Characteristics and Uenesis of Carrollite from Mylonite-type Oreshoot of the Hongtoushan Deposit
-
摘要:
钴是一种非常重要的关键资源,但中国钴资源却非常稀少,对外依存度居高不下。火山岩成因块状硫化物(VMS)矿床是钴资源的重要来源之一,其中钴的赋存状态及钴矿物成因仍存在较大争议。红透山是中国最古老的VMS矿床,除含有丰富的铜锌和金资源外,还伴生有一定的钴资源。细致的矿相学工作发现,红透山矿床中的钴多以伴生形式存在于硫化物中,最典型的就是糜棱岩型富矿石存在的钴独立矿物——硫铜钴矿。岩相学和矿物地球化学结果显示,红透山矿床糜棱岩型富矿石中的硫铜钴矿可分为早阶段的他形粒状、中阶段自形粒状和晚阶段自形-半自形脉状。三类硫铜钴矿的产出特征相似,化学组成相近,应为同期热液作用不同阶段的产物。在变质变形和热液叠加过程中,分散于原生VMS矿石中的黄铁矿等硫化物中的钴发生再活化,随着热液活动聚集到糜棱岩型富矿石中并最终形成硫铜钴矿。本次工作为红透山糜棱岩型富矿石中钴的资源评价与综合利用提供了矿物学基础。
Abstract:Cobalt is a critical strategic mineral resource and remain significant concerns in China due to the scarcity and heavy reliance on foreign countries. Volcanic-hosted massive sulfide (VMS) deposits are significant sources of cobalt resources. However, the occurrence state of cobalt and the genesis of cobalt minerals are still under debate. The Hongtoushan deposit, the oldest VMS deposit in northeast China, contains numerous Cu, Zn, and Au resources, as well as some cobalt resources. Based on systematic mineralogy observation by microscope and TESCAN Integrated Mineral Analyze (TIMA), the sulfide paragenesis and carrollite was identified in mylonite-type oreshoot of the Hongtoushan deposit. Additionally, TIMA and geochemistry analysis by electronic microprobe analysis (EMPA) show that carrollite grains in the mylonite-type oreshoot of Hongtoushan could be divided into early-stage anhedral granular, mid-stage euhedral granular, and late-stage subhedral-euhedral veined. These three types of carrollite grains have similar mineral characters and geochemical contents and thus might be products of different stages during one hydrothermal event. Through deformation under regional metamorphism and overprinting during later hydrothermal event, cobalt scattered in sulfide minerals was remobilized from VMS orebodies to hydrothermal with enrichment of Cu, Co, and Au. The Co-enriched hydrothermal solution transports through schistose and faults in mylonite VMS orebodies and wall rocks, formed carrollite grains and mylonite-type oreshoot eventually. This study provides a mineralogical basis for resource evaluation and comprehensive utilization of cobalt in the Hongtoushan deposit.
-
Key words:
- carrollite /
- occurrence /
- remobilization /
- metamorphic hydrothermal /
- the Hongtoushan deposit
-
-
图 1 红透山矿床大地构造位置(a)及矿体–167 m中段纵投影图(b)(据Gu et al., 2007)
Figure 1.
表 1 样品信息表
Table 1. Sample information
编号 名称 位置 矿石类型 矿物组成 HT-312 富铜矿石 14线–647 m中段矿体边部 糜棱岩型富矿石 黄铜矿、闪锌矿 HT-310 富铜矿石 14线–647 m中部矿体中部 糜棱岩型块状富矿石 黄铜矿、闪锌矿、硫铜钴矿等 表 2 糜棱岩型富矿体中硫铜钴矿中电子探针分析结果(%)及化学式
Table 2. EPMA data and chemical formular of corrallite from mylonite-type high-grade ore
类型 编号 S Cu Co Ni Fe Total 化学式 早阶段 12-19-13 40.211 12.984 39.123 4.860 0.663 98.577 Cu0.652(Co, Ni)2.382S4 12-19-18 40.074 12.511 37.749 4.781 0.574 98.681 Cu0.63(Co, Ni)2.343 S4 12-19-26 41.48 13.285 38.859 5.309 1.054 100.464 Cu0.645(Co, Ni)2.319 S4 12-19-27 41.238 12.780 39.311 5.382 0.532 99.920 Cu0.626(Co, Ni)2.360 S4 12-19-28 41.733 13.101 39.067 5.116 0.645 100.204 Cu0.634(Co, Ni)2.305 S4 10-11-13 40.986 13.925 38.365 4.963 0.074 98.947 Cu0.686(Co, Ni)2.302S4 10-11-14 41.231 14.677 38.508 4.861 0.055 99.908 Cu0.719(Co, Ni)2.290 S4 10-11-15 41.128 14.655 38.837 4.795 0.180 100.196 Cu0.719(Co, Ni)2.310S4 中阶段 12-19-14 41.261 12.943 39.306 5.277 0.678 100.332 Cu0.633(Co, Ni)2.353 S4 12-19-15 41.41 13.224 39.770 4.878 0.692 100.499 Cu0.645(Co, Ni)2.348 S4 12-19-16 40.949 12.536 38.597 5.123 0.787 98.576 Cu0.618(Co, Ni)2.325 S4 12-19-17 40.994 12.925 38.759 5.288 0.903 99.522 Cu0.636(Co, Ni)2.340 S4 10-11-16 41.006 14.336 38.350 4.924 0.141 99.358 Cu0.706(Co, Ni)2.298S4 10-11-17 41.311 14.367 38.592 4.742 0.131 99.869 Cu0.702(Co, Ni)2.284S4 10-11-18 40.817 14.494 38.619 4.743 0.146 99.357 Cu0.717(Co, Ni)2.311S4 10-11-19 40.925 14.521 38.649 4.705 0.148 99.022 Cu0.716(Co, Ni)2.276S4 10-11-20 40.878 14.411 38.678 4.668 0.087 98.756 Cu0.712(Co, Ni)2.278S4 10-11-21 41.361 14.792 38.708 4.630 0.675 100.464 Cu0.722(Co, Ni)2.265S4 10-11-22 40.868 13.900 38.738 4.592 0.181 99.017 Cu0.687(Co, Ni)2.322S4 10-11-23 40.648 13.913 38.767 4.554 0.397 98.986 Cu0.691(Co, Ni)2.325S4 10-11-24 41.606 14.771 38.797 4.516 0.534 100.646 Cu0.717(Co, Ni)2.257S4 10-11-25 41.231 14.557 38.826 4.478 0.245 100.08 Cu0.713(Co, Ni)2.282S4 10-11-26 42.023 14.618 38.856 4.440 1.424 100.57 Cu0.702(Co, Ni)2.172S4 晚阶段 12-19-9 41.331 13.110 39.047 5.097 0.874 100.124 Cu0.64(Co, Ni)2.326 S4 12-19-10 41.084 13.074 39.165 5.155 0.684 99.864 Cu0.642(Co, Ni)2.349S4 12-19-11 41.244 12.917 38.486 5.329 0.648 99.198 Cu0.632(Co, Ni)2.313 S4 12-19-22 40.948 12.557 38.797 5.219 0.635 98.866 Cu0.619(Co, Ni)2.341 S4 12-19-24 41.237 12.990 38.370 4.761 0.698 98.797 Cu0.636(Co, Ni)2.277 S4 10-11-11 41.045 14.303 38.368 4.876 0.110 99.253 Cu0.703(Co, Ni)2.294 S4 10-11-12 41.197 14.744 37.317 4.696 0.067 98.666 Cu0.722(Co, Ni)2.221 S4 12-19-23 40.692 12.496 37.465 4.789 0.835 97.924 Cu0.62(Co, Ni)2.261 S4 平均值 41.102 13.691 38.672 4.889 0.499 99.505 Cu0.678(Co, Ni)2.289 S4 -
[1] 陈衍景, 杨秋剑, 邓健, 等. 地球演化的重要转折──2 300 Ma时地质环境灾变的揭示及其意义[J]. 地球与环境, 1996(3): 106−125.
CHEN Yanjing, YANG Qiujian, DENG Jian, et al. The important turning point of Earth evolutionthe: revelation and significance of the geological environment disaster at 2 300 Ma[J]. Earth and Environment,1996(3):106−125.
[2] 党奔, 吴昌志, 杨涛, 等. 辽宁红透山块状硫化物矿床中矿体的变质变形特征与形成过程[J]. 地质通报, 2021, 40(4): 545−556.
DANG Ben, WU Changzhi, YANG Tao, et al. Metamorphic deformation characters and forming process of ore bodies in the Hongtoushan massive sulfide deposit, Northeast China[J]. Geological Bulletin of China,2021,40(4):545−556.
[3] 翟明国, 杨瑞英, 卢文江, 等. 清原太古代花岗岩-绿岩地体的常量和微量元素地球化学证据[J]. 地质论评, 1984, 80(6): 523−535.
ZHAI Mingguo,YANG Ruiying,LU Wenjiang,et al. Geochemical evidence of major and trace elements in the Archean granite-greenstone terrane of Qingyuan[J]. Geological Review,1984,80(6):523−535.
[4] 顾连兴, 郑远川, 汤晓茜, 等. 硫化物矿石若干结构及相关成矿理论研究进展[J]. 自然科学进展, 2006, 16(2): 146−159. doi: 10.3321/j.issn:1002-008X.2006.02.004
GU Lianxing, ZHENG Yuanchuan, TANG Xiaoqian, et al. Research progress on some structures of sulfide ores and related metallogenic theories[J]. Progress in Natural Science,2006,16(2):146−159. doi: 10.3321/j.issn:1002-008X.2006.02.004
[5] 李文渊. 中国岩浆铜镍钴硫化物矿床成矿理论创新和找矿突破[J]. 地质力学学报, 2022, 28(5): 793−820. doi: 10.12090/j.issn.1006-6616.20222810
LI Wenyuan. Study of ore-forming theoretical innovation and prospecting breakthrough of magmatic copper-nickel-cobalt sulfide deposits in China[J]. Journal of Geomechanics,2022,28(5):793−820. doi: 10.12090/j.issn.1006-6616.20222810
[6] 沈保丰. 辽北-吉南太古宙地质及成矿[M]. 北京: 地质出版社, 1994: 1−255.
SHEN Baofeng. Archean geology and mineralization in northern Liaoning-southern Jilin[M]. Beijing: Geological Publishing House, 1994: 1−255.
[7] 苏本勋, 秦克章, 蒋少涌, 等. 我国钴镍矿床的成矿规律、科学问题、勘查技术瓶颈与研究展望[J]. 岩石学报, 2023, 39(4): 968−980. doi: 10.18654/1000-0569/2023.04.02
SU Benxun, QIN Kezhang, JIANG Shaoyong, et al. Mineralization regularity, scientific issues, prospecting technology and research prospect of Co. Ni deposits in China[J]. Acta Petrologica Sinica,2023,39(4):968−980. doi: 10.18654/1000-0569/2023.04.02
[8] 王慧宁, 刘福来, 朱志勇, 等. 吉林省大横路铜钴矿复杂的沉积-变质变形-热液作用演化过程及其对钴的赋存状态和富集成矿的制约[J]. 岩石学报, 2023, 39(4): 998−1018. doi: 10.18654/1000-0569/2023.04.04
WANG Huining, LIU Fulai, ZHU Zhiyong, et al. Complex evolution of the sedimentation, metamorphism-deformation and hydrothermal processes and their constraints on the occurrence, enrichment and mineralization of Co in the Dahenglu Cu-Co deposit, Jilin Province[J]. Acta Petrologica Sinica,2023,39(4):998−1018. doi: 10.18654/1000-0569/2023.04.04
[9] 王玉往, 秦克章. VAMSD矿床系列最基性端员——青海省德尔尼大型铜钴矿床的地质特征和成因类型[J]. 矿床地质, 1997, 16(1): 1−10.
WANG Yuwang, QING Kezhang. The extremely basic member of VAMSD deposit series-the Deerni large copper-cobalt deposit of Qinghai Province: its geological characteristics and genetic type[J]. Mineral Deposits,1997,16(1):1−10.
[10] 王亚磊, 李文渊, 林艳海, 等. 金川超大型铜镍矿床钴的赋存状态与富集过程研究[J]. 西北地质, 2023, 56(2): 133−150.
WANG Yalei, LI Wenyuan, LIN Yanhai, et al. Study on the Occurrence State and Enrichment Process of Cobalt in Jinchuan Giant Magmatic Ni−Cu Sulfide Deposit[J]. Northwestern Geology,2023,56(2):133−150.
[11] 许德如, 王智琳, 聂逢君, 等. 中国钴矿资源现状与关键科学问题[J]. 中国科学基金, 2019, 33(2): 125−132.
XU Deru, WANG Zhilin, NIE Fengjun, et al. Cobalt resources in China: current research status and key scientific issues[J]. Bulletin of National Natural Science Foundation of China,2019,33(2):125−132.
[12] 杨振升, 俞保祥. 辽宁北部红透山地区太古宙绿岩带的多期变形[J]. 吉林大学学报: 地球科学版, 1984,(1): 20−35.
YANG Zhengsheng, YU Baoxiang. Poly-deformation of the Archaean greenstone belt in the Hongtoushan area northern Liaoning Province[J]. Journal of Jilin University (Earth Science Edition),1984,(1):20−35.
[13] 于凤金. 红透山式矿床成矿模式与找矿模型研究 [D]. 沈阳: 东北大学, 2006.
YU Fengjin. The study of metallogenic model and prospecting pattern of Hongtoushan-type deposit [D]. Shenyang: Northeastern University, 2006.
[14] 张秋生, 李守义, 刘连登. 中国早前寒纪地质及成矿作用[M]. 长春: 吉林人民出版社, 1984, 1−536.
ZHANG Qiusheng, LI Shouyi, LIU Liandeng. Early Precambrian Geology and Mineralization in China[M]. Changchun: Jilin People's Publishing House, 1984, 1−536.
[15] 张照伟, 谭文娟, 全孝勤, 等. 西北地区钴矿资源禀赋特征及产业链分析[J]. 西北地质, 2024, 57(5): 11−26.
ZHANG Zhaowei,TAN Wenjuan,QUAN Xiaoqin,et al. Study on Cobalt Resource Endowment and Its Industry Chain in Northwestern China[J]. Northwestern Geology,2024,57(5):11−26.
[16] 赵俊兴, 李光明, 秦克章, 等. 富含钴矿床研究进展与问题分析[J]. 科学通报, 2019, 64(24): 2484−2500. doi: 10.1360/N972019-00134
ZHAO Junxing, LI Guangming, QIN Kezhang, et al. A review of the types and ore mechanism of the cobalt deposits[J]. Chinese Science Bulletin,2019,64(24):2484−2500. doi: 10.1360/N972019-00134
[17] 赵达成, 王美乐, 李章志贤, 等. 夏日哈木岩浆硫化物矿床中钴和镍关键金属的赋存状态及分布规律[J]. 西北地质, 2023, 56(6): 17−40.
ZHAO Dacheng, WANG Meile, LI Zhangzhixian, et al. The Occurrence and Distribution of Cobalt and Nickel Key Metals in the Xiarihamu Magmatic Sulfide Deposit[J]. Northwestern Geology,2023,56(6):17−40.
[18] 赵印香, 崔文元. 辽宁清源地区太古代变质杂岩的矿物学和结晶温压条件[J]. 长春地质学院学报, 1987, 31(2): 191−204.
ZHAO Yinxiang, CUI Wenyuan. Mineralogy and crystallization temperature and pressure conditions of Archean metamorphic complex in Qingyuan area of Liaoning Province[J]. Journal of Jilin University (Earth Science Edition),1987,31(2):191−204.
[19] 郑远川, 顾连兴, 汤晓茜, 等. 辽宁红透山块状硫化物矿床高级变质下盘蚀变带研究[J]. 岩石学报, 2008a, 24(8): 1928−1936.
ZHENG Yuanchuan, GU Lianxing, TANG Xiaoqian, et al. Geological and geochemical signature of sea-floor alteration rocks of the highly metamorphosed Hongtoushan massive sulfide deposit, Liaoning[J]. Acta Petrologica Sinica,2008a,24(8):1928−1936.
[20] 郑远川. 辽宁红透山矿床下盘蚀变岩、矿石糜棱岩成因及硫化物再活化实验研究[D]. 南京: 南京大学, 2008b.
ZHENG Yuanchuan. Experimental study on genesis of footwall altered rock, ore mylonite and sulfide reactivation in Hongtoushan Deposit in Liaoning Province[D]. Nanjing: Nanjing University, 2008b.
[21] 钟世华, 黄宇, 刘永乐, 等. 东昆仑志留纪—泥盆纪关键金属成矿大爆发[J]. 地质通报, 2025, 44(4): 574−586.
ZHONG Shihua, HUANG Yu, LIU Yongle, et al. Silurian-Devonian critical metal mineralization boom of the East Kunlun Orogenic Belt[J]. Geological Bulletin of China,2025,44(4):574−586.
[22] Bartholomé P, Katekesha F, Ruiz J L. Cobalt zoning in microscopic pyrite from Kamoto, Republic of the Congo (Kinshasa)[J]. Mineralium Deposita,1971,6:167−176.
[23] Barton P B, Bethke P M. Chalcopyrite disease in sphalerite; pathology and epidemiology[J]. American Mineralogist,1987,72(5−6):451−467.
[24] Cailteux J L H, Kampunzu A B, Lerouge C, et al. Genesis of sediment-hosted stratiform copper–cobalt deposits, central African Copperbelt[J]. Journal of African Earth Sciences,2005,42(1−5):134−158.
[25] Chen Y J. Fluidization model for continental collision in special reference to study ore-forming fluid of gold deposoits in the eastern Qinling Mountains, China[J]. Progress in Natural Science-Materials International,1998,8:385−393.
[26] Cook N J, Ciobanu C L. Paragenesis of Cu-Fe ores from Ocna de Fier-Dognecea (Romania), typifying fluid plume mineralization in a proximal skarn setting[J]. Mineralogical Magazine,2001,65(3):351−372.
[27] Fleischer V D. Discovery, geology and genesis of copper-cobalt mineralisation at Chambishi Southeast prospect, Zambia[J]. Precambrian Research,1984,25(1−3):119−133.
[28] Gu L, Zheng Y, Tang X, et al. Copper, gold and silver enrichment in ore mylonites within massive sulphide orebodies at Hongtoushan VHMS deposit, NE China[J]. Ore Geology Reviews,2007,30(1):1−29.
[29] Lusty, Paul A J, Hein, et al. Formation and Occurrence of Ferromanganese Crusts: Earth’s Storehouse for Critical Metals[J]. Elements, 2018, 14(5): 313–318.
[30] Marques A F A, Barriga F J A S, Scott S D. Sulfide mineralization in an ultramafic-rock hosted seafloor hydrothermal system: From serpentinization to the formation of Cu–Zn–(Co)-rich massive sulfides[J]. Marine Geology,2007,245(1−4):20−39.
[31] McGowan R R, Roberts S, Foster R P, et al. Origin of the copper-cobalt deposits of the Zambian Copperbelt: An epigenetic view from Nchanga[J]. Geology,2003,31(6):497−500. doi: 10.1130/0091-7613(2003)031<0497:OOTCDO>2.0.CO;2
[32] Naldrett A J. Magmatic sulfide deposits: geology, geochemistry and exploration[M]. Springer Science & Business Media, 2013.
[33] Slack J F, Falck H, Kelley K D, et al. Geochemistry of host rocks in the Howards Pass district, Yukon-Northwest Territories, Canada: implications for sedimentary environments of Zn-Pb and phosphate mineralization[J]. Mineralium Deposita,2017,52:565−593.
[34] Van Langendonck S, Muchez P, Dewaele S, et al. Petrographic and mineralogical study of the sediment-hosted Cu-Co ore deposit at Kambove West in the central part of the Katanga Copperbelt (DRC)[J]. Geologica Belgica,2010,45:735−763.
[35] Williams-Jones A E, Vasyukova O V. Constraints on the genesis of cobalt deposits: part I. Theoretical considerations[J]. Economic Geology,2022,117(3):513−528. doi: 10.5382/econgeo.4895
[36] Zhang Y, Sun F, Li B, et al. Ore textures and remobilization mechanisms of the Hongtoushan copper-zinc deposit, Liaoning, China[J]. Ore Geology Reviews,2014,57:78−86. doi: 10.1016/j.oregeorev.2013.09.006
[37] Zhao F, Huang F, Chen L, et al. Nature and origin of primary ore-forming fluids in the highly metamorphosed Archean Hongtoushan VMS deposit, North China: Insights from in situ S isotopes and trace elements of sulfides[J]. Journal of Asian Earth Sciences,2024,260:105956. doi: 10.1016/j.jseaes.2023.105956
-