新疆509道班西锂矿电气石矿物学及40Ar-39Ar同位素年代学特征

高永宝, 吴欢欢, 李文渊, 李侃, 张江伟, FredJourdan, 王子龙, 李永. 2025. 新疆509道班西锂矿电气石矿物学及40Ar-39Ar同位素年代学特征. 西北地质, 58(4): 207-222. doi: 10.12401/j.nwg.2025026
引用本文: 高永宝, 吴欢欢, 李文渊, 李侃, 张江伟, FredJourdan, 王子龙, 李永. 2025. 新疆509道班西锂矿电气石矿物学及40Ar-39Ar同位素年代学特征. 西北地质, 58(4): 207-222. doi: 10.12401/j.nwg.2025026
GAO Yongbao, WU Huanhuan, LI Wenyuan, LI Kan, ZHANG Jiangwei, Fred Jourdan, WANG Zilong, LI Yong. 2025. Tourmaline Mineralogy, 40Ar-39Ar Dating and Implications for the 509 Daobanxi Lithium Deposit in Xinjiang Province. Northwestern Geology, 58(4): 207-222. doi: 10.12401/j.nwg.2025026
Citation: GAO Yongbao, WU Huanhuan, LI Wenyuan, LI Kan, ZHANG Jiangwei, Fred Jourdan, WANG Zilong, LI Yong. 2025. Tourmaline Mineralogy, 40Ar-39Ar Dating and Implications for the 509 Daobanxi Lithium Deposit in Xinjiang Province. Northwestern Geology, 58(4): 207-222. doi: 10.12401/j.nwg.2025026

新疆509道班西锂矿电气石矿物学及40Ar-39Ar同位素年代学特征

  • 基金项目: 国家自然科学基金项目“战略性关键金属超常富集成矿动力学重大研究计划集成”(92262302),国家自然科学基金地质联合基金重点项目(U2244204),第二次青藏高原综合科学考察研究专题(2019QZKK0806),国家重点研发计划项目“锂、铍等战略性金属矿产资源成矿规律与预测评价”课题(2019YFC0605201),中国地质调查局项目(DD20230060)联合资助。
详细信息
    作者简介: 高永宝(1982−),男,研究员,博士,主要从事区域成矿及矿床学研究。E−mail:gaoyongbao2006@126.com
  • 中图分类号: P613

Tourmaline Mineralogy, 40Ar-39Ar Dating and Implications for the 509 Daobanxi Lithium Deposit in Xinjiang Province

  • 西昆仑大红柳滩地区作为中国重要的超大型伟晶岩型锂矿集区之一,其成矿元素超常富集机制备受关注。前人对区内富锂锂辉石伟晶岩开展了较为细致的研究,但受限于伟晶岩定年技术的制约,对于广泛出露的贫Li含电气石伟晶岩成因及其与富Li伟晶岩的关系尚未开展系统的对比研究。针对这一问题,笔者对区内509道班西超大型锂矿中的贫Li伟晶岩开展了详细的岩相学和电气石矿物学研究,并成功获得电气石40Ar-39Ar同位素年龄。结果显示:①贫Li伟晶岩为含石榴子石电气石伟晶岩,主要由斜长石、石英、碱性长石、白云母、电气石及少量石榴子石组成。②贫Li伟晶岩中电气石为富FeOT(11.19%~13.24%)、贫CaO(0.06%~0.29%)、MgO(0.02%~0.10%)和Na2O(0.69%~1.12%)的黑电气石亚族,其成分主要受(X□, Al)(Na, R2+)−1元素置换对控制,与区内二云母花岗岩及锂辉石伟晶岩中电气石成分特征相似,属于典型的岩浆–热液成因电气石。③电气石40Ar-39Ar坪年龄为(229.8±0.4)Ma,指示贫Li伟晶岩与二云母花岗岩及富Li伟晶岩为同期岩浆–热液产物。结合伟晶岩空间分布及电气石成分演化特征,笔者认为贫Li伟晶岩代表演化早期贫稀有金属的熔体,富Li伟晶岩则是演化程度更高的富稀有金属岩浆热液产物,其中靠近岩体的伟晶岩中贫Li矿物(长石、石榴子石、电气石等)的结晶促进了稀有金属在残余熔/流体中的进一步富集,最终导致了岩体近端贫矿、远端富矿的伟晶岩分布特点。

  • 加载中
  • 图 1  大红柳滩地区地质图

    Figure 1. 

    图 2  509道班西锂矿床矿区地质简图

    Figure 2. 

    图 3  509道班西锂矿床含石榴子石电气石伟晶岩与含锂辉石伟晶岩野外及镜下照片

    Figure 3. 

    图 4  Ca-X□-(Na+K)三元图解(a)(底图据Henry et al., 2011)、Al-Fe-Mg图解(b)(底图据Henry et al, 1985

    Figure 4. 

    图 5  电气石Mg/(Fe+Mg)-Na/(Na+Ca)分类图解(a)(据Henry et al., 2011)及离子占位替换趋势图解(b~d)

    Figure 5. 

    图 6  509道班西锂矿电气石40Ar-39Ar 坪年龄图

    Figure 6. 

    图 7  不同定年矿物封闭温度对比(a)(据Chiaradia et al., 2013修改)及大红柳滩花岗岩/伟晶岩多矿物定年结果对比(b)

    Figure 7. 

    图 8  大红柳滩花岗岩、伟晶岩及地层δ7Li–Li关系协变图(据Fan et al., 2020梁婷等,2021李文渊等,2023

    Figure 8. 

    图 9  大红柳滩伟晶岩型锂矿成矿模式图(据Gao et al., 2020修改)

    Figure 9. 

    表 1  509道班西锂矿床电气石主量元素分析结果(%)及化学式

    Table 1.  EPMA data (%) and calculated formula of tourmaline from the 509 Daobanxi lithium deposit

    样品/岩性 509-5-1
    (含石榴子石电气石伟晶岩)
    509-5-2
    (含电气石伟晶岩)
    509-5-3
    (含电气石伟晶岩)
    509-5-4
    (含电气石伟晶岩)
    点号 1 2 3 4 5 6 7 8 9 10 11 1 3 4 5 1 2 3 1 2 3 4 5
    SiO2 34.70 34.63 34.79 35.02 35.38 34.02 35.43 34.60 34.75 34.84 35.15 35.98 35.81 35.33 34.65 35.69 34.79 34.87 34.21 35.35 35.80 34.68 35.07
    TiO2 0.12 0.02 0.00 0.10 0.00 0.05 0.00 0.02 0.11 0.07 0.04 0.05 0.07 0.25 0.04 0.12 0.04 0.00 0.07 0.00 0.02 0.14 0.00
    Al2O3 34.22 34.00 34.49 34.46 34.51 33.88 34.05 34.53 33.83 34.17 33.11 33.99 34.30 34.65 33.88 33.95 34.14 34.57 33.44 34.53 34.30 34.51 33.74
    FeO 12.58 12.35 12.06 11.93 12.25 13.24 11.59 11.64 12.05 11.19 13.01 12.27 11.44 11.55 11.75 11.84 11.73 12.27 12.71 12.20 11.97 11.70 11.93
    MnO 1.22 2.19 2.30 2.28 2.46 1.66 2.52 2.45 1.20 1.83 1.14 2.26 1.20 1.26 2.55 2.53 2.26 2.29 1.18 1.25 1.15 2.10 1.28
    MgO 0.08 0.08 0.07 0.09 0.09 0.08 0.10 0.08 0.10 0.06 0.07 0.08 0.02 0.05 0.07 0.07 0.08 0.10 0.08 0.03 0.03 0.08 0.07
    CaO 0.24 0.16 0.25 0.09 0.27 0.10 0.06 0.17 0.15 0.12 0.23 0.27 0.13 0.17 0.29 0.19 0.16 0.28 0.10 0.25 0.17 0.22 0.11
    Na2O 1.12 1.04 0.94 1.05 0.89 1.02 0.91 1.00 0.99 1.01 0.91 0.95 0.82 0.75 0.86 0.92 0.98 0.98 0.87 0.69 0.73 0.90 0.82
    K2O 0.00 0.01 0.02 0.01 0.03 0.01 0.03 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.01 0.01 0.00 0.02 0.02 0.00 0.00 0.03 0.01
    F 0.35 0.35 0.16 0.32 0.25 0.34 0.30 0.16 0.40 0.36 0.34 0.37 0.27 0.24 0.32 0.25 0.25 0.21 0.26 0.09 0.09 0.20 0.23
    B2O3* 10.22 10.24 10.30 10.34 10.42 10.13 10.34 10.29 10.15 10.20 10.15 10.43 10.32 10.30 10.22 10.39 10.24 10.35 10.02 10.28 10.32 10.26 10.15
    H2O* 3.30 3.31 3.42 3.35 3.42 3.30 3.36 3.41 3.25 3.27 3.28 3.36 3.35 3.37 3.32 3.40 3.36 3.42 3.29 3.45 3.45 3.39 3.33
    Total 98.17 98.36 98.80 99.04 99.97 97.84 98.67 98.35 96.99 97.13 97.44 100.01 97.75 97.92 97.94 99.36 98.00 99.34 96.24 98.13 98.02 98.21 96.73
    B-site
    B 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00
    T-site
    Si 6.00 5.97 5.96 5.99 6.00 5.89 6.07 5.95 6.06 6.07 6.12 6.11 6.18 6.08 5.99 6.09 6.01 5.95 6.01 6.07 6.15 5.97 6.12
    Al 0.00 0.03 0.04 0.01 0.00 0.11 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.05 0.00 0.00 0.00 0.03 0.00
    Z-site
    Al 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00
    Mg 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
    Fe 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
    Y-site
    Al 0.97 0.88 0.92 0.93 0.89 0.81 0.88 0.95 0.96 1.01 0.79 0.80 0.98 1.03 0.90 0.83 0.95 0.90 0.92 0.99 0.95 0.97 0.94
    Ti 0.02 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.01 0.01 0.00 0.01 0.01 0.03 0.00 0.02 0.00 0.00 0.01 0.00 0.00 0.02 0.00
    Fe 1.82 1.78 1.73 1.70 1.74 1.92 1.66 1.67 1.76 1.63 1.89 1.74 1.65 1.66 1.70 1.69 1.69 1.75 1.87 1.75 1.72 1.68 1.74
    Mg 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.02 0.02 0.02 0.01 0.01 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.02 0.02
    Mn 0.18 0.32 0.33 0.33 0.35 0.24 0.37 0.36 0.18 0.27 0.17 0.32 0.18 0.18 0.37 0.37 0.33 0.33 0.18 0.18 0.17 0.31 0.19
    X-site
    Ca 0.04 0.03 0.05 0.02 0.05 0.02 0.01 0.03 0.03 0.02 0.04 0.05 0.02 0.03 0.05 0.04 0.03 0.05 0.02 0.05 0.03 0.04 0.02
    Na 0.37 0.35 0.31 0.35 0.29 0.34 0.30 0.33 0.33 0.34 0.31 0.31 0.28 0.25 0.29 0.31 0.33 0.32 0.29 0.23 0.24 0.30 0.28
    K 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00
    Xvac 0.58 0.62 0.64 0.63 0.65 0.64 0.68 0.63 0.63 0.63 0.65 0.64 0.70 0.72 0.66 0.66 0.64 0.62 0.68 0.72 0.73 0.65 0.70
    V+W-site
    F 0.19 0.19 0.09 0.17 0.14 0.18 0.16 0.09 0.22 0.20 0.19 0.20 0.15 0.13 0.17 0.13 0.13 0.11 0.15 0.05 0.05 0.11 0.13
    OH 3.81 3.81 3.91 3.83 3.86 3.82 3.84 3.91 3.78 3.80 3.81 3.80 3.85 3.87 3.83 3.87 3.87 3.89 3.85 3.95 3.95 3.89 3.87
    下载: 导出CSV

    表 2  509道班西锂矿床电气石(样品509-5-2)40Ar-39Ar阶段升温加热分析数据

    Table 2.  40Ar-39Ar stepwise heating data for tourmaline (Sample 509-5-2) from the 509 Daobanxi lithium deposit

    阶段加热过程 36Ar(a)
    [V]
    37Ar(ca)
    [V]
    38Ar(cl)
    [V]
    39Ar(k)
    [V]
    40Ar(r)
    [V]
    Age ± 2s 40Ar(r) 39Ar(k) K/Ca ± 2s
    (Ma) (%) (%)
    1M75558 2.5% 0.0000735 0.0011880 0.0000062 0.0001183 0.0664270 3561.96 ± 391.40 75.16 0.04 0.052 ± 0.243
    1M75559 3.0% 0.0001710 0.0022413 0.0000668 0.0001824 0.1022169 3558.86 ± 251.53 66.69 0.07 0.042 ± 0.132
    1M75561 3.5% 0.0001691 0.0033234 0.0000000 0.0002798 0.0811061 2588.98 ± 158.83 61.63 0.10 0.044 ± 0.090
    1M75562 4.0% 0.0001365 0.0004588 0.0000000 0.0002929 0.0743692 2409.52 ± 143.66 64.60 0.11 0.332 ± 4.720
    1M75563 4.5% 0.0001387 0.0020510 0.0000000 0.0003643 0.0481512 1622.18 ± 126.31 53.76 0.13 0.092 ± 0.300
    1M75565 5.0% 0.0001339 0.0012979 0.0000000 0.0003599 0.0528180 1736.89 ± 119.41 56.92 0.13 0.144 ± 0.669
    1M75566 5.5% 0.0001243 0.0003050 0.0000330 0.0003064 0.0398597 1605.42 ± 143.45 51.78 0.11 0.522 ± 11.512
    1M75567 6.0% 0.0000924 0.0034315 0.0000000 0.0002897 0.0235105 1153.06 ± 172.95 46.02 0.11 0.044 ± 0.088
    1M75569 7.0% 0.0002156 0.0015512 0.0000000 0.0005045 0.0750844 1752.48 ± 86.03 53.84 0.19 0.169 ± 0.804
    1M75570 8.0% 0.0001614 0.0012925 0.0000000 0.0006645 0.0922665 1675.56 ± 64.45 65.68 0.25 0.267 ± 1.297
    1M75571 10.0% 0.0004893 0.0067591 0.0000000 0.0042770 0.2726726 960.21 ± 12.98 65.12 1.58 0.329 ± 0.316
    1M75573 12.0% 0.0006330 0.0258720 0.0000573 0.0179739 0.3929379 389.36 ± 3.92 67.52 6.66 0.361 ± 0.104
    1M75574 14.0% 0.0005937 0.0459576 0.0000199 0.0314694 0.4884912 284.83 ± 2.34 73.37 11.66 0.356 ± 0.046
    1M75575 17.0% 0.0005474 0.0678911 0.0000444 0.0492450 0.6355055 239.83 ± 1.54 79.54 18.24 0.377 ± 0.034
    1M75577 20.0% 0.0003908 0.0755647 0.0000776 0.0562293 0.6714603 222.99 ± 1.34 85.19 20.83 0.387 ± 0.036
    1M75578 24.0% 0.0003728 0.0553695 0.0000687 0.0425277 0.5373139 235.12 ± 1.73 82.84 15.75 0.399 ± 0.052
    1M75580 28.0% 0.0002174 0.0301910 0.0000579 0.0247662 0.3242637 243.10 ± 2.92 83.32 9.17 0.427 ± 0.098
    1M75581 33.0% 0.0001888 0.0246925 0.0000900 0.0154081 0.1971945 237.97 ± 4.69 77.76 5.71 0.324 ± 0.088
    1M75583 40.0% 0.0000928 0.0188132 0.0000997 0.0140883 0.1643084 218.08 ± 5.15 85.56 5.22 0.389 ± 0.151
    1M75584 50.0% 0.0002264 0.0131493 0.0000343 0.0106391 0.1157823 204.29 ± 6.90 63.13 3.94 0.421 ± 0.206
    下载: 导出CSV
  • [1]

    洪涛, 胡明曦, 唐俊林, 等. 新疆西昆仑大红柳滩花岗伟晶岩型锂矿叠加改造成矿特征: 来自矿石构造、3D成像技术与年代学的约束[J]. 岩石学报, 2024, 40(2): 553−570.

    HONG Tao, HU Mingxi, TANG Junlin, et al. Metallogenic characteristics of superimposed deformation and mineralization of Dahongliutan granite-pegmatite type lithium deposit belt in West Kunlun, Xinjiang: Constraints from ore structure, 3D imaging technology and chronology[J]. Acta Petrologica Sinica,2024,40(2):553−570.

    [2]

    霍海龙, 陈正乐, 张青, 等. 新疆西昆仑509道班西锂矿伟晶岩石英变形特征、温度及其对伟晶岩就位的约束[J]. 地质力学学报, 2024, 30(1): 72−87.

    HUO Hailong,CHEN Zhenle,ZHANG Qing,et al. Quartz deformation characteristics,deformation temperature,and their constraints on pegmatites of the 509 Daobanxi lithium deposit in the West Kunlun area,Xinjiang[J]. Journal of Geomechanics,2024,30(1):72−87.

    [3]

    孔会磊, 任广利, 李文渊, 等. 西昆仑大红柳滩东含锂辉石花岗伟晶岩脉年代学和地球化学特征及其地质意义[J]. 西北地质, 2023, 56(2): 61−79.

    KONG Huilei, REN Guangli, LI Wenyuan, et al. Geochronology, Geochemistry and Their Geological Significances of Spodumene Pegmatite Veins in the Dahongliutandong Deposit, Western Kunlun, China[J]. Northwestern Geology,2023,56(2):61−79.

    [4]

    李文渊, 高永宝, 张照伟, 等. 镁铁—超镁铁质岩与花岗岩-伟晶岩“小岩体成大矿”对比———以昆仑成矿带夏日哈木和大红柳滩超大型矿床为例[J]. 地球科学与环境学报, 2023, 45(5): 1036−1048.

    LI Wenyuan, GAO Yongbao, ZHANG Zhaowei, et al. Comparisonof Mafic-ultramaficand Granite-pegmatite "SmallIntrusion Forming Large Deposit": Taking Xiarihamu and Dahongliutan Super-large Depositsin Kunlun Metallogenic Belt, China as Examples[J]. Journal of Earth Sciencesand Environment,2023,45(5):1036−1048.

    [5]

    梁婷, 滕家欣, 王登红, 等. 新疆大红柳滩锂铍稀有金属矿床[M]. 北京: 地质出版社, 2021.

    LIANG Ting, TENG Jiaxin, WANG Denghong, et al. Lithium beryllium rare metal deposit in Dahongliutan, Xinjiang [M]. Beijing: Geological Publishing House, 2021.

    [6]

    李侃, 高永宝, 滕家欣, 等. 新疆和田县大红柳滩一带花岗伟晶岩型稀有金属矿成矿地质特征、成矿时代及找矿方向[J]. 西北地质, 2019, 52(4): 206−221.

    LI Kan, GAO Yongbao, TENG Jiaxin, et al. Metallogenic Geological Characteristics, Mineralization Age and Resource Potential of the Granite-Pegmatite-Type Rare Metal Deposits in Dahongliutan Area, Hetian County, Xinjiang[J]. Northwestern Geology,2019,52(4):206−221.

    [7]

    李荣社, 计文化, 何世平, 等. 中国西部古亚洲与特提斯两大构造域划分问题讨论[J]. 新疆地质, 2011, 29(3): 247−250.

    LI Rongshe, JI Wenhua, HE Shiping, et al. The Two Tectonic Domain Divesion Discussion between the Ancient Asian and Tethys in Western China[J]. Xinjiang Geology,2011,29(3):247−250.

    [8]

    李永, 王威, 杜晓飞, 等. 西昆仑509道班西锂铍稀有金属矿白云母40Ar/39Ar定年及对区域成矿的限定[J]. 中国地质, 2022, 49(6): 2031−2033.

    LI Yong, WANG Wei, DU Xiaofei, et al. 40Ar/39Ar dating of muscovite of the west 509 Daoban Li-Be rare metal deposit in the West Kunlun orogenic belt and its limitation to regional mineralization[J]. Geology in China,2022,49(6):2031−2033.

    [9]

    彭海练, 贺宁强, 王满仓, 等. 新疆和田县大红柳滩地区509道班西稀有多金属矿地质特征与成矿规律探讨[J]. 西北地质, 2018, 51(3): 146−154.

    PENG Hailian, HE Ningqiang, WANG Mancang, et al. Geological Characteristics and Metallogenic regularity of West Track 509 Rare Polymetallic Deposit in Dahongliutan Region, Hetian, Xinjiang[J]. Northwestern Geology,2018,51(3):146−154.

    [10]

    乔耿彪, 伍跃中, 刘拓. 西昆仑大红柳滩伟晶岩型稀有金属矿的形成时代: 来自白云母40Ar/39Ar同位素年龄的证据[J]. 中国地质, 2020, 47(5): 1591−1593.

    QIAO Gengbiao, WU Yuezhong, LIU Tuo. Formation age of the Dahongliutan pegmatite type rare metal deposit in Western Kunlun Mountains: Evidence from muscovite 40Ar/39Ar isotopic dating[J]. Geology in China,2020,47(5):1591−1593.

    [11]

    乔耿彪, 张汉德, 伍跃中, 等. 西昆仑大红柳滩岩体地质和地球化学特征及对岩石成因的制约[J]. 地质学报, 2015, 89(7): 1180−1194.

    QIAO Gengbiao, ZHANG Hande, WU Yuezhong, et al. Petrogenesis of the Dahongliutan Monzogranite in Western Kunlun: Evidence from SHRIMP Zircon U-Pb Geochronology and Geochemical Characteristics[J]. Acta Geologica Sinica,2015,89(7):1180−1194.

    [12]

    谭克彬, 郭岐明, 郭勇明. 新疆和田509道班西锂铍多金属矿床花岗岩U-Pb年龄及其构造意义[J]. 新疆有色金属, 2021, 44(2): 6−10.

    TAN Kebin, GUO Qiming, GUO Yongming. U-Pb Ages and Tectonic Significance of Granite from the 509 Daobanxi Lithium Beryllium Polymetallic Deposit in Hotan, Xinjiang[J]. Xinjiang Nonferrous Metals,2021,44(2):6−10.

    [13]

    唐俊林, 柯强, 徐兴旺, 等. 西昆仑大红柳滩地区龙门山锂铍伟晶岩区岩浆演化与成矿作用[J]. 岩石学报, 2022, 38(3): 655−675. doi: 10.18654/1000-0569/2022.03.05

    TANG Junlin, KE Qiang, XU Xingwang, et al. Magma evolution and mineralization of Longmenshan lithium-beryllium pegmatite in Dahongliutan area, West Kunlun[J]. Acta Petrologica Sinica,2022,38(3):655−675. doi: 10.18654/1000-0569/2022.03.05

    [14]

    庹明洁, 夏永旗, 李诺, 等. 西昆仑大红柳滩地区花岗岩类侵位时代与成因[J]. 矿床地质, 2024, 43(2): 265−288.

    TUO Mingjie,XIA Yongqi,LI Nuo,et al. Age and petrogenesis of granitoids in Dahongliutan area,West Kunlun[J]. Mineral Deposits,2024,43(2):265−288.

    [15]

    王核, 黄亮, 马华东, 等. 西昆仑大红柳滩-白龙山矿集区锂矿成矿特征与成矿规律初探[J]. 岩石学报, 2023, 39(7): 1931−1949.

    WANG He, HUANG Liang, MA Huadong, et al. Geological characteristics and metallogenic regularity of lithium deposits in Dahongliutan-Bailongshan area, West Kunlun, China[J]. Acta Petrologica Sinica,2023,39(7):1931−1949.

    [16]

    王核, 李沛, 马华东, 等. 新疆和田县白龙山超大型伟晶岩型锂铷多金属矿床的发现及其意义[J]. 大地构造与成矿学, 2017, 41(6): 1053−1062.

    WANG He, LI Pei, MA Huadong, et al. Discovery of the Bailongshan Superlarge Lithium-Rubidium Deposit in Karakorum, Hetian, Xinjiang, and its Prospecting Implication[J]. Geotectonica et Metallogenia,2017,41(6):1053−1062.

    [17]

    王威, 杜晓飞, 刘伟, 等. 西昆仑509道班西锂铍稀有金属矿地质特征与成矿时代探讨[J]. 岩石学报, 2022, 38(7): 1967−1980.

    WANG Wei, DU Xiaofei, LIU Wei, et al. Geological characteristic and discussion on metallogenic age of the West 509-Daoban Li-Be rare metal deposit in the West Kunlun Orogenic Belt[J]. Acta Petrologica Sinica,2022,38(7):1967−1980.

    [18]

    魏小鹏, 王核, 胡军, 等. 西昆仑大红柳滩二云母花岗岩地球化学和地质年代学研究及其地质意义[J]. 地球化学, 2017, 46(1): 66−80.

    WEI Xiaopeng, WANG He, HU Jun, et al. Geochemistry and geochronology of the Dahongliutan two-mica granite pluton in western Kunlun orogen: Geotectonic implications[J]. Geochimica,2017,46(1):66−80.

    [19]

    吴福元, 刘志超, 刘小驰, 等. 喜马拉雅淡色花岗岩[J]. 岩石学报, 2015, 31(1): 1−36.

    WU Fuyuan, LIU Zhichao, LIU Xiaochi, et al. Himalayan leucogranite: Petrogenesis and implications to orogenesis and plateau uplift[J]. Acta Petrologica Sinica,2015,31(1):1−36.

    [20]

    夏永旗, 庹明洁, 李诺, 等. 云母和电气石矿物化学特征对西昆仑大红柳滩地区伟晶岩型锂矿化的指示[J]. 地球科学, 2024, 49(3): 922−938.

    XIA Yongqi, TUO Mingjie, LI Nuo, et al. Mineral Characteristics of Mica and Tourmaline and Geological Implication for the Pegmatite-Type Lithium Mineralization, Dahongliutan Area, West Kunlun[J]. Earth Science,2024,49(3):922−938.

    [21]

    闫庆贺, 王核, 丘增旺, 等. 西昆仑大红柳滩稀有金属伟晶岩矿床锡石及铌钽铁矿年代学及其地质意义[J]. 矿物岩石地球化学通报, 2017, 36: 802−803.

    YAN Qinghe, WANG He, QIU Zengwang, et al. Chronology and Geological Significance of Cassiterite and Niobium Tantalum Iron Deposits in the Rare Metal Pegmatite Deposit of Dahongliutan, West Kunlun Mountains[J]. Bulletin of Mineralogy, Petrology and Geochemistry,2017,36:802−803.

    [22]

    杨岳衡, 吴石头, 车旭东, 等. 稀有金属矿物微区同位素定年与示踪[J]. 岩石学报, 2024, 40(4): 1023−1043. doi: 10.18654/1000-0569/2024.04.01

    YANG Yueheng, WU Shitou, CHE Xudong, et al. In-situ isotopic dating and tracing of the rare-metal minerals in ore deposit[J]. Acta Petrologica Sinica,2024,40(4):1023−1043. doi: 10.18654/1000-0569/2024.04.01

    [23]

    邹天人. 中国新疆稀有及稀土金属矿床[M]. 北京: 地质出版社, 2006.

    ZOU Tianren. Rare and Rare Earth Metal Deposits in Xinjiang, China[M]. Beijing: Geological Publishing House, 2006.

    [24]

    Andriessen P A M, Hebeda E H, Simon O J, et al. Tourmaline K Ar ages compared to other radiometric dating systems in Alpine anatectic leucosomes and metamorphic rocks (Cyclades and southern Spain)[J]. Chemical Geology,1991,91(1):33−48. doi: 10.1016/0009-2541(91)90014-I

    [25]

    Barredo F B, Pérez A P, Montero P G, et al. Tourmaline 40Ar/39Ar chronology of tourmaline-rich rocks from Central Iberia dates the main Variscan deformation phases[J]. Geologica Acta, 2009: 399−412.

    [26]

    Cao R, Gao Y, Chen B, et al. Pegmatite magmatic evolution and rare metal mineralization of the Dahongliutan pegmatite field, Western Kunlun Orogen: Constraints from the B isotopic composition and mineral chemistry[J]. International Geology Review,2023,65(7):1224−1242. doi: 10.1080/00206814.2021.1899062

    [27]

    Chen B, Huang C, Zhao H. Lithium and Nd isotopic constraints on the origin of Li-poor pegmatite with implications for Li mineralization[J]. Chemical Geology,2020,551:119769. doi: 10.1016/j.chemgeo.2020.119769

    [28]

    Chiaradia M, Schaltegger U, Spikings R, et al. How accurately can we date the duration of magmatic-hydrothermal events in porphyry systems?: an invited paper[J]. Economic Geology,2013,108(4):565−584. doi: 10.2113/econgeo.108.4.565

    [29]

    Deveaud S, Millot R, Villaros A. The genesis of LCT-type granitic pegmatites, as illustrated by lithium isotopes in micas[J]. Chemical Geology,2015,411:97−111. doi: 10.1016/j.chemgeo.2015.06.029

    [30]

    Fan J J, Tang G J, Wei G J, et al. Lithium isotope fractionation during fluid exsolution: Implications for Li mineralization of the Bailongshan pegmatites in the West Kunlun, NW Tibet[J]. Lithos,2020,352:105236.

    [31]

    Gammel E M, Nabelek P. Fluid inclusion examination of the transition from magmatic to hydrothermal conditions in pegmatites from San Diego County, California[J]. American Mineralogist,2016,101(8):1906−1915. doi: 10.2138/am-2016-5559

    [32]

    Gao Y B, Bagas L, Li K, et al. Newly discovered Triassic lithium deposits in the Dahongliutan area, Northwest China: A case study for the detection of lithium-bearing pegmatite deposits in rugged terrains using remote-sensing data and images[J]. Frontiers in Earth Science,2020,8:591966. doi: 10.3389/feart.2020.591966

    [33]

    Henry D J, Dutrow B L, Grew E S, et al. Metamorphic tourmaline and its petrologic applications[J]. Reviews in Mineralogy,1996,33:503−558.

    [34]

    Henry D J, Guidotti C V. Tourmaline as a petrogenetic indicator mineral: an example from the staurolite-grade metapelites of NW Maine[J]. American Mineralogist,1985,70(1−2):1−15.

    [35]

    Henry D J, Novák M, Hawthorne F C, et al. Nomenclature of the tourmaline-supergroup minerals[J]. American Mineralogist,2011,96(5−6):895−913. doi: 10.2138/am.2011.3636

    [36]

    Koppers A A P. ArArCALC—software for 40Ar/39Ar age calculations[J]. Computers Geosciences,2002,28(5):605−619. doi: 10.1016/S0098-3004(01)00095-4

    [37]

    Lee J Y, Marti K, Severinghaus J P, et al. A redetermination of the isotopic abundances of atmospheric Ar[J]. Geochimica et Cosmochimica Acta,2006,70(17):4507−4512. doi: 10.1016/j.gca.2006.06.1563

    [38]

    Li J K, Zou T R, Liu X F, et al. The metallogenetic regularities of lithium deposits in China[J]. Acta Geologica Sinica‐English Edition,2015,89(2):652−670. doi: 10.1111/1755-6724.12453

    [39]

    Li J, Huang X L, Wei G J, et al. Lithium isotope fractionation during magmatic differentiation and hydrothermal processes in rare-metal granites[J]. Geochimica et Cosmochimica Acta,2018,240:64−79. doi: 10.1016/j.gca.2018.08.021

    [40]

    Linnen R, Trueman D L, Burt R. Tantalum and niobium[J]. Critical Metals Handbook, 2014: 361–384.

    [41]

    Liu T, Jiang S Y. Multiple generations of tourmaline from Yushishanxi leucogranite in South Qilian of western China record a complex formation history from B-rich melt to hydrothermal fluid[J]. American Mineralogist,2021,106(6):994−1008. doi: 10.2138/am-2021-7473

    [42]

    Liu X Q, Zhang C L, Zou H B, et al. Triassic-Jurassic granitoids and pegmatites from western Kunlun-Pamir Syntax: Implications for the Paleo-Tethys evolution at the northern margin of the Tibetan Plateau[J]. Lithosphere,2020(1):7282037. doi: 10.2113/2020/7282037

    [43]

    London D, Morgan G B, Paul K A, et al. Internal evolution of miarolitic granitic pegmatites at the Little Three mine, Ramona, California, USA[J]. The Canadian Mineralogist,2012,50(4):1025−1054. doi: 10.3749/canmin.50.4.1025

    [44]

    Lv Z H, Zhang H, Tang Y. Anatexis origin of rare metal/earth pegmatites: Evidences from the Permian pegmatites in the Chinese Altai[J]. Lithos,2021,380:105865.

    [45]

    Martínez-Martínez J, Torres-Ruiz J, Pesquera A, et al. Geological relationships and U-Pb zircon and 40Ar/39Ar tourmaline geochronology of gneisses and tourmalinites from the Nevado–Filabride complex (western Sierra Nevada, Spain): tectonic implications[J]. Lithos,2010,119(3−4):238−250. doi: 10.1016/j.lithos.2010.07.002

    [46]

    McDougall I, Harrison T M. Geochronology and Thermochronology by the 40Ar/39Ar Method[M]. Oxford University Press, USA, 1999.

    [47]

    Pirajno F, Smithies R H. The FeO/(FeO+ MgO) ratio of tourmaline: a useful indicator of spatial variations in granite-related hydrothermal mineral deposits[J]. Journal of Geochemical Exploration,1992,42(2−3):371−381. doi: 10.1016/0375-6742(92)90033-5

    [48]

    Renne P R, Deino A L, Hilgen F J, et al. Time scales of critical events around the Cretaceous-Paleogene boundary[J]. Science,2013,339(6120):684−687. doi: 10.1126/science.1230492

    [49]

    Renne P R, Mundil R, Balco G, et al. Joint determination of 40K decay constants and 40Ar*/40K for the Fish Canyon sanidine standard, and improved accuracy for 40Ar/39Ar geochronology[J]. Geochimica et Cosmochimica Acta,2010,74(18):5349−5367. doi: 10.1016/j.gca.2010.06.017

    [50]

    Renne P R, Swisher C C, Deino A L, et al. Intercalibration of standards, absolute ages and uncertainties in 40Ar/39Ar dating[J]. Chemical Geology,1998,145(1−2):117−152. doi: 10.1016/S0009-2541(97)00159-9

    [51]

    Rozendaal A, Bruwer L. Tourmaline nodules: indicators of hydrothermal alteration and Sn Zn (W) mineralization in the Cape Granite Suite, South Africa[J]. Journal of African Earth Sciences,1995,21(1):141−155. doi: 10.1016/0899-5362(95)00088-B

    [52]

    Simmons W B, Pezzotta F, Shigley J E, et al. Granitic pegmatites as sources of colored gemstones[J]. Elements,2012,8(4):281−287. doi: 10.2113/gselements.8.4.281

    [53]

    Slack J F. Tourmaline associations with hydrothermal ore deposits[J]. Reviews in Mineralogy,1996,33:559−644.

    [54]

    Teng F Z, McDonough W F, Rudnick R L, et al. Diffusion-driven extreme lithium isotopic fractionation in country rocks of the Tin Mountain pegmatite[J]. Earth Planetary Science Letters,2006,243(3−4):701−710. doi: 10.1016/j.jpgl.2006.01.036

    [55]

    Thern E R, Blereau E, Jourdan F, et al. Tourmaline 40Ar/39Ar geochronology and thermochronology: example from Hadean-zircon-bearing siliciclastic metasedimentary rocks from the Yilgarn Craton[J]. Geochimica et Cosmochimica Acta,2020,277:285−299. doi: 10.1016/j.gca.2020.03.008

    [56]

    Thomas R, Davidson P. Hambergite-rich melt inclusions in morganite crystals from the Muiane pegmatite, Mozambique and some remarks on the paragenesis of hambergite[J]. Mineralogy Petrology,2010,100:227−239. doi: 10.1007/s00710-010-0132-8

    [57]

    Trumbull R B, Krienitz M S, Gottesmann B, et al. Chemical and boron-isotope variations in tourmalines from an S-type granite and its source rocks: the Erongo granite and tourmalinites in the Damara Belt, Namibia[J]. Contributions to Mineralogy Petrology,2008,155:1−18.

    [58]

    Wang H, Gao H, Zhang X Y, et al. Geology and geochronology of the super-large Bailongshan Li–Rb–(Be) rare-metal pegmatite deposit, West Kunlun orogenic belt, NW China[J]. Lithos,2020,360:105449.

    [59]

    Wu H H, Huang H, Zhang Z C, et al. Magmatic-hydrothermal evolution and rare metal enrichment of the Huoshibulake B-rich rare metal granite in the Southern Tianshan: Insights from texture, geochemistry, and Hf-O isotopes of zircon[J]. Lithos,2024a,482:107705.

    [60]

    Wu H H, Huang H, Zhang Z C, et al. Tourmaline chemical and boron isotopic constraints on the magmatic-hydrothermal transition and rare-metal mineralization in alkali granitic systems[J]. American Mineralogist,2024b,109(8):1461−1477. doi: 10.2138/am-2023-9131

    [61]

    Yan Q H, Qiu Z W, Wang H, et al. Age of the Dahongliutan rare metal pegmatite deposit, West Kunlun, Xinjiang (NW China): Constraints from LA–ICP–MS U–Pb dating of columbite-(Fe) and cassiterite[J]. Ore Geology Reviews,2018,100:561−573. doi: 10.1016/j.oregeorev.2016.11.010

    [62]

    Yan Q H, Wang H, Chi G X, et al. Recognition of a 600-km-long Late Triassic rare metal (Li-Rb-Be-Nb-Ta) pegmatite belt in the western Kunlun orogenic belt, Western China[J]. Economic Geology,2022,117(1):213−236. doi: 10.5382/econgeo.4858

    [63]

    Yang S Y, Jiang S Y, Zhao K D, et al. Tourmaline as a recorder of magmatic–hydrothermal evolution: an in situ major and trace element analysis of tourmaline from the Qitianling batholith, South China[J]. Contributions to Mineralogy Petrology,2015,170:1−21. doi: 10.1007/s00410-015-1154-3

    [64]

    Zhao H D, Zhao K D, Palmer M R, et al. Magmatic-hydrothermal mineralization processes at the Yidong Tin Deposit, South China: Insights from in situ chemical and boron isotope changes of tourmaline[J]. Economic Geology,2021,116(7):1625−1647. doi: 10.5382/econgeo.4868

    [65]

    Zhao H, Chen B, Zheng B Q, et al. Petrogenesis of Mesozoic pegmatites in the Dahongliutan Li-mineralized belt (Western Kunlun, NW China)[J]. Journal of Asian Earth Sciences,2024,264:106076. doi: 10.1016/j.jseaes.2024.106076

    [66]

    Zhou J S, Wang Q, Xu Y G, et al. Geochronology, petrology, and lithium isotope geochemistry of the Bailongshan granite-pegmatite system, northern Tibet: Implications for the ore-forming potential of pegmatites[J]. Chemical Geology,2021,584:120484. doi: 10.1016/j.chemgeo.2021.120484

  • 加载中

(9)

(2)

计量
  • 文章访问数:  23
  • PDF下载数:  2
  • 施引文献:  0
出版历程
收稿日期:  2024-11-30
修回日期:  2025-03-07
录用日期:  2025-03-07
刊出日期:  2025-08-20

目录