Construction of Digital Outcrop and Extraction, Analysis of Geological Information of Tuziakeneigou, in the Northwestern Margin of Junggar Basin
-
摘要:
野外地质露头是地学研究的重要对象,随着研究目的日趋精细化、复杂化,传统研究中露头资料保存不便、细节记录有限、视野呈现受限等局限性日渐凸显。为此将无人机摄影、三维建模技术与传统研究方式融合并构建三维数字露头,为解决传统研究中存在的效率低、数据复用性差等问题提供全新的思路。实践表明:数字露头将露头相关的描述、图片、视频、全景、文献、观察点等信息与露头三维模型有效结合,可以更客观、全面地认识地质信息,易于观察宏观面貌,尤其对于人力不易到达处判断岩层走向和叠覆情况、开展岩性判别和地质界线识别十分有利,相较于传统方式该方法能够帮助研究人员更加直观地理解露头地质现象的时空展布和地质特征,后续地质分析与露头资源的共建、共享高效便捷,可成为野外地质剖面观测与地质特征分析的新范式。
Abstract:Geological outcrop is an important object of geoscience research. It is difficult to save data, record details, observe completely of a geological outcrop by the traditional means, with the research goal becoming more and more refined and complicated. To solve these problems, photography, 3D modeling and construction of digital outcrop were applied to the study of outcrop. It provides a new idea for solving the problems such as low efficiency, poor data reusability of traditional methods. The practice shows that a 3D digital outcrop can combines outcrop-related information such as text, pictures, videos, panoramas, documents and observation points with a 3D outcrop model. It enables geologists to research and acquire geological information more objectively and more comprehensively. And then it can be used for a variety of geological analysis such as observe macroscopic landform, judge stratum strike and occurrence, identify lithology and geological boundaries, and so on. Compared with traditional methods, the new method enables geologists to acquire more intuitive understanding of geological features and spatial-temporal characteristics of a outcrop. It also makes geological analysis, co-study and sharing a outcrop efficient and convenient. Overall, it provide a more efficient way to geological analysis, it also provide a new method of geological observation and geological analysis.
-
-
表 1 吐孜阿克内沟出露地层岩性特征
Table 1. Lithologic features of stratums in Tuziakeneigou
系 组 符号 厚度(m) 岩性描述 第四系 Q 23~58 杂色砾岩、砾石、砂、粉砂、砂土 侏罗系 齐古组 J3q 20~119 灰、灰黄、灰绿、褐、红色砾岩、砂岩、泥岩不均匀互层,夹砂质泥岩、粉砂岩 西山窑组 J2x 30~450 灰、灰白、灰黄、灰绿、红色细–粗粒砂岩与泥岩互层,夹粉砂岩、碳质页岩 三工河组 J1s 150~300 灰黄色为主的杂色砂岩与泥岩不均匀互层,夹细砾岩、粉砂岩、泥灰岩,局部还可见到薄层菱铁矿 八道湾组 J1b 50~155 灰、灰白、灰黄、灰绿、褐色砾岩、砂岩、泥岩不均匀互层,夹数套煤线,底部有
10~20 m厚的底砾岩三叠系 小泉沟组 T3x 23~103 下部为灰色砂质泥岩夹油砂,中部以灰黄、灰绿色砾岩为主,上部为灰色、灰黄色砂质泥岩与砂岩互层夹砾岩透镜体 石炭系 包古图组 C1b 10~25 总体为一套深海相暗色细碎屑岩,夹有火山岩、灰岩夹层或条带 表 2 吐孜阿克内沟地质露头数据采集设备参数
Table 2. Calibration parameters of data acquisition equipment for geological outcrop of Tuziakeneigou
无人机 数量(个) 参数 最大有效载荷(kg) 抗风能力(级) 实用升限(m) 最大控制半径(km) 飞马D2000 2 1 6 8000 30 大疆M210 2 1 6 8000 30 相机 数量 总像素(104) CMOS数量 像元尺寸(μm) 曝光间隔(s) 焦距(mm) 倾斜角度(°) 工作温度(℃) 赛尔PSDK101S 4 > 12000 5 pcs 3.9 0.8 35 45 −10~50 表 3 吐孜阿克内沟三维数字露头地层识别特征
Table 3. Identifying features of stratigraphic correlation based on 3D digital outcrop of Tuziakeneigou
系 组 段 主要岩性 主要色调 特殊标志 第四系 浮土、碎石 无典型主色 地表植被相对发育(图4j) 侏罗系 齐古组 砂岩、泥岩 暗红色、灰白色、鲜红色 暗红色为背景色,灰白色、鲜红色条带点缀
(图4i)西山窑组 砂岩、泥岩、煤 灰白色、灰黄色、淡黄色、
淡红色灰白色、灰黄色为背景色,淡黄色、淡红色条带明显,还可见黑色煤层(图4h) 三工河组 砂岩、泥岩 下部:深黄色;上部:暗灰色 颜色呈“二元”分布,深黄色部分有条带特征,暗灰色部分有颗粒感(图4g) 八道湾组 三段 砂岩、泥岩 土黄色、暗灰色 条带特征更明显,顶部多为浑圆的山包
(图4f)二段 砾岩、砂岩、泥岩 土黄色、暗灰色 中下部呈块状,上部为条带状(图4e) 一段 砾岩、砂岩、煤 深灰色 有多套煤层发育(图4d) 三叠系 小泉沟组 砾岩、砂岩 灰白色、黄色、和深灰色 不同颜色呈条带状,地表冲沟明显(图4c) 石炭系 包古图组 以细碎屑沉积为主 平缓区:灰色、灰黄色、
黑色山丘区:鲜红色平缓区外来暗色岩块散落地面呈麻点状
(图4a);山丘区由于长期风化淋滤,风化壳浸染状的鲜红色在研究区很有特色(图4b) -
[1] 毕凯, 李英成, 丁晓波, 等. 轻小型无人机航摄技术现状及发展趋势[J]. 测绘通报, 2015, 3: 27−31.
BI Kai, LI Yingcheng, DING Xiaobo, et al. Aerial Photogrammetric Technology of Light Small UAV: Status and Trend of Development[J]. Bulletin of Surveying and Mapping, 2015, 3: 27−31.
[2] 蔡土赐, 孙巧缡, 缪长泉, 等. 新疆维吾尔自治区岩石地层[M]. 武汉: 中国地质大学出版社, 1999.
CAI Tuci, SUN Qiaoli, MIAO Changquan, et al. Rock strata of Xinjiang Uygur Autonomous Region[M]. Wuhan: China University of Geosciences Press, 2010.
[3] 曹天儒, 姚宗全, 德勒恰提·加娜塔依, 等. 准噶尔盆地西北缘吐孜阿克内沟八道湾组露头沉积特征及模式[J]. 科学技术与工程, 2021, 21(14): 5695−5709. doi: 10.3969/j.issn.1671-1815.2021.14.010
CAO Tianru, YAO Zongquan, JIANATAYI Deleqiati, et a1. Sedimentary Characteristics and Model of Outcrop the Badaowan Formation in Tuziakeneigou, Northwestern Margin of the Junggar Basin[J]. Science Technology and Engineering, 2021, 21(14): 5695−5709. doi: 10.3969/j.issn.1671-1815.2021.14.010
[4] 陈建平, 王绪龙, 邓春萍, 等. 准噶尔盆地油气源、油气分布与油气系统[J]. 地质学报, 2016, 90(3): 421−450. doi: 10.3969/j.issn.0001-5717.2016.03.002
CHEN Jianping, WANG Xulong, DENG Chunping, et al. Oil and Gas Source, Occurrence and Petroleum System in the Junggar Basin, Northwest China[J]. Acta Geologica Sinica, 2016, 90(3): 421−450. doi: 10.3969/j.issn.0001-5717.2016.03.002
[5] 杜赫, 徐守余, 冯建伟, 等. 基于数字露头表征的岩溶缝洞组构特征[J]. 中国石油大学学报(自然科学版), 2020, 44(5): 1−9.
DU He, XV Shouyu, FENG Jianwei, et al. Digital outcrop representation for karst fracture-cave reservoir[J]. Journal of China University of Petroleum (Edition of Natural Science), 2020, 44(5): 1−9.
[6] 顾兴明, 柳永清, 旷红伟, 等. 准噶尔盆地西北缘吐孜阿克内沟中三叠统—下侏罗统油砂矿沉积和储层特征[J]. 岩石矿物学杂志, 2011, 30(2): 215−224. doi: 10.3969/j.issn.1000-6524.2011.02.006
GU Xingming, LIU Yongqing, KUANG Hongwei, et al. Sedimentation and reservoir characteristics of Middle Triassic-Lower Jurassic oil sand deposits at Tuziakeneigou of northwestern Junggar Basin[J]. Acta Petrologica et Mineralogica, 2011, 30(2): 215−224. doi: 10.3969/j.issn.1000-6524.2011.02.006
[7] 杜森官. 确定岩石地层单位原则的初步探讨[J]. 地层学杂志, 1993, 17(1): 78−79.
DU Senguan. Preliminary discussion on the principle of Determining rock stratigraphic unit[J]. Journal of Stratigraphy, 1993, 17(1): 78−79.
[8] 何登发, 陈新发, 张义杰, 等. 准噶尔盆地油气富集规律[J]. 石油学报, 2004, 25(3): 1−10. doi: 10.3321/j.issn:0253-2697.2004.03.001
HE Dengfa, CHEN Xinfa, ZHANG Yijie, et al. Enrichment characteristics of oil and gas in Jungar Basin[J]. Acta Petrolei Sinica, 2004, 25(3): 1−10. doi: 10.3321/j.issn:0253-2697.2004.03.001
[9] 何文军, 吴和源, 杨森, 等. 准噶尔盆地玛湖凹陷风城组页岩油储层岩相划分与类型评价[J]. 西北地质, 2023, 56(1): 217−231. doi: 10.12401/j.nwg.2022013
HE Wenjun, WU Heyuan, YANG Sen, et al. Lithofacies Division and Type Evaluation of Shale Oil Reservior in Fengcheng Formation of Mahu Sag, Junggar Basin[J]. Northwestern Geology, 2023, 56(1): 217−231. doi: 10.12401/j.nwg.2022013
[10] 李相博, 刘华清, 杨伟伟, 等. 一个由干湿交替极端气候事件主导的内陆湖盆: 来自鄂尔多斯盆地上三叠统延长组露头剖面的沉积学证据[J]. 地球科学, 2023, 48(1): 293−316.
LI Xiangbo, LIU Huaqing, YANG Weiwei, et al. A Lacustrine Basin Driven by Extreme Events of Alternate Dry-Wet Climatic Cycles: Evidence from Outcrops of Yanchang Formation in Upper Triassic, Ordos Basin[J]. Earth Science, 2023, 48(1): 293−316.
[11] 李永军, 佟丽莉, 张兵, 等. 论西准噶尔石炭系希贝库拉斯组与包古图组的新老关系[J]. 新疆地质, 2010, 28(2): 130−136. doi: 10.3969/j.issn.1000-8845.2010.02.003
LI Yongjun, TONG Lili, ZHANG Bing, et al. On the old and new relationship between Xibeikulasi Formation and Baogutu Formation of the carboniferous system, West Jaggar[J]. Xinjiang Geology, 2010, 28(2): 130−136. doi: 10.3969/j.issn.1000-8845.2010.02.003
[12] 罗正江, 师天明, 唐鹏, 等. 准噶尔盆地西北缘克拉玛依组地质时代再认识[J]. 新疆石油地质, 2015, 36(6): 668−681.
LUO Zhengjiang, SHI Tianming, TANG Peng, et al. Restudy on the Age of Karamay Formation in Northwestern Margin of Junggar Basin[J]. Xinjiang Petroleum Geology, 2015, 36(6): 668−681.
[13] 孙杰, 谢文寒, 白瑞杰. 无人机倾斜摄影技术研究与应用[J]. 测绘科学, 2019, 44(6): 145−150.
SUN Jie, XIE Wenhan, BAI Ruijie. UAV oblique photogrammetric system and its application[J]. Science of Surveying and Mapping, 2019, 44(6): 145−150.
[14] 万剑华, 王朝, 刘善伟, 等. 倾斜摄影测量构建地质数字露头[J]. 地质科技情报, 2019, 38(1): 258−264.
WAN Jianhua, WANG Chao, LIU Shanwei, et al. Reconsting Geological Digital Outcrops with Oblique Photogrammetry[J]. Geological Science and Technology Information, 2019, 38(1): 258−264.
[15] 王茜, 黄永建, 张治锋, 等. 上扬子地区双河露头五峰组—龙马溪组下段化学层序地层分析[J]. 西北地质, 2021, 54(1): 1−14.
WANG Qian, HUANG Yongjian, ZHANG Zhifeng, et al. Chemical Sequence Stratigraphy of the Wufeng Formation-lower Member of Longmaxi Formation in Shuanghe Outcrop, upper Yangtze[J]. Northwestern Geology, 2021, 54(1): 1−14.
[16] 王胜军, 唐永军, 朱松柏. 塔里木盆地库车坳陷北部典型露头剖面白垩系巴什基奇克组三段高分辨率层序地层特征[J]. 石油与天然气地质, 2022, 43(4): 804−822. doi: 10.11743/ogg20220406
WANG Shengjun, TANG Yongjun, ZHU Songbai, et al. High-resolution sequence stratigraphy of the third member of Cretaceous Bashijiqike Formation in a typical outcrop section, northern Kuqa Depression, Tarim Basin[J]. Oil & Gas Geology, 2022, 43(4): 804−822. doi: 10.11743/ogg20220406
[17] 徐琪, 沈含笑, 董少春, 等. 地质露头与标本的三维数字化现状与展望[J]. 高校地质学报, 2023, 29(3): 403−418.
XV Qi, SHEN Hanxiao, DONG Shaochun, et al. 3D Digitization of Geological Outcrops and Specimens: Status and Prospects[J]. Geological Journal of China Universities, 2023, 29(3): 403−418.
[18] 晏磊, 廖小罕, 周成虎, 等. 中国无人机遥感技术突破与产业发展综述[J]. 地球信息科学学报, 2019, 21(4): 476−495. doi: 10.12082/dqxxkx.2019.180589
YAN Lei, LIAO Xiaojun, ZHOU Chenghu, et al. The impact of UAV remote sensing technology on the industrial development of China: A review[J]. Journal of Geo-information Science, 2019, 21(4): 476−495. doi: 10.12082/dqxxkx.2019.180589
[19] 印森林, 陈恭洋, 刘兆良, 等. 基于无人机倾斜摄影的三维数字露头表征技术[J]. 沉积学报, 2018, 36(1): 72−80.
YIN Senlin, CHEN Gongyang, LIU Zhaoliang, et al. 3D digital outcrop characterization technology based on unmanned aerial vehicle oblique photography[J]. Acta Sedimentologica Sinica, 2018, 36(1): 72−80.
[20] 印森林, 谭媛元, 张磊, 等. 基于无人机倾斜摄影的三维露头地质建模: 以山西吕梁市坪头乡剖面为例[J]. 古地理学报, 2018, 20(5): 909−924. doi: 10.7605/gdlxb.2018.05.064
YIN Senlin, TAN Yuanyuan, ZHANG Lei, et al. 3D outcrop geological modeling based on UAV oblique photography data: A case study of Pingtouxiang section in Lvliang City, Shanxi Province[J]. Journal of Palaeogeography, 2018, 20(5): 909−924. doi: 10.7605/gdlxb.2018.05.064
[21] 曾庆鲁, 张荣虎, 卢文忠, 等. 基于数字露头技术的扇三角洲前缘砂体构型特征——以库车坳陷前陆区索罕村剖面为例[J]. 油气地质与采收率, 2017, 24(2): 30−37.
ZENG Qinglu, ZHANG Ronghu, LU Wenzhong, et al. Analysis on sandbody architecture of fan delta front based on the digital outcrop technology-A case study of Suohan village outcrop in Kuqa foreland area[J]. Petroleum Geology and Recovery Efficiency, 2017, 24(2): 30−37.
[22] 张瑶瑶, 杨水胜, 刘宇琪, 等. 鄂尔多斯盆地靖边油田沙洼沟地区延安组延 9 油藏富集规律[J]. 西北地质, 2023, 56(2): 213−224. doi: 10.12401/j.nwg.2022033
ZHANG Yaoyao, YANG Shuisheng, LIU Yuqi, et al. Enrichment Regularity of Y-9 Reservoir of Yan’an Formation in Shawagou Area of Jingbian Oilfield, Ordos Basin[J]. Northwestern Geology, 2023, 56(2): 213−224. doi: 10.12401/j.nwg.2022033
[23] Luciano Galone, Fabio Villani, Emanuele Colica, et al. Integrating near-surface geophysical methods and remote sensing techniques for reconstructing fault-bounded valleys (Mellieha valley, Malta)[J]. Tectonophysics, 2024, 875: 230−263.
[24] Menegoni Niccolò, Giordan Daniele, Inama Riccardo, et al. DICE: An open-source MATLAB application for quantification and parametrization of digital outcrop model-based fracture datasets[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2023, 15(5): 1090−1110. doi: 10.1016/j.jrmge.2022.09.011
[25] Shahtakhtinskiy Aydin, Khan Shuhab. 3D stratigraphic mapping and reservoir architecture of the Balakhany Suite, Upper Productive Series, using UAV photogrammetry: Yasamal Valley, Azerbaijan[J]. Marine and Petroleum Geology, 2022, 145.
[26] Zamzam Sara. Geological Controls and Prospectivity Mapping for Manganese Ore Deposits Using Predictive Modeling Comparison: An Integration of Outcrop and Remote Sensing Data, Sinai Microplate, Egypt[J]. Journal of Earth Science, 2023, 34(2): 588−608. doi: 10.1007/s12583-021-1583-z
-