706.

    [8]

    李玉宏, 周俊林, 张文, 等. 渭河盆地氦气成藏条件及资源前景[M]. 北京: 地质出版社, 2018, 1−289.

    [9]

    李玉宏, 李济远, 周俊林, 等. 氦气资源评价相关问题认识与进展[J]. 地球科学与环境学报, 2022, 442): 111.

    LI Yuhong, LI Jiyuan, ZHOU Junlin, et al. Research progress and new views on evaluation of helium resources[J]. Journal of Earth Sciences and Environment, 2022, 442): 111.

    [10]

    李玉宏, 张国伟, 周俊林, 等. 氦气资源调查理论与技术研究现状及建议[J]. 西北地质, 2022a, 554): 110.

    LI Yuhong, ZHANG Guowei, ZHOU Junlin, et al. Research Status and Suggestions on Helium Resource Investigation Theory and Technology[J]. Northwestern Geology, 2022a, 554): 110.

    [11]

    刘成林, 丁振刚, 范立勇, 等. 鄂尔多斯盆地含氦天然气地球化学特征与富集影响因素[J]. 石油与天然气地质, 2024, 452): 384392. doi: 10.11743/ogg20240206

    LIU Chenglin, DING Zhengang, FAN Liyong, et al. Geochemical characteristics and enrichment factors of helium-bearing natural gas in the Ordos Basin[J]. Oil & Gas Geology, 2024, 452): 384392. doi: 10.11743/ogg20240206

    [12]

    刘池洋, 王建强, 张东东, 等. 鄂尔多斯盆地油气资源丰富的成因与赋存-成藏特点[J]. 石油与天然气地质, 2021, 425): 10111029. doi: 10.11743/ogg20210501

    LIU Chiyang, WANG Jianqiang, ZHANG Dongdong, et al. Genesis of rich hydrocarbon resources and their occurrence and accumulation characteristics in the Ordos Basin[J]. Oil & Gas Geology, 2021, 425): 10111029. doi: 10.11743/ogg20210501

    [13]

    米敬奎, 肖贤明, 刘德汉, 等. 利用包裹体信息研究鄂尔多斯盆地上古生界深盆气的运移规律[J]. 石油学报, 2003, 245): 4651. doi: 10.3321/j.issn:0253-2697.2003.05.010

    MI Jingkui, XIAO Xianming, LIU Dehan, et al. Study on Upper-Paleozoic deep basin gas migration in Ordos using inclusion information[J]. Acta Petrolei Sinica, 2003, 245): 4651. doi: 10.3321/j.issn:0253-2697.2003.05.010

    [14]

    马勇, 辛志源, 陈践发, 等. 煤系氦气扩散机制及其对氦气富集的启示−以沁水盆地北部太原组为例[J]. 煤田地质与勘探, 2025, 536): 5869.

    MA Yong, XIN Zhiyuan, CHEN Jianfa, et al. Diffusion mechanisms of coal-measure helium and their implications for helium accumulation: A case study of the Taiyuan Formation, northern Qinshui Basin, China[J]. Coal Geology & Exploration, 2025, 536): 5869.

    [15]

    秦胜飞, 李济远, 梁传国, 等. 中国中西部富氦气藏氦气富集机理——古老地层水脱氦富集[J]. 天然气地球科学, 2022, 338): 12031217.

    QIN Shengfei, LI Jiyuan, LIANG Chuanguo, et al. Helium enrichment mechanism of helium rich gas reservoirs in central and western China: Degassing and accumulation from old formation water[J]. Natural Gas Geoscience, 2022, 338): 12031217.

    [16]

    秦胜飞, 周国晓, 李济远, 等. 氦气与氮气富集耦合作用及其重要意义[J]. 天然气地球科学, 2023, 3411): 19811992.

    QIN Shengfei, ZHOU Guoxiao, LI Jiyuan, et al. The coupling effect of helium and nitrogen enrichment and its significance[J]. Natural Gas Geoscience, 2023, 3411): 19811992.

    [17]

    任战利, 刘丽, 崔军平, 等. 盆地构造热演化史在油气成藏期次研究中的应用[J]. 石油与天然气地质, 2008, 294): 502506.

    REN Zhanli, LIU Li, CUI Junping, et al. Application of tectonic-thermal evolution history to hydrocarbon accumulation timing in sedimentary basins[J]. Oil & Gas Geology, 2008, 294): 502506.

    [18]

    任战利, 祁凯, 李进步, 等. 鄂尔多斯盆地热动力演化史及其对油气成藏与富集的控制作用[J]. 石油与天然气地质, 2021, 425): 10301042. doi: 10.11743/ogg20210502

    REN Zhanli, QI Kai, LI Jinbu, et al. Thermodynamic evolution and hydrocarbon accumulation in the Ordos Basin[J]. Oil & Gas Geology, 2021, 425): 10301042. doi: 10.11743/ogg20210502

    [19]

    陶士振, 杨怡青, 高建荣, 等. 鄂尔多斯盆地致密砂岩气及伴生氦气形成演化特征[J]. 天然气地球科学, 2023, 344): 551565.

    TAO Shizhen, YANG Yiqing, GAO Jianrong, et al. The formation and evolution characteristics of tight sandstone gas and associated helium in Ordos Basin[J]. Natural Gas Geoscience, 2023, 344): 551565.

    [20]

    司庆红, 曾威, 刘行, 等. 临汾–运城盆地氦气富集要素及成藏条件[J]. 西北地质, 2023, 561): 129141.

    SI Qinghong, ZENG Wei, LIU Xing, et al. Analysis of Helium Enrichment Factors and Reservoir Forming Conditions in Linfen–Yuncheng Basin[J]. Northwestern Geology, 2023, 561): 129141.

    [21]

    陶小晚, 李建忠, 赵力彬, 等. 中国氦气资源现状及首个特大型富氦储量的发现: 和田河气田[J]. 地球科学, 2019, 443): 10241041.

    TAO Xiaowan, LI Jianzhong, ZHAO Libin, et al. Helium resources and discovery of first supergiant helium reserve in China: Hetianhe Gas Field[J]. Earth Science, 2019, 443): 10241041.

    [22]

    王君贤, 李子颖, 贺锋, 等. 鄂尔多斯盆地南部烃源岩分布与铀成矿关系研究[J]. 铀矿地质, 2023, 396): 933949.

    WANG Junxian, LI Ziying, HE Feng, et al. Study on the Relationship of Hydrocarbon Source Rock Distribution to Uranium Mineralization in the Southern Ordos Basin[J]. Uranium Geology, 2023, 396): 933949.

    [23]

    魏泽坤, 冯旭亮, 马佳月, 等. 鄂尔多斯盆地东南部重磁场特征及其氦气勘探意义[J]. 西北地质, 2023, 565): 98110.

    WEI Zekun, FENG Xuliang, MA Jiayue, et al. Characteristics of Gravity and Magnetic Field and their Significance of Helium Resources Exploration in the Southeastern Ordos Basin[J]. Northwestern Geology, 2023, 565): 98110.

    [24]

    张乔, 周俊林, 李玉宏, 等. 渭河盆地南缘花岗岩中生氦元素(U、Th)赋存状态及制约因素研究-以华山复式岩体为例[J]. 西北地质, 2022, 553): 241256.

    ZHANG Qiao, ZHOU Junlin, LI Yuhong, et al. The Occurrence State and Restraint Factors of Helium-produced Elements (U, Th) in the Granites from the Southern Margin of Weihe Basin: Evidences from Huashan Complex[J]. Northwestern Geology, 2022, 553): 241256.

    [25]

    张文. 关中和柴北缘地区战略性氦气资源成藏机理研究[D]. 北京: 中国矿业大学(北京), 2019.

    ZHANG Wen. Accumulation mechanism of helium, a strategic resource, in Guanzhong and North Qaidam Basin[D]. Beijing: China University of Mining&Technology-Beijing, 2019.

    [26]

    张成立, 苟龙龙, 白海峰, 等. 鄂尔多斯地块基底研究新的思考与认识[J]. 岩石学报, 2021, 37(1): 162-184.

    ZHANG Chengli, GOU Longlong, BAI Haifeng, et al. New thinking and understanding for the researches on the basement of Ordos Block[J]. Acta Petrologica Sinica, 2021. 37(1): 162-184.

    [27]

    张厚福, 方朝亮, 高先志, 等. 石油地质学[M]. 石油工业出版社, 1999.

    [28]

    邹才能, 陶士振, 侯莲花, 等. 非常规油气地质[M]. 北京: 地质出版社, 2014.

    [29]

    Andrews J N. The isotopic composition of radiogenic helium and its use to study groundwater movement in confined aquifers[J]. Chemical Geology, 1985, 491−3): 339351. doi: 10.1016/0009-2541(85)90166-4

    [30]

    邹易, 罗情勇, 陈践发, 等. 含氦−富氦气藏氦气竞争溶解物理模拟实验研究[J]. 煤田地质与勘探, 2025, 536): 96108.

    ZOU Yi, LUO Qingyong, CHEN Jianfa, et al. Physical simulation experiments on competitive dissolution of helium in helium-containing to helium-rich gas reservoirs[J]. Coal Geology & Exploration, 2025, 536): 96108.

    [31]

    Ballentine C J, Burnard P G. Production, Release and Transport of Noble Gases in the Continental Crust[J]. Reviews in Mineralogy and Geochemistry, 2002, 471): 481538. doi: 10.2138/rmg.2002.47.12

    [32]

    Barry P H, Lawson M, Meurer W P, et al. Determining fluid migration and isolation times in multiphase crustal domains using noble gases[J]. Geology, 2017, 459): 775778. doi: 10.1130/G38900.1

    [33]

    Brown A A. Formation of High Helium Gases: A Guide for Explorationists[C]. AAPG Conference, 2010: 11−14.

    [34]

    Delaporte-Mathurin R, Ialovega M, Hodillee A, et al. Influence of exposure conditions on helium transport and bubble growth in tungsten[J]. Scientific Reports, 2011, 111): 14681.

    [35]

    Danabalan D, Gluyas J G, Macpherson C G, et al. New High-Grade Helium Discoveries in Tanzania[J]. V. M. Goldschmidt Conference-Program and Abstracts, 2016, 26: 595.

    [36]

    Danabalan D. Helium: Exploration Methodology for a Stra-tegic Resource[D]. England Durham, Durham University, 2017.

    [37]

    Danabalan D, Gluyas LG, Macpherson C G, et al. The Principles of Helium Exploration[J]. Petroleum Geoscience, 2022, 282): 113.

    [38]

    Dodson M H. Closure temperature in cooling geochronological and petrological systems[J]. Contributions to Mineralogy and Petrology, 1973, 403): 259274.

    [39]

    Farley K A. Helium diffusion from apatite: General behaveior as illustrated by Durango fluorapatite[J]. Journal of Geophysical Research Solid Earth, 2000, 105B2): 29032914. doi: 10.1029/1999JB900348

    [40]

    Halford D T, Karolytė R, Barry P H, et al. High Helium Reservoirs in the Four Corners Area of the Colorado Plateau, USA[J]. Chemical Geology, 2022, 596: 120790. doi: 10.1016/j.chemgeo.2022.120790

    [41]

    Mitchell D J, Patrick R C. Temperature dependence of helium release from erbium tritide films[J]. Journal of Vacuum Science & Technology, 1981, 192): 236242.

    [42]

    Torgersen T, Clarke W B. Helium accumulation in groundwater, I: An evaluation of sources and the continental flux of crustal 4He in the Great Artesian Basin, Australia[J]. Geochimica et Cosmochimica Acta, 1985a, 495): 12111218. doi: 10.1016/0016-7037(85)90011-0

    [43]

    Torgersen T, Ivey G N. Helium accumulation in groundwater. II: A model for the accumulation of the crustal 4He degassing flux[J]. Geochimica et Cosmochimica Acta, 1985b, 4911): 24452452. doi: 10.1016/0016-7037(85)90244-3

    [44]

    Zhang W, Li Y, Zhao F, et al. Using noble gases to trace groundwater evolution and assess helium accumulation in Weihe Basin, central China[J]. Geochimica et Cosmochimica Acta, 2019a, 251: 229246.

    [45]

    Zhang W, Li Y, Zhao F, et al. Quantifying the helium and hydrocarbon accumulation processes using noble gases in the North Qaidam Basin, China[J]. Chemical Geology, 2019b, 525: 368379.

    [46]

    Zhang Wen, Li Yuhong, Zhao Fenghua, et al. Granite is an Effective Helium Source Rock: Insights from the Helium Generation and Release Characteristics in Granites from the North Qinling Orogen, China[J]. Acta Geologica Sinica, 2020, 941): 114125. doi: 10.1111/1755-6724.14397

    [47]

    Zwahlen C A, Kampman N, Dennis P, et al. Estimating carbon dioxide residence time scales through noble gas and stable isotope diffusion profiles[J]. Geology, 2017, 4511): 995998. doi: 10.1130/G39291.1

  • 加载中

(4)

(2)

计量
  • 文章访问数:  40
  • PDF下载数:  11
  • 施引文献:  0
出版历程
收稿日期:  2024-06-24
修回日期:  2025-01-06
录用日期:  2025-01-07
刊出日期:  2025-10-20

目录