辽宁红透山铜锌矿床糜棱岩型富矿体中硫铜钴矿的特征与成因

郝靓雪, 党奔, 雷如雄, 吴昌志. 2025. 辽宁红透山铜锌矿床糜棱岩型富矿体中硫铜钴矿的特征与成因. 西北地质, 58(4): 164-173. doi: 10.12401/j.nwg.2025039
引用本文: 郝靓雪, 党奔, 雷如雄, 吴昌志. 2025. 辽宁红透山铜锌矿床糜棱岩型富矿体中硫铜钴矿的特征与成因. 西北地质, 58(4): 164-173. doi: 10.12401/j.nwg.2025039
HAO Liangxue, DANG Ben, LEI Ruxiong, WU Changzhi. 2025. Characteristics and Uenesis of Carrollite from Mylonite-type Oreshoot of the Hongtoushan Deposit. Northwestern Geology, 58(4): 164-173. doi: 10.12401/j.nwg.2025039
Citation: HAO Liangxue, DANG Ben, LEI Ruxiong, WU Changzhi. 2025. Characteristics and Uenesis of Carrollite from Mylonite-type Oreshoot of the Hongtoushan Deposit. Northwestern Geology, 58(4): 164-173. doi: 10.12401/j.nwg.2025039

辽宁红透山铜锌矿床糜棱岩型富矿体中硫铜钴矿的特征与成因

  • 基金项目: 长安大学中央高校基本科研业务费专项“中国关键金属矿产”(300102274303)和新疆维吾尔自治区“天池英才计划”联合资助。
详细信息
    作者简介: 郝靓雪(2000−),女,硕士研究生,专业为矿物学、岩石学、矿床学。E−mail:2216251555@qq.com
    通讯作者: 吴昌志(1975−),男,博士,教授,博士生导师,主要从事成矿机制与成矿规律研究。E−mail:wucz@chd.edu.cn
  • 中图分类号: P618.62

Characteristics and Uenesis of Carrollite from Mylonite-type Oreshoot of the Hongtoushan Deposit

More Information
  • 钴是一种非常重要的关键资源,但中国钴资源却非常稀少,对外依存度居高不下。火山岩成因块状硫化物(VMS)矿床是钴资源的重要来源之一,其中钴的赋存状态及钴矿物成因仍存在较大争议。红透山是中国最古老的VMS矿床,除含有丰富的铜锌和金资源外,还伴生有一定的钴资源。细致的矿相学工作发现,红透山矿床中的钴多以伴生形式存在于硫化物中,最典型的就是糜棱岩型富矿石存在的钴独立矿物——硫铜钴矿。岩相学和矿物地球化学结果显示,红透山矿床糜棱岩型富矿石中的硫铜钴矿可分为早阶段的他形粒状、中阶段自形粒状和晚阶段自形-半自形脉状。三类硫铜钴矿的产出特征相似,化学组成相近,应为同期热液作用不同阶段的产物。在变质变形和热液叠加过程中,分散于原生VMS矿石中的黄铁矿等硫化物中的钴发生再活化,随着热液活动聚集到糜棱岩型富矿石中并最终形成硫铜钴矿。本次工作为红透山糜棱岩型富矿石中钴的资源评价与综合利用提供了矿物学基础。

  • 加载中
  • 图 1  红透山矿床大地构造位置(a)及矿体–167 m中段纵投影图(b)(据Gu et al., 2007

    Figure 1. 

    图 2  红透山糜棱型富矿体–227中段分布图

    Figure 2. 

    图 3  红透山矿床14线-647 m中段糜棱岩型富矿石手标本照片

    Figure 3. 

    图 4  糜棱型富矿石的矿相学(a~f)与TIMA相图(g~I)(HT-312)

    Figure 4. 

    图 5  不同阶段形成的硫铜钴矿中Co-Ni元素含量的相关性图解

    Figure 5. 

    表 1  样品信息表

    Table 1.  Sample information

    编号名称位置矿石类型矿物组成
    HT-312富铜矿石14线–647 m中段矿体边部糜棱岩型富矿石黄铜矿、闪锌矿
    HT-310富铜矿石14线–647 m中部矿体中部糜棱岩型块状富矿石黄铜矿、闪锌矿、硫铜钴矿等
    下载: 导出CSV

    表 2  糜棱岩型富矿体中硫铜钴矿中电子探针分析结果(%)及化学式

    Table 2.  EPMA data and chemical formular of corrallite from mylonite-type high-grade ore

    类型编号SCuCoNiFeTotal化学式
    早阶段12-19-1340.21112.98439.1234.8600.66398.577Cu0.652(Co, Ni)2.382S4
    12-19-1840.07412.51137.7494.7810.57498.681Cu0.63(Co, Ni)2.343 S4
    12-19-2641.4813.28538.8595.3091.054100.464Cu0.645(Co, Ni)2.319 S4
    12-19-2741.23812.78039.3115.3820.53299.920Cu0.626(Co, Ni)2.360 S4
    12-19-2841.73313.10139.0675.1160.645100.204Cu0.634(Co, Ni)2.305 S4
    10-11-1340.98613.92538.3654.9630.07498.947Cu0.686(Co, Ni)2.302S4
    10-11-1441.23114.67738.5084.8610.05599.908Cu0.719(Co, Ni)2.290 S4
    10-11-1541.12814.65538.8374.7950.180100.196Cu0.719(Co, Ni)2.310S4
    中阶段12-19-1441.26112.94339.3065.2770.678100.332Cu0.633(Co, Ni)2.353 S4
    12-19-1541.4113.22439.7704.8780.692100.499Cu0.645(Co, Ni)2.348 S4
    12-19-1640.94912.53638.5975.1230.78798.576Cu0.618(Co, Ni)2.325 S4
    12-19-1740.99412.92538.7595.2880.90399.522Cu0.636(Co, Ni)2.340 S4
    10-11-1641.00614.33638.3504.9240.14199.358Cu0.706(Co, Ni)2.298S4
    10-11-1741.31114.36738.5924.7420.13199.869Cu0.702(Co, Ni)2.284S4
    10-11-1840.81714.49438.6194.7430.14699.357Cu0.717(Co, Ni)2.311S4
    10-11-1940.92514.52138.6494.7050.14899.022Cu0.716(Co, Ni)2.276S4
    10-11-2040.87814.41138.6784.6680.08798.756Cu0.712(Co, Ni)2.278S4
    10-11-2141.36114.79238.7084.6300.675100.464Cu0.722(Co, Ni)2.265S4
    10-11-2240.86813.90038.7384.5920.18199.017Cu0.687(Co, Ni)2.322S4
    10-11-2340.64813.91338.7674.5540.39798.986Cu0.691(Co, Ni)2.325S4
    10-11-2441.60614.77138.7974.5160.534100.646Cu0.717(Co, Ni)2.257S4
    10-11-2541.23114.55738.8264.4780.245100.08Cu0.713(Co, Ni)2.282S4
    10-11-2642.02314.61838.8564.4401.424100.57Cu0.702(Co, Ni)2.172S4
    晚阶段12-19-941.33113.11039.0475.0970.874100.124Cu0.64(Co, Ni)2.326 S4
    12-19-1041.08413.07439.1655.1550.68499.864Cu0.642(Co, Ni)2.349S4
    12-19-1141.24412.91738.4865.3290.64899.198Cu0.632(Co, Ni)2.313 S4
    12-19-2240.94812.55738.7975.2190.63598.866Cu0.619(Co, Ni)2.341 S4
    12-19-2441.23712.99038.3704.7610.69898.797Cu0.636(Co, Ni)2.277 S4
    10-11-1141.04514.30338.3684.8760.11099.253Cu0.703(Co, Ni)2.294 S4
    10-11-1241.19714.74437.3174.6960.06798.666Cu0.722(Co, Ni)2.221 S4
    12-19-2340.69212.49637.4654.7890.83597.924Cu0.62(Co, Ni)2.261 S4
    平均值41.10213.69138.6724.8890.49999.505Cu0.678(Co, Ni)2.289 S4
    下载: 导出CSV
  • [1]

    陈衍景, 杨秋剑, 邓健, 等. 地球演化的重要转折──2 300 Ma时地质环境灾变的揭示及其意义[J]. 地球与环境, 1996(3): 106−125.

    CHEN Yanjing, YANG Qiujian, DENG Jian, et al. The important turning point of Earth evolutionthe: revelation and significance of the geological environment disaster at 2 300 Ma[J]. Earth and Environment,1996(3):106−125.

    [2]

    党奔, 吴昌志, 杨涛, 等. 辽宁红透山块状硫化物矿床中矿体的变质变形特征与形成过程[J]. 地质通报, 2021, 40(4): 545−556.

    DANG Ben, WU Changzhi, YANG Tao, et al. Metamorphic deformation characters and forming process of ore bodies in the Hongtoushan massive sulfide deposit, Northeast China[J]. Geological Bulletin of China,2021,40(4):545−556.

    [3]

    翟明国, 杨瑞英, 卢文江, 等. 清原太古代花岗岩-绿岩地体的常量和微量元素地球化学证据[J]. 地质论评, 1984, 80(6): 523−535.

    ZHAI Mingguo,YANG Ruiying,LU Wenjiang,et al. Geochemical evidence of major and trace elements in the Archean granite-greenstone terrane of Qingyuan[J]. Geological Review,1984,80(6):523−535.

    [4]

    顾连兴, 郑远川, 汤晓茜, 等. 硫化物矿石若干结构及相关成矿理论研究进展[J]. 自然科学进展, 2006, 16(2): 146−159. doi: 10.3321/j.issn:1002-008X.2006.02.004

    GU Lianxing, ZHENG Yuanchuan, TANG Xiaoqian, et al. Research progress on some structures of sulfide ores and related metallogenic theories[J]. Progress in Natural Science,2006,16(2):146−159. doi: 10.3321/j.issn:1002-008X.2006.02.004

    [5]

    李文渊. 中国岩浆铜镍钴硫化物矿床成矿理论创新和找矿突破[J]. 地质力学学报, 2022, 28(5): 793−820. doi: 10.12090/j.issn.1006-6616.20222810

    LI Wenyuan. Study of ore-forming theoretical innovation and prospecting breakthrough of magmatic copper-nickel-cobalt sulfide deposits in China[J]. Journal of Geomechanics,2022,28(5):793−820. doi: 10.12090/j.issn.1006-6616.20222810

    [6]

    沈保丰. 辽北-吉南太古宙地质及成矿[M]. 北京: 地质出版社, 1994: 1−255.

    SHEN Baofeng. Archean geology and mineralization in northern Liaoning-southern Jilin[M]. Beijing: Geological Publishing House, 1994: 1−255.

    [7]

    苏本勋, 秦克章, 蒋少涌, 等. 我国钴镍矿床的成矿规律、科学问题、勘查技术瓶颈与研究展望[J]. 岩石学报, 2023, 39(4): 968−980. doi: 10.18654/1000-0569/2023.04.02

    SU Benxun, QIN Kezhang, JIANG Shaoyong, et al. Mineralization regularity, scientific issues, prospecting technology and research prospect of Co. Ni deposits in China[J]. Acta Petrologica Sinica,2023,39(4):968−980. doi: 10.18654/1000-0569/2023.04.02

    [8]

    王慧宁, 刘福来, 朱志勇, 等. 吉林省大横路铜钴矿复杂的沉积-变质变形-热液作用演化过程及其对钴的赋存状态和富集成矿的制约[J]. 岩石学报, 2023, 39(4): 998−1018. doi: 10.18654/1000-0569/2023.04.04

    WANG Huining, LIU Fulai, ZHU Zhiyong, et al. Complex evolution of the sedimentation, metamorphism-deformation and hydrothermal processes and their constraints on the occurrence, enrichment and mineralization of Co in the Dahenglu Cu-Co deposit, Jilin Province[J]. Acta Petrologica Sinica,2023,39(4):998−1018. doi: 10.18654/1000-0569/2023.04.04

    [9]

    王玉往, 秦克章. VAMSD矿床系列最基性端员——青海省德尔尼大型铜钴矿床的地质特征和成因类型[J]. 矿床地质, 1997, 16(1): 1−10.

    WANG Yuwang, QING Kezhang. The extremely basic member of VAMSD deposit series-the Deerni large copper-cobalt deposit of Qinghai Province: its geological characteristics and genetic type[J]. Mineral Deposits,1997,16(1):1−10.

    [10]

    王亚磊, 李文渊, 林艳海, 等. 金川超大型铜镍矿床钴的赋存状态与富集过程研究[J]. 西北地质, 2023, 56(2): 133−150.

    WANG Yalei, LI Wenyuan, LIN Yanhai, et al. Study on the Occurrence State and Enrichment Process of Cobalt in Jinchuan Giant Magmatic Ni−Cu Sulfide Deposit[J]. Northwestern Geology,2023,56(2):133−150.

    [11]

    许德如, 王智琳, 聂逢君, 等. 中国钴矿资源现状与关键科学问题[J]. 中国科学基金, 2019, 33(2): 125−132.

    XU Deru, WANG Zhilin, NIE Fengjun, et al. Cobalt resources in China: current research status and key scientific issues[J]. Bulletin of National Natural Science Foundation of China,2019,33(2):125−132.

    [12]

    杨振升, 俞保祥. 辽宁北部红透山地区太古宙绿岩带的多期变形[J]. 吉林大学学报: 地球科学版, 1984,(1): 20−35.

    YANG Zhengsheng, YU Baoxiang. Poly-deformation of the Archaean greenstone belt in the Hongtoushan area northern Liaoning Province[J]. Journal of Jilin University (Earth Science Edition),1984,(1):20−35.

    [13]

    于凤金. 红透山式矿床成矿模式与找矿模型研究 [D]. 沈阳: 东北大学, 2006.

    YU Fengjin. The study of metallogenic model and prospecting pattern of Hongtoushan-type deposit [D]. Shenyang: Northeastern University, 2006.

    [14]

    张秋生, 李守义, 刘连登. 中国早前寒纪地质及成矿作用[M]. 长春: 吉林人民出版社, 1984, 1−536.

    ZHANG Qiusheng, LI Shouyi, LIU Liandeng. Early Precambrian Geology and Mineralization in China[M]. Changchun: Jilin People's Publishing House, 1984, 1−536.

    [15]

    张照伟, 谭文娟, 全孝勤, 等. 西北地区钴矿资源禀赋特征及产业链分析[J]. 西北地质, 2024, 57(5): 11−26.

    ZHANG Zhaowei,TAN Wenjuan,QUAN Xiaoqin,et al. Study on Cobalt Resource Endowment and Its Industry Chain in Northwestern China[J]. Northwestern Geology,2024,57(5):11−26.

    [16]

    赵俊兴, 李光明, 秦克章, 等. 富含钴矿床研究进展与问题分析[J]. 科学通报, 2019, 64(24): 2484−2500. doi: 10.1360/N972019-00134

    ZHAO Junxing, LI Guangming, QIN Kezhang, et al. A review of the types and ore mechanism of the cobalt deposits[J]. Chinese Science Bulletin,2019,64(24):2484−2500. doi: 10.1360/N972019-00134

    [17]

    赵达成, 王美乐, 李章志贤, 等. 夏日哈木岩浆硫化物矿床中钴和镍关键金属的赋存状态及分布规律[J]. 西北地质, 2023, 56(6): 17−40.

    ZHAO Dacheng, WANG Meile, LI Zhangzhixian, et al. The Occurrence and Distribution of Cobalt and Nickel Key Metals in the Xiarihamu Magmatic Sulfide Deposit[J]. Northwestern Geology,2023,56(6):17−40.

    [18]

    赵印香, 崔文元. 辽宁清源地区太古代变质杂岩的矿物学和结晶温压条件[J]. 长春地质学院学报, 1987, 31(2): 191−204.

    ZHAO Yinxiang, CUI Wenyuan. Mineralogy and crystallization temperature and pressure conditions of Archean metamorphic complex in Qingyuan area of Liaoning Province[J]. Journal of Jilin University (Earth Science Edition),1987,31(2):191−204.

    [19]

    郑远川, 顾连兴, 汤晓茜, 等. 辽宁红透山块状硫化物矿床高级变质下盘蚀变带研究[J]. 岩石学报, 2008a, 24(8): 1928−1936.

    ZHENG Yuanchuan, GU Lianxing, TANG Xiaoqian, et al. Geological and geochemical signature of sea-floor alteration rocks of the highly metamorphosed Hongtoushan massive sulfide deposit, Liaoning[J]. Acta Petrologica Sinica,2008a,24(8):1928−1936.

    [20]

    郑远川. 辽宁红透山矿床下盘蚀变岩、矿石糜棱岩成因及硫化物再活化实验研究[D]. 南京: 南京大学, 2008b.

    ZHENG Yuanchuan. Experimental study on genesis of footwall altered rock, ore mylonite and sulfide reactivation in Hongtoushan Deposit in Liaoning Province[D]. Nanjing: Nanjing University, 2008b.

    [21]

    钟世华, 黄宇, 刘永乐, 等. 东昆仑志留纪—泥盆纪关键金属成矿大爆发[J]. 地质通报, 2025, 44(4): 574−586.

    ZHONG Shihua, HUANG Yu, LIU Yongle, et al. Silurian-Devonian critical metal mineralization boom of the East Kunlun Orogenic Belt[J]. Geological Bulletin of China,2025,44(4):574−586.

    [22]

    Bartholomé P, Katekesha F, Ruiz J L. Cobalt zoning in microscopic pyrite from Kamoto, Republic of the Congo (Kinshasa)[J]. Mineralium Deposita,1971,6:167−176.

    [23]

    Barton P B, Bethke P M. Chalcopyrite disease in sphalerite; pathology and epidemiology[J]. American Mineralogist,1987,72(5−6):451−467.

    [24]

    Cailteux J L H, Kampunzu A B, Lerouge C, et al. Genesis of sediment-hosted stratiform copper–cobalt deposits, central African Copperbelt[J]. Journal of African Earth Sciences,2005,42(1−5):134−158.

    [25]

    Chen Y J. Fluidization model for continental collision in special reference to study ore-forming fluid of gold deposoits in the eastern Qinling Mountains, China[J]. Progress in Natural Science-Materials International,1998,8:385−393.

    [26]

    Cook N J, Ciobanu C L. Paragenesis of Cu-Fe ores from Ocna de Fier-Dognecea (Romania), typifying fluid plume mineralization in a proximal skarn setting[J]. Mineralogical Magazine,2001,65(3):351−372.

    [27]

    Fleischer V D. Discovery, geology and genesis of copper-cobalt mineralisation at Chambishi Southeast prospect, Zambia[J]. Precambrian Research,1984,25(1−3):119−133.

    [28]

    Gu L, Zheng Y, Tang X, et al. Copper, gold and silver enrichment in ore mylonites within massive sulphide orebodies at Hongtoushan VHMS deposit, NE China[J]. Ore Geology Reviews,2007,30(1):1−29.

    [29]

    Lusty, Paul A J, Hein, et al. Formation and Occurrence of Ferromanganese Crusts: Earth’s Storehouse for Critical Metals[J]. Elements, 2018, 14(5): 313–318.

    [30]

    Marques A F A, Barriga F J A S, Scott S D. Sulfide mineralization in an ultramafic-rock hosted seafloor hydrothermal system: From serpentinization to the formation of Cu–Zn–(Co)-rich massive sulfides[J]. Marine Geology,2007,245(1−4):20−39.

    [31]

    McGowan R R, Roberts S, Foster R P, et al. Origin of the copper-cobalt deposits of the Zambian Copperbelt: An epigenetic view from Nchanga[J]. Geology,2003,31(6):497−500. doi: 10.1130/0091-7613(2003)031<0497:OOTCDO>2.0.CO;2

    [32]

    Naldrett A J. Magmatic sulfide deposits: geology, geochemistry and exploration[M]. Springer Science & Business Media, 2013.

    [33]

    Slack J F, Falck H, Kelley K D, et al. Geochemistry of host rocks in the Howards Pass district, Yukon-Northwest Territories, Canada: implications for sedimentary environments of Zn-Pb and phosphate mineralization[J]. Mineralium Deposita,2017,52:565−593.

    [34]

    Van Langendonck S, Muchez P, Dewaele S, et al. Petrographic and mineralogical study of the sediment-hosted Cu-Co ore deposit at Kambove West in the central part of the Katanga Copperbelt (DRC)[J]. Geologica Belgica,2010,45:735−763.

    [35]

    Williams-Jones A E, Vasyukova O V. Constraints on the genesis of cobalt deposits: part I. Theoretical considerations[J]. Economic Geology,2022,117(3):513−528. doi: 10.5382/econgeo.4895

    [36]

    Zhang Y, Sun F, Li B, et al. Ore textures and remobilization mechanisms of the Hongtoushan copper-zinc deposit, Liaoning, China[J]. Ore Geology Reviews,2014,57:78−86. doi: 10.1016/j.oregeorev.2013.09.006

    [37]

    Zhao F, Huang F, Chen L, et al. Nature and origin of primary ore-forming fluids in the highly metamorphosed Archean Hongtoushan VMS deposit, North China: Insights from in situ S isotopes and trace elements of sulfides[J]. Journal of Asian Earth Sciences,2024,260:105956. doi: 10.1016/j.jseaes.2023.105956

  • 加载中

(5)

(2)

计量
  • 文章访问数:  18
  • PDF下载数:  12
  • 施引文献:  0
出版历程
收稿日期:  2024-02-07
修回日期:  2025-01-07
录用日期:  2025-03-21
刊出日期:  2025-08-20

目录