Characteristics of Garnet in the 509 Daobaxi Lithium Beryllium Rare Metal Deposits in Hotan County, Xinjiang and Indicative Significance of Magmatic Evolution
-
摘要:
新疆和田县大红柳滩509道班西锂铍稀有金属矿是近年发现的超大型锂多金属矿床。为了研究矿区花岗伟晶岩的岩浆分异演化过程,建立岩浆演化各阶段和稀有金属成矿的矿物学指标,笔者利用电子探针原位主量元素分析和自动矿物分析系统(TIMA)对矿区内伟晶岩和地层中的石榴子石展开研究。结果表明,矿区内花岗伟晶岩中的石榴子石为岩浆成因,属于铁铝榴石–锰铝榴石固溶体系列,变质砂岩中的石榴子石为变质成因。区内伟晶岩中的石榴子石随着岩浆演化程度的增加而逐渐富Mn,高Mn含量石榴子石(MnO>22.5%)可以作为该地区高分异矿化伟晶岩的标志。因电气石结晶分异的作用下使得石榴子呈现从核心到边缘Mn含量增加、Fe含量降低的现象。综合研究表明伟晶岩的演化顺序为白云母花岗伟晶岩–白云母电气石花岗伟晶岩–贫矿(锂)伟晶岩。
Abstract:The West Kunlun Orogenic Belt of the 509 Daobaxi deposit is a super-large Li-Be rare metal discovered in recent years. In order to study the magmatic differentiation and evolution process of granite pegmatites in the mining area, and establish the mineralogical indexes of each stage of magmatic evolution and rare metal mineralization, this paper used electron probe in-situ principal element analysis and automatic mineral analysis system (TIMA) to study various types of garnet in the mining area.The results show that the garnet in the granite-pegmatite in the mining area is of magmatic origin, belonging to the almandine-spessartine solid-solution, and the garnet in the metamorphic sandstone is of metamorphic origin.The garnet in the area is gradually enriched with the deepening of magma evolution. High-Mn garnet (MnO>22.5%) can serve as a marker for highly differentiated mineralised pegmatites in the region.Due to tourmaline crystal differentiation, Mn content increases and Fe content decreases from core to edge of pomegranate.The evolutionary sequence of pegmatite is Muscovite granite-pegmatite, Muscovite tourmaline granite-pegmatite and ore-bearing pegmatite.
-
Key words:
- pegmatite /
- garnet /
- major elements /
- 509 -Daobanxi /
- TIMA
-
-
图 1 西昆仑大地构造图(a)、大红柳滩区域地质图(b)和509道班西稀有金属矿矿床地质简图(c)(据王威等,2022)
Figure 1.
表 1 509地区石榴子石矿物主量元素统计表(%)
Table 1. Major mineral elements (%) of garnet in the 509 area
样品 白云母花岗伟晶岩
DB3-1(GrtⅠ)电气石花岗伟晶岩
DB5-2(GrtⅡ)变质砂岩
DB-2(GrtⅣ)SiO2 36.60 36.92 35.47 37.05 36.72 36.55 38.07 37.62 37.42 TiO2 0.00 0.05 0.00 0.00 0.00 0.00 0.11 0.07 0.05 Al2O3 20.33 20.17 20.06 20.40 20.27 20.24 20.54 20.63 20.59 FeO 27.64 27.46 27.73 25.38 25.08 24.54 24.97 26.28 23.58 MnO 14.35 14.48 14.36 17.10 16.77 17.26 11.11 10.23 13.32 MgO 0.12 0.23 0.18 0.09 0.05 0.11 1.34 1.54 1.33 CaO 0.15 0.17 0.15 0.21 0.24 0.22 2.94 2.63 4.37 Na2O 0.04 0.03 0.01 0.00 0.04 0.02 0.01 0.00 0.00 K2O 0.00 0.00 0.02 0.01 0.01 0.00 0.01 0.02 0.00 MnO/(MnO+FeO) 0.34 0.35 0.34 0.40 0.40 0.41 0.31 0.28 0.36 MnO/(MnO+FeO)平均值 0.37 0.39 0.36 端分基石榴子石子含量 SPs 33.98 34.31 34..09 40.17 39.82 41.02 26.28 28.73 30.36 Alm 64.64 64.28 62.47 58.84 58.80 57.57 58.34 54.88 52.54 Prp 0.51 0.95 0.75 0.36 0.19 0.46 5.59 4.90 5.32 Grs 0.53 0.27 0.28 0.60 0.73 0.70 8.83 10.68 9.77 -
[1] 陈欢, 冯梦, 康志强, 等. 桂东北茅安塘伟晶岩中石榴子石的特征及对岩浆演化的指示意义[J]. 地球科学, 2020, 45(6): 2059−2076.
CHEN Huan, FENG Meng, KANG Zhiqiang, et al. Characteristics of Garnets in Pegmatites of Mao'antang, Northeast Guangxi, and Their lmplications for Magmatic Evolution[J]. Earth Science,2020,45(6):2059−2076.
[2] 董连慧, 冯京, 刘德权, 等. 新疆成矿单元划分方案研究[J]. 新疆地质, 2010, 28(1): 1−15.
DONG Lianhui, FEN Jing, LIU Dequan, et al. Research for Classification Metallognic Unit of Xinjiang[J]. Xinjiang Geology,2010,28(1):1−15.
[3] 凤永刚, 王艺茜, 张泽, 等. 新疆大红柳滩伟晶岩型锂矿床中磷铁锂矿地球化学特征及其对伟晶岩演化的指示意义[J]. 地质学报, 2019, 93(6): 1405−1421. doi: 10.3969/j.issn.0001-5717.2019.06.018
FENG Yonggang, WANG Yiqian, ZHANG Ze, et al. Geochemistry of triphylite in Dahongliutan lithium pegmatites, Xinjiang: implications for pegmatite evolution[J]. Acta Geologica Sinica,2019,93(6):1405−1421. doi: 10.3969/j.issn.0001-5717.2019.06.018
[4] 何蕾, 高景刚, 王登红, 等. 新疆大红柳滩稀有金属矿田花岗岩与伟晶岩成因关系探讨[J]. 矿床地质, 2023, 42(4): 693−712.
HE Lei, GAO Jinggang, WANG Denghong, et al. Discussion on genetic relationship between granite and pegmatite in Dahongliutan rare metal ore field, Xinjiang[J]. Mineral Deposits,2023,42(4):693−712.
[5] 高一航, 陈川, 马华东, 等. 新疆西昆仑大红柳滩矿集区含锂伟晶岩脉识别与找矿预测[J]. 矿床地质, 2023, 42(1): 41−54.
GAO Yihang, CHEN Chuan, MA Huadong, et al. Identification and prediction of lithium bearing pegmatite dikes in Dahongliutan ore concentration area in West Kunlun, Xinjiang[J]. Mineral Deposits,2023,42(1):41−54.
[6] 计文化, 周辉, 李荣社, 等. 西昆仑新藏公路北段古-中生代多期次构造-热事件年龄确定[J]. 地球科学(中国地质大学学报), 2007, 32(5): 671−680.
JI Wenhua, ZHOU Hui, LI Rongshe, et al. The Deformation Age of Palaeozoic-Mesozoic Tectonic along North Xin-Zang Road in West Kunlun[J]. Earth Science,2007,32(5):671−680.
[7] 姜鹏飞, 李鹏, 李建康, 等. 幕阜山地区花岗岩-伟晶岩系统中石榴石的组成特征及其对岩浆演化和稀有金属矿化的指示[J]. 岩石学报, 2023, 39(7): 2025−2044.
JIANG Pengfei, LI Peng, LI Jiankang, et al. Compositional characteristics of garnet in granite-pegmatite system in Mufushan area and its implications for magmatic evolution and rare metal mineralization[J]. Acta Petrologica Sinica,2023,39(7):2025−2044.
[8] 孔会磊, 任广利, 李文渊, 等. 西昆仑大红柳滩东含锂辉石花岗伟晶岩脉年代学和地球化学特征及其地质意义[J]. 西北地质, 2023, 56(2): 61−79. doi: 10.12401/j.nwg.2023004
KONG Huilei, REN Guangli, LI Wenyuan, et al. Geochronology, Geochemistry and Their Geological Significances of Spodumene Pegmatite Veins in the Dahongliutandong Deposit, Western Kunlun, China[J]. Northwestern Geology,2023,56(2):61−79. doi: 10.12401/j.nwg.2023004
[9] 李荣社, 计文化, 赵振明, 等. 昆仑早古生代造山带研究进展[J]. 地质通报, 2007, 26(4): 373−382. doi: 10.3969/j.issn.1671-2552.2007.04.002
LI Rongshe, JI Wenhua, ZHANG Zhenming, et al. Progress in the study of the Early Paleozoic Kunlun orogenic belt[J]. Geological Bulletin of China,2007,26(4):373−382. doi: 10.3969/j.issn.1671-2552.2007.04.002
[10] 李侃, 高永宝, 滕家欣, 等. 新疆和田县大红柳滩一带花岗伟晶岩型稀有金属矿成矿地质特征、成矿时代及找矿方向[J]. 西北地质, 2019, 52(4): 206−221. doi: 10.3969/j.issn.1009-6248.2019.04.016
Ll Kan, GAO Yongbao, TENG Jiaxin, et al. Metallogenic Geological Characteristics, Mineralization Age and Resource Potential of the Granite-Pegmatite-Type Rare Metal Deposits in Dahongliutan Area, Hetian County, Xinjiang[J]. Northwestern Geology,2019,52(4):206−221. doi: 10.3969/j.issn.1009-6248.2019.04.016
[11] 吕正航, 张辉, 赵景宇. 新疆柯鲁木特伟晶岩脉中石榴子石组成对岩浆-热液过程及Li矿化的制约[J]. 矿物学报, 2017, 37(3): 247−257.
LV Zhenghang, ZHANG Hui, ZHAO Jingyu. Magmatic-Hydrothermal Evolution and Li Mineralization in Pegmatite: Constraints from Composition of Garnet from Kelumute No. 112 Pegmatite, Xinjiang Autonomous Region, China[J]. Acta Mineralogica Sinica,2017,37(3):247−257.
[12] 潘裕生. 西昆仑山构造特征与演化[J]. 地质科学, 1990(3): 224−232.
PAN Yusheng. Tectonic Features and Evokution of the Western Kunlun Mountain Region[J]. Chinese Journal of Geology,1990(3):224−232.
[13] 潘桂棠, 王立全, 李兴振, 等. 青藏高原区域构造格局及其多岛弧盆系的空间配置[J]. 沉积与特提斯地质, 2001, 21(3): 1−26. doi: 10.3969/j.issn.1009-3850.2001.03.001
PAN Guizhi, WANG Liquan, LI Xingzhen, et al. The tectonic framework and spatial allocation of the archipelagic arc basin systems on the Qinghai-Xizang Plateau[J]. Sedimentary Geology and Tethyan Geology,2001,21(3):1−26. doi: 10.3969/j.issn.1009-3850.2001.03.001
[14] 彭海练, 贺宁强, 王满仓, 等. 新疆和田县大红柳滩地区509道班西稀有多金属矿地质特征与成矿规律探讨[J]. 西北地质, 2018, 51(3): 146−154. doi: 10.3969/j.issn.1009-6248.2018.03.013
PENG Hailian, HE Ningqiang, WANG Mancang, et al. Geological Characteristics and Metallogenic regularity of West Track 509 Rare Polymetallic Deposit in Dahongliutan Region, Hetian, Xinjiang[J]. Northwestern Geology,2018,51(3):146−154. doi: 10.3969/j.issn.1009-6248.2018.03.013
[15] 乔耿彪, 张汉德, 伍跃中, 等. 西昆仑大红柳滩岩体地质和地球化学特征及对岩石成因的制约[J]. 地质学报, 2015, 89(7): 1180−1194. doi: 10.3969/j.issn.0001-5717.2015.07.003
QIAO Gengbiao, ZHANG Hande, WU Yuezhong, et al. Petrogenesis of the Dahongliutan Monzogranite in Western Kunlun: Constraints from SHRIMP Zircon U-Pb Geochronology and Geochemical Characteristics[J]. Acta Geologica Sinica,2015,89(7):1180−1194. doi: 10.3969/j.issn.0001-5717.2015.07.003
[16] 任广利, 孔会磊, 赵凯东, 等. 新疆喀喇昆仑大红柳滩一带锂矿光谱特征 及其找矿指示意义[J]. 西北地质, 2022, 55(4): 103−114. doi: 10.19751/j.cnki.61-1149/p.2022.04.009
REN Guangli, KONG Huilei, ZHAO Kaidong, et al. Spectral Characteristics and Prospecting Implications of Lithium Deposits in Dahongliutan Area, Karakoram, Xinjiang[J]. Northwestern Geology,2022,55(4):103−114. doi: 10.19751/j.cnki.61-1149/p.2022.04.009
[17] 谭克彬, 郭岐明, 郭勇明. 新疆和田509道班西锂铍多金属矿床花岗岩U-Pb年龄及其构造意义[J]. 新疆有色金属, 2021, 44(2): 6−10.
TAN Kebin, GUO Qiming, GUO Yongming. U-Pb age and tectonic significance of granite in 509 Daobanxi lithium-plated polymetallic deposit in Hotan, Xinjiang[J]. Xinjiang Nonferrous Metals,2021,44(2):6−10.
[18] 涂其军, 韩琼, 李平, 等. 西昆仑大红柳滩一带锂辉石矿基本特征和勘查新进展[J]. 地质学报, 2019, 93(11): 2862−2873.
TU Qijun, HAN Qiong, Ll Ping, et al. Basic characteristics and exploration progress of the spodumene ore deposit in the Dahongliutan area, West Kunlun[J]. Acta Geologica Sinica,2019,93(11):2862−2873.
[19] 唐俊林, 柯强, 徐兴旺, 等. 西昆仑大红柳滩地区龙门山锂铍伟晶岩区岩浆演化与成矿作用[J]. 岩石学报, 2022, 38(3): 655−675. doi: 10.18654/1000-0569/2022.03.05
TANG Junlin, KE Qiang, XU Xingwang, et al. Magma evolution and mineralization of Longmenshan lithium-berylium pegmatite in Dahongliutan area, West Kunlun[J]. Acta Petrologica Sinica,2022,38(3):655−675. doi: 10.18654/1000-0569/2022.03.05
[20] 王核, 高昊, 马华东, 等. 新疆和田县雪凤岭锂矿床、雪盆锂矿床和双牙锂矿床地质特征及伟晶岩脉群分带初步研究[J]. 大地构造与成矿学, 2020, 44(1): 57−68.
WANG He, GAO Hao, MA Huadong, et al. Geological Characteristics and Pegmatite Vein Group Zoning of the Xuefengling, Xuepen, and Shuangya Lithium Deposits in Karakorum, Hetian, Xinjiang[J]. Geotectonica et Metallogenia,2020,44(1):57−68.
[21] 王核, 徐义刚, 闫庆贺, 等. 新疆白龙山伟晶岩型锂矿床研究进展[J]. 地质学报, 2021, 95(10): 3085−3098.
WANG He, XU Yigang, YAN Qinghe, et al. Research progress on Bailongshan pegmatite type lithium deposit, Xinjiang[J]. Acta Geologica Sinica,2021,95(10):3085−3098.
[22] 王威, 杜晓飞, 刘伟, 等. 西昆仑509道班西锂铍稀有金属矿地质特征与成矿时代探讨[J]. 岩石学报, 2022, 38(7): 1967−1980. doi: 10.18654/1000-0569/2022.07.10
WANG Wei, DU Xiaofei, LIU Wei, et al. Geological characteristic and discussion on metallogenic age of the West 509-Daoban Li-Be rare metal deposit in the West Kunlun Orogenic Belt[J]. Acta Petrologica Sinica,2022,38(7):1967−1980. doi: 10.18654/1000-0569/2022.07.10
[23] 王冉, 张胜龙. 西准噶尔玉依塔勒盆克提斑岩体中石榴子石的发现及地质意义[J]. 矿物岩石地球化学通报, 2015, 34(6): 1254−1261.
WANG Ran, ZHANG Shenglong. The Discovery of Garnet from Yuyitalepenketi Granite Porphyry in Western Junggar and its Geological Significances[J]. Bulletin of Mineralogy, Petrology and Geochemistry,2015,34(6):1254−1261.
[24] 王登红, 李建康, 付小方. 四川甲基卡伟晶岩型稀有金属矿床的成矿时代及其意义[J]. 地球化学, 2005, 34(6): 541−547.
WANG Denghong, LI Jiankang, FU Xiaofang. The Ore - forming Epoch and Its Significance of the Jiajika Pegmatite - type Rare Metal Deposit in Sichuan Province[J]. Geochimica,2005,34(6):541−547.
[25] 肖文交, 侯泉林, 李继亮, 等. 西昆仑大地构造相解剖及其多岛增生过程[J]. 中国科学(D辑:地球科学), 2000, 24(S1): 22−28.
XIAO Jiaowei, HOU Quanli, LI Jiliang, et al. Tectonic Facies Dissection of the West Kunlun and Its Multi - Island Accretion Process[J]. Scientia Sinica (Terrae),2000,24(S1):22−28.
[26] 周兵, 孙义选, 孔德懿. 新疆大红柳滩地区稀有金属矿成矿地质特征及找矿前景[J]. 四川地质学报, 2011, 31(3): 288−292. doi: 10.3969/j.issn.1006-0995.2011.03.009
ZHOU Bing, SUN Yixuan, KONG Deyi. Geological Features and Prospecting Potential of Rare Metallic Deposits in the Dahongliutan Region, Xinjiang[J]. Acta Geologica Sichuan,2011,31(3):288−292. doi: 10.3969/j.issn.1006-0995.2011.03.009
[27] 魏小鹏, 王核, 胡军, 等. 西昆仑大红柳滩二云母花岗岩地球化学和地质年代学研究及其地质意义[J]. 地球化学, 2017, 46(1): 66−80.
WEI Xiaopeng, WANG He, HU Jun, et al. Geochemistry and geochronology of the Dahongliutan two-mica granite pluton in western Kunlun orogen: Geotectonic implications[J]. Geochimica,2017,46(1):66−80.
[28] 郑范博, 王国光, 倪培. 花岗伟晶岩型稀有金属矿床流体成矿机制研究进展[J]. 地质力学学报, 2021, 27(4): 596−613.
ZHENG Fanbo, WANG Guoguang, Nl Pei. Research progress on the fluid metallogenic mechanism of granitic pegmatite-type rare metal deposits[J]. Journal of Geomechanics,2021,27(4):596−613.
[29] Cerný P, Meintzer R E, Anderson A J. Extreme fractionation in rare-element granitic pegmatites–selected examples of data and mechanisms[J]. Canadian Mineralogist,1985,23:381−421.
[30] Fan I J, Tang G J, Wei G J, et al. Lithium isotope frac-tionation during fluid exsolution: Implications for Li mineralizationof the Bailongshan pegmatites in the West Kunlun, NW Tibetl[J]. Lithos,2020(352-353):1−17.
[31] Gaspar M, Knaack C, Meinert L D . REE in skarn systems: A LA-ICP-MS study of garnets from the Crown Jewel golddeposit[J]. Geochimica et Cosmochimica Acta,2008,72(1):185−205.
[32] Geiger C A. Garnet: A key phase in nature, the laboratory, and technology[J]. Elements,2013,9(6):447−452.
[33] Green T H. Garnet in silicic liquids and its possible use as a P-T indicator[J]. Contributions to Mineralogy and Petrology,1977,65(1):59−67.
[34] Harrison T N. Magmatic garnets in the Cairngorm granite, Scotland[J]. Mineralogical Magazine,1988,52(368):659−667.
[35] Harangi S, Downes H, Kosa L. Almandine Garnet in Calc-alkaline Volcanic Rocks of the Northern Pannonian Basin (Eastern-CentralEurope): Gcochemistry, Petrogenesis and Gcodynamic Implications[J]. Journal of Petrology,2001,42(10):1813−1843.
[36] Muller A, Kearsley A, Spratt J. Petrogenetic implications of magmatic garnet in granitic pegmatites from Southern Norway[J]. The Canadian Mineralogist,2012,50(4):1095−1115.
[37] Javanmard S R, Tahmasbi Z, Ding X,et al. Geochemistry ofgarnet in pegmatites from the Boroujerdintrusive complex, Sanandaj-Sirjan Zone, western Iran: Implicationsfor the origin of pegmatite melts[J]. Mineralogy and Petrology,2018,112(6):837−856.
[38] London D. Pegmatites. Mineralogical Association of Canada[M]. Special Publications, 2008,10: 1 -347.
[39] Lovering J F, White A J R. Granulitic and Eclogitic Inclisions from Basic Pipes at Delegate, Australia[J]. Contributions to Mineralogy and Petrology,1969,21(1):9−52.
[40] Leake B E. Zoned Garnets from the Galway Granite and Its Aplites[J]. Earth and planetary Science Letters,1967,3:311−316.
[41] Morgan G B Vl and London D. Crystallization of the Little Three layered pegmatite-aplite dike, Ramona District, California[J]. Contributions to Mineralogy and Petrology,1999,136(4):310−330.
[42] Manning D A C. Chemical variation in garnets from aplites and pegmatites, peninsular thailand[J]. Mineralogical Magazine,1983,47:353−358.
[43] Miller C F and Stoddard E F. The role of manganese in the paragenesis of magmatic garnet: An example from the Old Woman-Piute Range, California[J]. The Journal of Geology,1981,89(2):233−246.
[44] Cuney M, Barbey P. Uranium, rare metals, and granulite facies metamorphism[J]. Geoscience Frontiers,2014,5(5):729−745.
[45] Raimbault L, Cuney M, Azencott C, et al. Geochemical evidence for a multistage magmatic genesis of Ta-Sn-Limineralization in the granite at Beauvoir, French Massif Central[J]. Economic Geology,1995,90(3):548−576.
[46] Selway J B, Breaks F W, Tindle A G. A review of rare-element (Li-Cs-Ta) pegmatite exploration techniques for the SuperiorProvince, Canada, and large worldwide tantalum deposits[J]. Exploration and Mining Geology,2005,14(1−4):1−30.
[47] Samadi R, Miller N R, Mirnejad H, et al. Origin of garnet in aplite and pegmatitefrom Khajeh Morad in northeastern Iran: A major, trace element andoxygen isotope approach[J]. Lithos,2014,208-209:378−392.
[48] Whitworth M P. Petrogenetic implications of garnets associated with lithium pegmatites from se ireland[J]. Mineralogical Magazine,1992,56:75−83.
[49] Yang J H, Peng J T, Hu R Z, et al. Garnet geochemistry oftungsten-mineralized Xihuashangranites in South China[J]. Lithos,2013,177:79−90.
[50] Zhang X Y, Wang H, Yan Q H. Garnet geochemical compositions of the Bailongshan lithium polymetallic deposit in Xinjiang Province: Implications for magmatic-hydrothermal evolution[J]. Ore Geology Reviews,2022,150−178.
-