高精度Cd同位素分析测试方法的建立及其地质应用

杨华炜, 孙国超, 许星颖月, 徐利强, 张飞, 张达玉. 2025. 高精度Cd同位素分析测试方法的建立及其地质应用. 西北地质, 58(5): 171-178. doi: 10.12401/j.nwg.2025056
引用本文: 杨华炜, 孙国超, 许星颖月, 徐利强, 张飞, 张达玉. 2025. 高精度Cd同位素分析测试方法的建立及其地质应用. 西北地质, 58(5): 171-178. doi: 10.12401/j.nwg.2025056
YANG Huawei, SUN Guochao, XU Xingyingyue, XU Liqiang, ZHANG Fei, ZHANG Dayu. 2025. Establishment of High Precision Cd Isotope Analysis Method and Its Geological Application. Northwestern Geology, 58(5): 171-178. doi: 10.12401/j.nwg.2025056
Citation: YANG Huawei, SUN Guochao, XU Xingyingyue, XU Liqiang, ZHANG Fei, ZHANG Dayu. 2025. Establishment of High Precision Cd Isotope Analysis Method and Its Geological Application. Northwestern Geology, 58(5): 171-178. doi: 10.12401/j.nwg.2025056

高精度Cd同位素分析测试方法的建立及其地质应用

  • 基金项目: 深地国家科技重大专项(2025ZD1006003),安徽省自然资源厅科技项目(2023-K-17、2021-g-2-11)联合资助。
详细信息
    作者简介: 杨华炜(2000−),男,硕士生,地质资源与地质工程专业。E−mail:2022110695@mail.hfut.edu.cn
    通讯作者: 张达玉(1985−),男,教授,博士研究生导师,矿物学岩石学矿床学专业。E−mail:dayuzhang@hfut.edu.cn
  • 中图分类号: P597

Establishment of High Precision Cd Isotope Analysis Method and Its Geological Application

More Information
  • 镉(Cd)有8个稳定同位素,且具有高度挥发性(半凝聚温度Tc=430 K,1 Pa),导致其在地球和陨石中的丰度都很低,这给精确测试Cd同位素带来了极大难度。近年来随着多接收电感耦合等离子质谱(MC-ICP MS)的广泛应用,使得精确测定Cd同位素比值成为可能。笔者优化了Cd的分离纯化步骤,并建立了采用双稀释剂校正的高精度Cd同位素测试方法。通过优化酸性体系、树脂体积、淋洗液浓度和淋洗液量,Cd的回收率达到 99.5%,残留元素/Cd比率<0.07%,可以有效地实现Cd与基质元素(Zn、Ga、Ge、Zr、Nb、Mo、Pd、Ag、In、Sn、Sm、Pb)的分离,能更好地满足Cd同位素的测定要求。已有研究表明,热液系统中的地质过程(如硫化物沉淀、流体运移及温度变化等)会导致Cd同位素分馏,尤其是在低温体系中分馏作用显著,而高温体系中分馏作用较弱。Cd同位素数据在铅锌矿床的成因类型判别、成矿流体演化以及成矿物质来源示踪等矿床学研究中具有重要意义。使用文中建立的新方法,笔者对铜陵地区的新桥和荷花山矿区的闪锌矿样品进行了测试,测得的Cd同位素数据指示了铅锌矿床的成因类型判别、成矿流体演化以及成矿物质来源等地质问题。

  • 加载中
  • 图 1  样品消解流程图

    Figure 1. 

    图 2  111Cd-113Cd双稀释剂误差等值线随稀释比和单稀释剂比例变化图

    Figure 2. 

    图 3  不同单稀释剂比例和稀释比条件下模拟计算误差

    Figure 3. 

    图 4  Cd与干扰元素的淋洗曲线(GSR-1、GSR-3、GSD-12、GSS-5a、GSP-2、BHVO-2、BCR-2)

    Figure 4. 

    图 5  已有矿床与新桥(红圆)以及荷花山(红方)的δ114/110Cd的对比图

    Figure 5. 

    表 1  Cd在层析柱中分离纯化过程

    Table 1.  Separation and purification process of Cd in chromatography column

    试剂用量备注
    AG-MP-1M树脂1.3 ml填充树脂
    0.5 N HNO35 ml清洗树脂
    Mini Q H2O5 ml清洗树脂
    0.25 N HBr5 ml平衡树脂
    0.25 N HBr2 ml上样
    0.25 N HBr12 ml淋洗基质
    2 N HCl2 ml转换体系
    0.05 N HCl14 ml洗脱Pb
    0.0006 N HCl12 ml回收Cd
    Mini Q H2O10 ml清洗树脂
    下载: 导出CSV

    表 2  NIST 3108和双稀释剂Cd同位素组成

    Table 2.  Isotope composition of NIST 3108 and double diluent Cd

    同位素 NIST 3108 双稀释剂
    110Cd 0.127 0.008
    111Cd 0.131 0.502
    112Cd 0.246 0.015
    113Cd 0.125 0.461
    114Cd 0.294 0.013
    116Cd 0.077 0.001
    下载: 导出CSV

    表 3  Neptune Plus测试过程中的仪器参数

    Table 3.  Instrument parameters during Neptune Plus testing

    参数
    冷却气 ~16 l/min
    辅助气 ~0.8 l/min
    雾化气 ~0.85 l/min
    分辨率 低分辨
    锥组合 Jet + X (nickel)
    RF能量 1200
    膜去溶 Aridus II
    吹扫气 ~1.1/min
    雾化流量器 ~100 μl/min
    检测器 Faraday cup
    灵敏度 ~300 V/ppm 114Cd
    循环次数 30 cycle/次*2次
    积分时间 4.194 s
    清洗时间 240 s
    下载: 导出CSV
  • [1]

    段桂玲, 段瑞春, 等. 土壤样品镉同位素分析中Cd与Sn有效分离方法的改进[J]. 岩矿测试, 2016, 35(1): 10−16.

    DUAN Guiling, DUAN Ruichun, et al. Improvement on Effective Separation between Cadmium and Tin in Soil Samples for the Determination of Cadmium Isotopic Composition[J]. Rock and Mineral Analysis, 2016, 35(1): 10−16.

    [2]

    冯新斌, 曹晓斌, 付学吾, 等. 环境地球化学研究近十年若干新进展[J]. 矿物岩石地球化学通报, 2021, 40(2): 253−289+516−517.

    FENG Xinbin, CAO Xiaobin, FU Xuewu, et al. Some Progresses in Environmental Geochemistry Study in China in the Past Decade[J]. Bulletin of Mineraligy, Petrology and Geochemistry, 2021, 40(2): 253−289+516−517.

    [3]

    李海涛, 杨鑫, 雷华基, 等. 镉稳定同位素研究进展[J]. 岩矿测试, 2024, 44(7): 1852−1857.

    LI Haitao, YANG Xin, LEI Huaji, et al. Research Progress of Cadmium Stable Isotopes[J]. Rock and Mineral Analysis, 2024, 44(7): 1852−1857.

    [4]

    吕树彬, 杨婉琪, 李福生. 基于主成分分析和宽度学习系统的土壤铅镉重金属元素定量分析[J]. 光谱学与光谱分析, 2024, 44(7): 1852−1857.

    LÜ Shubin, YANG Wanqi, LI Fusheng. Quantitative Analysis of Lead and Cadmium Heavy Metal Elements in Soil Based on Principal Component Analysis and Broad Learning System[J]. Spectro-scopy and Spectral Analysis, 2024, 44(7): 1852−1857.

    [5]

    刘光贤, 袁峰, 邓宇峰, 等. 铜陵荷花山铅锌矿区闪长岩类LA-ICP-MS锆石U-Pb年代学、地球化学特征及地质意义[J]. 岩石学报, 2017, 33(11): 3581−3598.

    LIU Guangxian, YUAN Feng, DENG Yufeng, et al. Chronology, geochemical characteristics and geological significance of diorite LA-ICP-MS ZIRCON U-Pb in Hehuashan lead-zinc mining area, Tongling[J]. Acta Petrologica Sinica, 2017, 33(11): 3581−3598.

    [6]

    万丹, 陈玖斌, 张婷, 等. 镉同位素分馏及其在示踪土壤镉来源和迁移转化过程中的应用进展[J]. 岩矿测试, 2022, 41(3): 341−352. doi: 10.3969/j.issn.0254-5357.2022.3.ykcs202203001

    WAN Dan, CHEN Jiubin, ZHANG Ting, et al. Cadmium Isotope Fractionation and Its Applications in Tracing the Source and Fate of Cadmium in the Soil: A Review[J]. Rock and Mineral Analysis, 2022, 41(3): 341−352. doi: 10.3969/j.issn.0254-5357.2022.3.ykcs202203001

    [7]

    王伟中, 张朝晖, 温汉捷, 等. 镉同位素在古环境重建中的应用: 以晚泥盆世弗拉期-法门期生物灭绝事件为例[J]. 矿物岩石地球化学通报, 2020, 39(1): 80−88.

    WANG Weizhong, ZHANG Zhaohui, WEN Hanjie, et al. The Application of Cd Isotopes in the Paleo-environment Reconstruction: A Case Study of the Frasnian-Famennian Mass Extinction Event in the Late Devonian[J]. Bulletin of Mineraligy, Petrology and Geochemistry, 2020, 39(1): 80−88.

    [8]

    王银泉. 铜陵市新桥矿区土壤重金属污染评价及源解析研究[D]. 合肥: 合肥工业大学, 2014.

    WANG Yinquan. Pollution Assessment and Source Apportionment ofHeavy Metals in Soils around XinQiao Mining Area inTongling, Anhui ProvinceByWang Yinquan[D]. Hefei: Hefei University of Technology, 2014.

    [9]

    谢胜凯, 曾远, 刘瑞萍, 等. AG-MP-1M在氢溴酸体系中分离镉的方法[J]. 核化学与放射化学, 2020, 42(4): 256−261. doi: 10.7538/hhx.2020.YX.2019094

    XIE Shengkai, ZENG Yuan, LIU Ruiping, et al. Separation of Cadmium in Hydrobromic Acid by Anion Resin AG-MP-1M[J]. Journal of Nuclear and Radiochemistry, 2020, 42(4): 256−261. doi: 10.7538/hhx.2020.YX.2019094

    [10]

    张羽旭, 温汉捷, 樊海峰, 等. Cd同位素地质样品的预处理方法研究[J]. 分析测试学报, 2010, 29(6): 633−637.

    ZHANG Yuxu, WEN Hanjie, FAN Haifeng, et al. Chemical Pre-treatment Methods For Measurement of Cd Isotopeic Ratio on Geological Samples[J]. Journal of Instrumental Analysis, 2010, 29(6): 633−637.

    [11]

    朱传威, 温汉捷, 张羽旭, 等. Cd稳定同位素测试技术进展及其应用[J]. 地学前缘, 2015, 22(5): 115−123.

    ZHU Chuanwei, WEN Hanjie, ZHANG Yuxu, et al. Analtical technique for cadmium stable isotopes and its applications.[J]. Earth Science Frontiers, 2015, 22(5): 115−123.

    [12]

    Abouchami W, Galer G J S, Horner J T, et al. A Common Reference Material for Cadmium Isotope Studies–NIST SRM 3108[J]. Geostandards and Geoanalytical Research, 2013, 37(1): 5−17.

    [13]

    Albarède F, Beard B. Analytical Methods for Non-Traditional Isotopes[J]. Reviews in Mineralogy and Geochemistry, 2004, 55(1): 113−152.

    [14]

    Bao Zhongwen, Al Tom, Bain J, et al. Sphalerite weathering and controls on Zn and Cd migration in mine waste rock: An integrated study from the molecular scale to the field scale[J]. Geochimica et Cosmochimica Acta, 2022, 318: 1−18.

    [15]

    Cloquet C, Rouxel O, Carignan J, et al. Natural Cadmium Isotopic Variations in Eight Geological Reference Materials (NIST SRM 2711, BCR 176, GSS-1, GXR-1, GXR-2, GSD-12, Nod-P-1, Nod-A-1) and Anthropogenic Samples, Measured by MC-ICP-MS[J]. Geostandards and Geoanalytical Research, 2005, 29(1): 95−106.

    [16]

    Feng L, Zhou L, Yang L, et al. Optimization of the double spike technique using peak jump collection by a Monte Carlo method: an example for the determination of Ca isotope ratios[J]. Journal of Analytical Atomic Spectrometry, 2015, 30(12): 2403−2411.

    [17]

    Guo C, Li T, Li G, et al. Precise/small sample size determination of stable Cd isotope ratios of geological samples with double spike MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2022, 37(11): 2470−2479.

    [18]

    Lacan F, Francois R, Ji Y, et al. Cadmium isotopic composition in the ocean[J]. Geochimica Et Cosmochimica Acta, 2006, 70(20): 5104−5118.

    [19]

    Klaver M, Coath D C. Obtaining Accurate Isotopic Compositions with the Double Spike Technique: Practical Considerations[J]. Geostandards and Geoanalytical Research, 2019, 43(1): 5−22.

    [20]

    Lodders, Katharina. Solar System Abundances and Condensation Temperatures of the Elements[J]. Astrophysical Journal, 2003, 591(2): 1220−1247.

    [21]

    Rehkämper M, Wombacher F, Horner T J, et al. Natural and anthropogenic cd isotope variations. Handbook of Environmental Isotope Geochemistry Advances in Isotope Geochemistry[M]. Berlin: Springer, 2012: 125–154.

    [22]

    Rosman K J R, Laeter J R D. Cadmium mass fractionation in unequilibrated ordinary chondrites[J]. Earth & Planetary Science Letters, 1988, 89(2): 163−169.

    [23]

    Rosman K J R, deLaeter J R. The isotopic composition of cadmium in terrsetrial minerals[J]. International Journal of Mass Spectrometry and Ion Physic, 1975, 16: 385−394.

    [24]

    Rudge J F, Reynolds B C, Bourdon B. The double spike toolbox[J]. Chemical Geology, 2009, 265(3−4): 420−431.

    [25]

    Strelow F W E. Distribution coefficients and anion exchange behavior of some elements in hydro bromicnitric acid mixtures[J]. Analytical Chemistry, 1978, 50(9): 1359−1361. doi: 10.1021/ac50031a041

    [26]

    Wen H, Zhu C, Zhang Y, et al. Zn/Cd ratios and cadmium isotope evidence for the classification of lead-zinc deposits[J]. Scientific Reports, 2016, 6: 25273.

    [27]

    Wombacher F, Rehkämper M, et al. Cadmium stable isotope cosmochemistry[J]. Geochimica et Cosmochimica Acta, 2008, 72(2): 646−667.

    [28]

    Wombacher F, Rehkämper M, Mezger K, et al. Stable isotope compositions of cadmium in geological materials and meteorites determined by multiple-collector ICPMS[J]. Geochimica et Cosmochimica Acta, 2003, 67(23): 4639−4654.

    [29]

    Xu C, Zhong H, Hu R, et al. Sources and ore-forming fluid pathways of carbonate-hosted Pb–Zn deposits in Southwest China: implications of Pb–Zn–S–Cd isotopic compositions[J]. Mineralium Deposita, 2020, 55: 491−513.

    [30]

    Xue Z, Rehkamper M, Schonbachler M, et al. A new methodology for precise cadmium isotope analyses of seawater[J]. Analytical and Bioanalytical Chemistry, 2012, 402(2): 883−8933.

    [31]

    Zhao Z, Li G, Wei J, et al. Zinc and cadmium isotopic constraints on metal sources of the Xitieshan Zn–Pb deposit, NW China[J]. Ore Geology Reviews. 2023, 162, 105723.

    [32]

    Zhong Q H, Li J, Yin L, et al. A two-stage Cd purification method with anion exchange resin and BPHA extraction resin for high precision determination of Cd isotopic compositions by double spike MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2023, 38: 939−949.

    [33]

    Zhong Q H, Yin L, Li J, et al. A single-stage anion exchange separation method for Cd isotopic analysis in geological and environmental samples by MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2023b, 38(11): 2291−2301.

    [34]

    Zhong Qiaohui, Zhou Yuchen, Tsang D C W, et al. Cadmium isotopes as tracers in environmental studies: A review[J]. Science of The Total Environment, 2020, 736:139585.

    [35]

    Zhu C, Wen H. Cadmium isotopic constraints on metal sources in the Huize Zn–Pb deposit, SW China[J]. Geoscience Frontiers, 2021, 12(6): 101241.

    [36]

    Zhu C W, Wen H J, Fan H F, et al. Analytical technique of germanium stable isotopes and its geological applications[J]. Acta Petrologica et Mineralogica, 2014, 33(5): 965−970.

    [37]

    Zhu C W, Wen H J, Zhang Y X, et al. Characteristics of Cd isotopic compositions and their genetic significance in the lead-zincdeposits of SW China[J]. Science China Earth Sciences, 2013, 56(12): 2056−2065.

  • 加载中

(5)

(3)

计量
  • 文章访问数:  89
  • PDF下载数:  13
  • 施引文献:  0
出版历程
收稿日期:  2024-12-03
修回日期:  2025-04-02
录用日期:  2025-04-08
刊出日期:  2025-10-20

目录