Analysis of Metallogenic Differences in Magmatic Ni-Co Deposits in the East Kunlun Orogenic Belt, Qinghai Province: A Case Study of the Xiarihamu and Shitoukengde Deposits
-
摘要:
镍钴属于国民经济、科技发展等方面不可或缺的关键矿产。随着新能源汽车的快速发展,中国对镍钴资源的需求持续飙升,超过92%的镍原材料和98%的钴原材料依赖进口,给关键矿产资源供应带来重大安全隐患。因此,立足国内,加强镍钴矿成矿规律认识、寻找新的资源接续区已迫在眉睫。中国镍钴资源的有限来源与世界存在显著不同,93%的镍资源和45%的钴资源来自岩浆镍钴硫化物矿床。可见,岩浆镍钴矿床是中国找矿勘查实现增储的最重要矿床类型。青海省东昆仑造山带发育大量镁铁–超镁铁质岩体,拥有较好成矿地质条件和资源潜力,展示了巨大的找矿前景。但同属同一成矿背景及相似成矿特征的夏日哈木和石头坑德矿床,在矿石质量、矿体规模等方面存在截然不同,一个超大型且品位较高(118万tNi@0.68%),另一个大型且品位较低(12万tNi@0.44%)。这极大地制约了镍钴资源的找矿勘查和新突破。笔者立足两个矿床的成矿特征、控矿条件、成矿过程、找矿潜力的系统梳理,发现同化混染作用是导致硫化物熔离进而形成镍钴矿床的关键方式。同化混染程度不同及围岩条件S含量的差异,是造成两个矿床成矿显著差异的直接原因。进一步指出,围岩条件是古老片麻岩的镁铁–超镁铁质侵入岩是实现镍钴找矿新发现的关键方向和空间。可支撑服务找矿工作,提升镍钴矿资源保障能力。
Abstract:Nickel and cobalt are essential minerals for the national economy, and technological development. With the rapid development of new energy vehicles, China's demand for nickel and cobalt resources has surged, with over 92% of nickel raw materials and 98% of cobalt raw materials relying on imports. This dependency poses significant security risks to the supply of mineral resources, directly threatening national security. Therefore, it is urgent to enhance the understanding of the metallogenic regularity of nickel and cobalt deposits domestically and to find new resource continuation areas. China's limited sources of nickel and cobalt differ significantly from the rest of the world, with 93% of nickel resources and 45% of cobalt resources coming from magmatic nickel-cobalt sulfide deposits. Thus, magmatic nickel-cobalt deposits are the most important type of deposits for achieving resource exploration and reserve increase in China. The East Kunlun orogenic belt in Qinghai Province hosts numerous mafic-ultramafic intrusions, offering favorable metallogenic geological conditions and resource potential, indicating great prospects for exploration. However, despite sharing the same metallogenic background and similar metallogenic characteristics, the Xiarihamu and Shitoukengde deposits exhibit significant differences in ore quality and orebody scale. One is a super-large deposit with high grade (
1180 thousand tons Ni@0.68%), while the other is a large deposit with lower grade (120 thousand tons Ni@0.44%). This disparity greatly restricts the exploration and new breakthroughs in nickel and cobalt resources. This paper systematically reviews the metallogenic characteristics, ore-controlling conditions, metallogenic processes, and exploration potential of the two deposits, revealing that assimilation is the key process leading to sulfide segregation and the formation of nickel-cobalt deposits. The differences in the degree of assimilation and the sulfur content of the surrounding rocks are the direct causes of the significant metallogenic differences between the two deposits. Furthermore, it is pointed out that the mafic-ultramafic intrusions in the ancient gneiss surrounding rocks are the key direction and space for achieving new discoveries in nickel-cobalt exploration. This can support and serve the new round of strategic actions for exploration breakthroughs, enhancing the capability to secure nickel and cobalt resources. -
-
图 1 青海省东昆仑岩浆镍钴硫化物矿床地质分布略图(据Zhang et al., 2019修改)
Figure 1.
图 2 东昆仑夏日哈木岩浆镍钴硫化物矿床平面图(a)及剖面图(b)(张照伟等,2021a)
Figure 2.
图 4 东昆仑石头坑德岩浆镍钴硫化物矿床平面图(a)及剖面图(b)(Zhang et al., 2018)
Figure 4.
图 6 单斜辉石SiO2-Na2O-TiO2关系图(张照伟等,2021b)
Figure 6.
图 7 夏日哈木和石头坑徳Ni/Cu-Pd/Ir图解(Zhang et al., 2018)
Figure 7.
-
[1] 董俊, 黄华良, 尹建华, 等. 东昆仑石头坑德镁铁超镁铁质岩地质特征及成矿条件分析[J]. 西北地质, 2017, 50(2): 49−60.
DONG Jun, HUANG Hualiang, YIN Jianhua, et al. Geological Characteristics of the Shitoukengde Mafic-Ultramafic Rocks in East Kunlun and Related Metallogenic Conditions[J]. Northwestern Geology,2017,50(2):49−60.
[2] 丰成友, 赵一鸣, 李大新, 等. 东昆仑祁漫塔格山地区夏日哈木镍矿床矿物学特征[J]. 地质论评, 2016, 62(1): 215−228.
FENG Chengyou, ZHAO Yiming, LI Daxin, et al. Mineralogical Characteristics of the Xiarihamu Nickel Deposit in the Qiman Tagh Mountain, East Kunlun, China[J]. Geological Review,2016,62(1):215−228.
[3] 韩见, 陈其慎, 杨雪松, 等. 钴资源现状及未来5—10年供需形势分析[J]. 中国地质, 2023, 50(3): 743−755.
HAN Jian, CHEN Qishen, YANG Xuesong, et al. Current situation of cobalt resources and analysis of supply and demand situation in the next 5-10 years[J]. Geology in China,2023,50(3):743−755.
[4] 郝洪昌, 王安建, 马哲, 等. 镍全球治理框架体系构成、演变及中国参与路径选择[J]. 科技导报, 2024, 42(5): 61−69.
HAO Hongchang, WANG Anjian, MA Zhe, et al. Composition and evolution of the nickel global governance framework and the participation path of China[J]. Science & Technology Review,2024,42(5):61−69.
[5] 李文渊, 王亚磊, 钱兵, 等. 塔里木陆块周缘岩浆Cu-Ni-Co硫化物矿床形成的探讨[J]. 地学前缘, 2020, 27(2): 276−293.
LI Wenyuan, WANG Yalei, QIAN Bing, et al. Discussion on the formation of magmatic Cu-Ni-Co sulfide deposits in margin of Tarim Block[J]. Earth Science Frontiers,2020,27(2):276−293.
[6] 李文渊. 古特提斯构造演化及其成矿作用[J]. 地质学报, 2024, 98(11): 3255−3273.
LI Wenyuan. The Paleo-Tethys tectonic evolution and corresponding metallogenesis[J]. Acta Geologica Sinica,2024,98(11):3255−3273.
[7] 李文渊, 张照伟, 刘月高, 等. 夏日哈木铜镍钴硫化物矿床成矿机理与勘查示范[M]. 北京: 科学出版社, 2023.
LI Wenyuan, ZHANG Zhaowei, LIU Yuegao, et al. Metallogenic mechanism and exploration demonstration of Xiarihamu magmatic Cu-Ni-Co sulfide deposit[M]. Beijing: Science Press, 2023.
[8] 潘彤. 柴达木盆地南北缘成矿系列及找矿预测[M]. 武汉: 中国地质大学出版社, 2019.
PAN Tong. Metallogenic series and prospecting prediction in the northern and southern edges of the Qaidam Basin[M]. Wuhan: China University of Geosciences Press, 2019.
[9] 宋谢炎, 佘宇伟, 栾燕, 等. 峨眉大火成岩省攀西钒钛磁铁矿矿集区钴、镓、钪资源及综合利用潜力[J]. 矿物岩石地球化学通报, 2024, 43(1): 218−231.
SONG Xieyan, SHE Yuwei, LUAN Yan, et al. Resources of Co, Ga and Sc of V-Ti magnetite deposits in the Panxi area within the Emeishan Large Igneous Provence and their integrated utilization potentials[J]. Bulletin of Mineralogy, Petrology and Geochemistry,2024,43(1):218−231.
[10] 苏本勋, 秦克章, 蒋少涌, 等. 我国钴镍矿床的成矿规律、科学问题、勘查技术瓶颈与研究展望[J]. 岩石学报, 2023, 39(4): 968−980. doi: 10.18654/1000-0569/2023.04.02
SU Benxun, QIN Kezhang, JIANG Shaoyong, et al. Mineralization regularity, scientific issues, prospecting technology and research prospect of Co-Ni deposits in China[J]. Acta Petrologica Sinica,2023,39(4):968−980. doi: 10.18654/1000-0569/2023.04.02
[11] 汤庆艳, 李建平, 张铭杰, 等. 东昆仑夏日哈木镍铜硫化物矿床成矿岩浆条件: 流体挥发份化学组成与碳同位素组成制约[J]. 岩石学报, 2017, 33(1): 104−114.
TANG Qingyan, LI Jianping, ZHANG Mingjie, et al. The volatile conditions of ore-forming magma for the Xiarihamu Ni-Cu sulfide deposit in East Kunlun orogenic belt, western China: Constraints from chemical and carbon isotopic compositions of volatiles[J]. Acta Petrologica Sinica,2017,33(1):104−114.
[12] 王辉, 丰成友, 张明玉. 全球钴矿资源特征及勘查研究进展[J]. 矿床地质, 2019, 38(4): 739−750.
WANG Hui, FENG Chengyou, ZHANG Mingyu. Characteristics and exploration and research progress of global cobalt deposits[J]. Mineral Deposits,2019,38(4):739−750.
[13] 王小东. 夏日哈木镍铜硫化物矿床镁铁质成矿岩浆就位机制: 稀有气体和碳同位素制约[D]. 兰州: 兰州大学, 2019.
WANG Xiaodong. Mechanism of mafic ore-forming magma emplacement in the Xiarihamu nickel-copper sulfide deposit: constraints from noble gas and carbon isotopes[D]. Lanzhou: Lanzhou University, 2019.
[14] 王亚磊, 张照伟, 张江伟, 等. 东昆仑造山带早中生代幔源岩浆事件及其地质意义[J]. 地质与勘探, 2017, 53(5): 855−866.
WANG Yalei, ZHANG Zhaowei, ZHANG Jiangwei, et al. Early Mesozoic mantle-derived magmatic events and their geological significance in the East Kunlun orogenic belt[J]. Geology and Exploration,2017,53(5):855−866.
[15] 王亚磊, 李文渊, 林艳海, 等. 金川超大型铜镍矿床钴的赋存状态与富集过程研究[J]. 西北地质, 2023, 56(2): 133−150.
WANG Yalei, LI Wenyuan, LIN Yanhai, et al. Study on the Occurrence State and Enrichment Process of Cobalt in Jinchuan Giant Magmatic Ni−Cu Sulfide Deposit[J]. Northwestern Geology,2023,56(2):133−150.
[16] 王焰, 钟宏, 曹勇华, 等. 我国铂族元素、钴和铬主要矿床类型的分布特征及成矿机制[J]. 科学通报, 2020, 65(33): 3825−3838. doi: 10.1360/TB-2020-0202
WANG Yan, ZHONG Hong, CAO Yonghua, et al. Genetic classification, distribution and ore genesis of major PGE, Co and Cr deposits in China: A critical review[J]. Chinese Science Bulletin,2020,65(33):3825−3838. doi: 10.1360/TB-2020-0202
[17] 吴琪, 李政, 王楠, 等. 中国镍矿供需形势及对策建议[J]. 科技导报, 2024, 42(5): 53−60.
WU Qi, LI Zheng, WANG Nan, et al. Dometic supply-demand situation of nickel and suggested countermeasures in China[J]. Science & Technology Review,2024,42(5):53−60.
[18] 校培喜, 高晓峰, 胡云绪. 阿尔金-东昆仑西段成矿带地质背景研究[M]. 北京: 地质出版社, 2014.
XIAO Peixi, GAO Xiaofeng, HU Yunxu. The geology background research in western segment of Altun-East Kunlun metallogenic belt[M]. Beijing: Geological Publishing House, 2014.
[19] 薛胜超, 刘金宇, 周翊, 等. 交代地幔源区与造山带铜镍成矿作用[J]. 岩石学报, 2024, 40(1): 60−78. doi: 10.18654/1000-0569/2024.01.03
XUE Shengchao, LIU Jinyu, ZHOU Yu, et al. Genetic correlation of metasomatized mantle source with Ni-Cu mineralization in orogenic belt[J]. Acta Petrologica Sinica,2024,40(1):60−78. doi: 10.18654/1000-0569/2024.01.03
[20] 袁小晶, 王安建, 马哲. 钴资源全球治理体系及中国参与路径[J]. 科技导报, 2024, 42(5): 70−80.
YUAN Xiaojing, WANG Anjian, MA Zhe. Anatomy of global governance system of cobalt and China's path to participation[J]. Science & Technology Review,2024,42(5):70−80.
[21] 翟明国. 提升战略性关键矿产资源保障能力, 把握全球矿产资源格局[J]. 科技导报, 2024, 42(5): 1−6.
ZHAI Mingguo. Enhance strategic critical mineral resources, safeguard capabilities, and grasp the global mineral resource pattern[J]. Science & Technology Review,2024,42(5):1−6.
[22] 张洪瑞, 侯增谦, 杨志明, 等. 钴矿床类型划分初探及其对特提斯钴矿带的指示意义[J]. 矿床地质, 2020, 39(3): 501−510.
ZHANG Hongrui, HOU Zengqian, YANG Zhiming, et al. A new division of genetic types of cobalt deposits: Implications for Tethyan cobalt-rich belt[J]. Mineral Deposits,2020,39(3):501−510.
[23] 张伟波, 叶锦华, 陈秀法, 等. 全球钴矿资源分布与找矿潜力[J]. 资源与产业, 2018, 20(4): 56−61.
ZHANG Weibo, YE Jinhua, CHEN Xiufa, et al. Global cobalt resources distribution and exploration potentials[J]. Resources & Industries,2018,20(4):56−61.
[24] 张照伟, 李文渊, 钱兵, 等. 东昆仑夏日哈木岩浆铜镍硫化物矿床成矿时代的厘定及其找矿意义[J]. 中国地质, 2015, 42(3): 438−451.
ZHANG Zhaowei, LI Wenyuan, QIAN Bing, et al. Metallogenic epoch of the Xiarihamu magmatic Ni-Cu sulfide deposit in eastern Kunlun orogenic belt and its prospecting significance[J]. Geology in China,2015,42(3):438−451.
[25] 张照伟, 钱兵, 王亚磊, 等. 青海省夏日哈木铜镍矿床岩石地球化学特征及其意义[J]. 西北地质, 2016, 49(2): 45−58.
ZHANG Zhaowei, QIAN Bing, WANG Yalei, et al. Petrogeochemical characteristics of the Xiarihamu magmatic Ni-Cu sulfide deposit in Qinghai province and its study for olivine[J]. Northwestern Geology,2016,49(2):45−58.
[26] 张照伟, 王亚磊, 钱兵, 等. 东昆仑冰沟南铜镍矿锆石SHRIMP U-Pb年龄及构造意义[J]. 地质学报, 2017a, 91(4): 724−735.
ZHANG Zhaowei, WANG Yalei, QIAN Bing, et al. Zircon SHRIMP U Pb Age of the Binggounan Magmatic Ni-Cu Deposit in East Kunlun Mountains and its Tectonic Implications[J]. Acta Geologica Sinica,2017a,91(4):724−735.
[27] 张照伟, 王亚磊, 钱兵, 等. 东昆仑石头坑德镁铁-超镁铁质岩体矿物学特征及成矿指示[J]. 地质与勘探, 2017b, 53(5): 825−837.
ZHANG Zhaowei, WANG Yalei, QIAN Bing, et al. Mineralogical characteristics of the Shitoukengde mafic-ultramafic intrusion in the East Kunlun orogenic belt and its ore-forming indicators[J]. Geology and Exploration,2017b,53(5):825−837.
[28] 张照伟, 王驰源, 钱兵, 等. 东昆仑志留纪辉长岩地球化学特征及与铜镍成矿关系探讨[J]. 岩石学报, 2018, 34(8): 2262−2274.
ZHANG Zhaowei, WANG Chiyuan, QIAN Bing et al. The geochemistry characteristics of Silurian gabbro in eastern Kunlun orogenic belt and its mineralization relationship with magmatic Ni-Cu sulfide deposit[J]. Acta Petrologica Sinica,2018,34(8):2262−2274.
[29] 张照伟, 王驰源, 刘超, 等. 东昆仑夏日哈木矿区岩体含矿性特点与形成机理探讨[J]. 西北地质, 2019, 52(3): 35−45.
ZHANG Zhaowei, WANG Chiyuan, LIU Chao, et al. Mineralization characteristics and formation mechanism of the intrusions in Xiarihamu magmatic Ni-Cu sulfide deposit, East Kunlun Orogenic Belt, Northwest China[J]. Northwestern Geology,2019,52(3):35−45.
[30] 张照伟, 钱兵, 王亚磊, 等. 东昆仑夏日哈木镍成矿赋矿机理认识与找矿方向指示[J]. 西北地质, 2020, 53(3): 153−168.
ZHANG Zhaowei, QIAN Bing, WANG Yalei, et al. Understanding of metallogenic ore-forming mechanism and its indication of prospecting direction in Xiarihamu magmatic Ni-Co sulfide deposit, eastern Kunlun orogenic belt, Northwestern China[J]. Northwestern Geology,2020,53(3):153−168.
[31] 张照伟, 钱兵, 王亚磊, 等. 中国西北地区岩浆铜镍矿床地质特点与找矿潜力[J]. 西北地质, 2021a, 54(1): 82−99.
ZHANG Zhaowei, QIAN Bing, WANG Yalei, et al. Geological characteristics and prospecting potential of magmatic Ni-Cu sulfide deposits in Northwest China[J]. Northwestern Geology,2021a,54(1):82−99.
[32] 张照伟, 王亚磊, 邵继, 等. 东昆仑夏日哈木超大型岩浆镍钴硫化物矿床成矿特征[J]. 矿床地质, 2021b, 40(6): 1230−1247.
ZHANG Zhaowei, WANG Yalei, SHAO Ji, et al. Metallogenic characteristics of Xiarihamu super-large magmatic nickel-cobalt sulfide deposit in eastern Kunlun Orogenic Belt[J]. Mineral Deposits,2021b,40(6):1230−1247.
[33] 张照伟, 李文渊, 丰成友, 等. 中国钴-镍成矿规律与高效勘查技术[J]. 西北地质, 2022, 55(2): 14−34.
ZHANG Zhaowei, LI Wenyuan, FENG Chengyou, et al. Study on Metallogenic Regularity of Co-Ni Deposits in China and Its Efficient Exploration Techniques[J]. Northwestern Geology,2022,55(2):14−34.
[34] 张照伟, 谭文娟, 杜辉, 等. 金川岩浆镍钴硫化物矿床深部找矿勘查技术研究[J]. 西北地质, 2023, 56(6): 242−253.
ZHANG Zhaowei, TAN Wenjuan, DU Hui, et al. Study on Exploration Techniques of Deep Ore Prospecting in Jinchuan Magmatic Co–Ni Sulfide Deposit, Northwest China[J]. Northwestern Geology,2023,56(6):242−253.
[35] 张照伟, 钱兵, 王亚磊, 等. 东昆仑造山带岩浆镍钴硫化物矿床形成构造背景探讨[J]. 中国地质, 2024, 51(2): 371−384.
ZHANG Zhaowei, QIAN Bing, WANG Yalei, et al. Tectonic settings discussion of magmatic nickel−cobalt sulfide deposits in the eastern Kunlun orogenic belt[J]. Geology in China,2024,51(2):371−384.
[36] 张照伟, 吴华英, 谭文娟, 等. 中国镍钴矿产资源禀赋条件与找矿潜力[J]. 岩石学报, 2025, 41(2): 416−430. doi: 10.18654/1000-0569/2025.02.04
ZHANG Zhaowei, WU Huaying, TAN Wenjuan, et al. Endowment conditions and prospecting potential of nickel and cobalt mineral resources in China[J]. Acta Petrologica Sinica,2025,41(2):416−430. doi: 10.18654/1000-0569/2025.02.04
[37] 钟世华, 黄宇, 刘永乐, 等. 东昆仑志留纪—泥盆纪关键金属成矿大爆发[J]. 地质通报, 2025, 44(4): 574−586. doi: 10.12097/gbc.2024.06.020
ZHONG Shihua, HUANG Yu, LIU Yongle, et al. Silurian-Devonian critical metal mineralization boom of the East Kunlun Orogenic Belt[J]. Geological Bulletin of China,2025,44(4):574−586. doi: 10.12097/gbc.2024.06.020
[38] 赵俊兴, 李光明, 秦克章, 等. 富含钴矿床研究进展与问题分析[J]. 科学通报, 2019, 64(24): 2484−2500. doi: 10.1360/N972019-00134
ZHAO Junxing, LI Guangming, QIN Kezhang, et al. A review of the types and ore mechanism of the cobalt deposits[J]. Chinese Science Bulletin,2019,64(24):2484−2500. doi: 10.1360/N972019-00134
[39] Labidi J, Cartigny P, Moreira M. Non-chondritic sulphur isotope composition of the terrestrial mantle[J]. Nature,2013,501:208−211. doi: 10.1038/nature12490
[40] Li C S, Zhang Z W, Li W Y, et al. Geochronology, petrology and Hf-S isotope geochemistry of the newly-discovered Xiarihamu magmatic Ni-Cu sulfide deposit in the Qinghai-Tibet plateau, western China[J]. Lithos,2015a,216−217:224−240. doi: 10.1016/j.lithos.2015.01.003
[41] Li Y, Audétat A. Effects of temperature, silicate melt composition, and oxygen fugacity on the partitioning of V, Mn, Co, Ni, Cu, Zn, As, Mo, Ag, Sn, Sb, W, Au, Pb, and Bi between sulfide phases and silicate melt[J]. Geochim Cosmochim Acta,2015b,162:25−45. doi: 10.1016/j.gca.2015.04.036
[42] Liu Y, Li W, Jia Q, et al. The Dynamic Sulfide Saturation Process and a Possible Slab Break-off Model for the Giant Xiarihamu Magmatic Nickel Ore Deposit in the East Kunlun Orogenic Belt, Northern Qinghai-Tibet Plateau, China[J]. Economic Geology,2018,113(6):1383−1417. doi: 10.5382/econgeo.2018.4596
[43] Meng F C, Zhang J X, Cui M H. Discovery of Early Paleozoic eclogite from the East Kunlun, western China and its tectonic significance[J]. Gondwana Resarch,2013,23(2):825−836. doi: 10.1016/j.gr.2012.06.007
[44] Naldrett A J. Fundamentals of magmatic sulfide deposits. In: Li C, Ripley E M, eds. Reviews in Economic Geology[M]. Denver: Society of Economic Geologists, Inc. , 2011, 1–50.
[45] Qiu Z J, Fan H R, Goldfarb R, et al. Cobalt concentration in a sulfidic sea and mobilization during orogenesis: Implications for targeting epigenetic sediment-hosted Cu-Co deposits[J]. Geochimica et Cosmochimica, Acta,2021,305:1−18. doi: 10.1016/j.gca.2021.05.001
[46] Ripley E M, Li C S. Sulfide Saturation in Mafic Magmas: Is External Sulfur Required for Magmatic Ni-Cu-(PGE) Ore Genesis?[J]. Economic Geology,2013,108:45−58. doi: 10.2113/econgeo.108.1.45
[47] Schulz K J, DeYoung J H, Seal R R, et al. Critical mineral resources of the United States — Economic and environmental geology and prospects for future supply[R]. U S Geological Survey Professional Paper Series 1802, 2018, 797.
[48] Slack J F, Kimball B E, Shedd K B, et al. Critical mineral resources of the United States—Economic and environmental geology and prospects for future supply[R]. U S Geological Survey Professional Paper 1802, 2017, F1–F40.
[49] Smith J M, Ripley E M, Li C S, et al. Cu and Ni Isotope Variations of Country Rock-Hosted Massive Sulfides Located Near Midcontinent Rift Intrusions[J]. Economic Geology, 2021, doi:10.5382/econgeo.4872; 16 p.
[50] Song X Y, Yi J N, Chen L M, et al. The giant Xiarihamu Ni-Co sulfide deposit in the East Kunlun Orogenic Belt, Northern Tibet Plateau, China[J]. Economic Geology,2016,111(1):29−55. doi: 10.2113/econgeo.111.1.29
[51] Tao Y, Putirka K, Hu R Z, et al. The magma plumbing system of the Emeishan large igneous province and its role in basaltic magma differentiation in a continental setting[J]. American Mineralogist,2015,100(11-12):2509−2517. doi: 10.2138/am-2015-4907
[52] Vasyukova O V, Williams-Jones A E. Constrains on the genesis of cobalt deposits: Part II, application to natural systems[J]. Economic Geology,2022,117:529−544. doi: 10.5382/econgeo.4888
[53] Wang C Y, Zhang Z W, Zhang C J, et al. Constraints on sulfide saturation by crustal contamination in the Shitoukengde Cu-Ni deposit, East Kunlun orogenic belt, northern Qinghai-Tibet Plateau, China[J]. Geosciences Journal,2021,25(3):401−415. doi: 10.1007/s12303-020-0025-8
[54] Williams-Jones A E, Vasyukova O V. Constraints on the genesis of cobalt deposits: Part I, theoretical considerations[J]. Economic Geology,2022,117:513−528. doi: 10.5382/econgeo.4895
[55] William H, Rainer J B, Adrian A F, et al. Sulphur isotopes of alkaline magmas unlock long-term records of crustal recycling on Earth[J]. Nature Communications, 2021, https://doi.org/10.1038/s41467-019-12218-1.
[56] Zhang Z W, Li W Y, Gao Y B, et al. Sulfide mineralization associated with arc magmatism in the Qilian Block, western China: zircon U-Pb age and Sr-Nd-Os-S isotope constraints from the Yulonggou and Yaqu gabbroic intrusions[J]. Mineralium Deposita,2014,49:279−292. doi: 10.1007/s00126-013-0488-x
[57] Zhang Z W, Tang Q Y, Li C S, et al. Sr-Nd-Os isotopes and PGE geochemistry of the Xiarihamu magmatic sulfide deposit in the Qinghai-Tibet plateau, China[J]. Mineralium Deposita,2017,52:51−68. doi: 10.1007/s00126-016-0645-0
[58] Zhang Z W, Wang Y L, Qian B, et al. Metallogeny and tectonomagmatic setting of Ni-Cu magmatic sulfide mineralization, number I Shitoukengde mafic-ultramafic complex, East Kunlun Orogenic Belt, NW China[J]. Ore Geology Reviews,2018,96:236−246. doi: 10.1016/j.oregeorev.2018.04.027
[59] Zhang Z W, Wang Y L, Wang C Y, et al. Mafic-ultramafic magma activity and copper-nickel sulfide metallogeny during Paleozoic in the Eastern Kunlun Orogenic Belt, Qinghai Province, China[J]. China Geology,2019,2(4):467−477.
-