Geochemical Characteristics and Genesis of the Anyi Mafic-Ultramafic Intrusion, Mouding, Yunnan Province, China
-
摘要:
与镁铁–超镁铁质岩体相关的岩浆矿床,包括硫化物和氧化物矿床,是Ni-Cu-PGE和Fe-V-Ti矿床的重要类型。峨眉山大火成岩省以发育众多此类侵入体及其相关的岩浆Ni-Cu-PGE-Fe-V-Ti矿床而闻名。云南牟定安益矿床位于峨眉山大火成岩省内带,是一个产于镁铁–超镁铁质岩体的大型钛磁铁矿铂族金属矿床,赋存有超过
3600 万t铁矿石(平均Fe2O3 为30% )、约39000 kg的铂族金属(Pt+Pd,平均品位为0.35g/t),伴生可观的V2O5和TiO2矿产。含矿岩体呈岩脉状,岩性主要为含长单辉岩和含钛磁铁矿单辉岩,约占整个岩体的80%。笔者对安益岩体开展岩相学、主微量元素和Sr-Nd同位素研究发现,安益岩体显示轻稀土元素富集、重稀土元素亏损的特征,与峨眉山高Ti玄武岩地区化学特征相近;含钛磁铁矿单辉岩和含长单辉岩的εNd(t=260 Ma) 值为 −13.2~−11.3,(87Sr/86Sr)i 值为0.708496 ~0.709269 ,具有强烈的富集特征;与峨眉山高Ti、低Ti玄武岩、橄榄岩具有相似的地幔岩浆演化序列,位于玄武岩演化系列的中基性端元。样品地球化学特征及模拟计算结果,表明安益岩体的母岩浆来源于深源地幔的部分熔融,且源区含有富集特征的地壳再循环物质;岩浆演化过程中经历了显著的单斜辉石、斜长石及Fe-Ti氧化物的分离结晶,上升侵位过程中发生了较低程度的地壳混染,最终形成具有钛磁铁矿–铂族元素矿化的镁铁–超镁铁岩体。-
关键词:
- 深源地幔部分熔融 /
- 岩石成因 /
- 钛磁铁矿型铂族矿床 /
- 安益镁铁–超镁铁岩体 /
- 云南
Abstract:Magmatic deposits associated with mafic-ultramafic intrusions, including sulfide and oxide deposits, play a crucial role in hosting Ni-Cu-PGE-Fe-V-Ti mineral resource. Numerous such intrusions within the Emeishan Large Igneous Province (ELIP) are known for their significant Ni-Cu-PGE-Fe-V-Ti minerals. The Anyi intrusion, located in the central zone of ELIP, 840 m in length and 400 m in width of the outcrop, mainly composed (~80%) of plagioclase-bearing clinopyroxenite and titanomagnetite-bearing clinopyroxenite, hosting over 364 Mt of iron ore and ~39, 000 kg of platinum group element (Pt + Pd), with average grades of ~30 wt.% Fe2O3 and 0.35 g/t PGE, along with variable amounts of V2O5 and TiO2. In this paper, we present data on the major and trace elements and Sr-Nd isotope geochemical characteristics of the Anyi intrusion. These data showing the light rare earth elements (LREE) enrichment and heavy rare earth elements (HREE) depleted, similar with the Emeishan basalts. The εNd (t=260 Ma) of titanomagnetite-bearing clinopyroxenite and plagioclase-bearing clinopyroxenite in Anyi intrusion from −13.17 to −11.30, and the value of initial (87Sr/86Sr) is between
0.708496 and0.709269 , showing an enrichment feature, which share the same magma evolution trend with the Emeishan high-Ti and low-Ti basalts and peridotites, and locating in the mafic end member of the basaltic magma evolution series. The geochemical characteristics and simulation calculations of the samples indicate that the parental magma of the Anyi intrusion comes from the partial melting of deep mantle source, with the addition of recycled crustal materials in the mantle source. The parental magma mainly experienced the fractional crystallization of clinopyroxene, plagioclase, and Fe-Ti oxides, and underwent a low degree of crustal contamination during its ascent and emplacement. -
-
图 1 峨眉山玄武岩分布图(a)、峨眉山大火成岩省内带区域地质简图和基性–超基性岩体出露特征(b)(据Song et al., 2009修改)
Figure 1.
图 2 安益矿区矿床地质图(a)和0–0,剖面图(b)(据杨宗良等,2013修改)
Figure 2.
表 1 安益镁铁–超镁铁质岩体全岩主量(%)和微量元素(10–6)分析结果统计表
Table 1. Whole rock major (%) and trace element (10–6) compositions of the Anyi mafic-ultramafic intrusion
编号 ZK1101-3 ZK1101-9 ZK1101-10 ZK1101-11 ZK1101-12 ZK1101-13 ZK1101-14 ZK1101-15 ZK1101-20 ZK1101-23 ZK1101-26 ZK1101-39 ZK1101-41 岩性 含钛磁铁矿单辉岩 含长单辉岩 SiO2 40.21 41.24 41.37 41.39 41.96 41.73 41.84 42.33 45.01 45.71 45.36 45.67 45.58 TiO2 4.47 4.29 4.23 4.18 4.12 4.08 3.98 3.84 2.88 2.57 2.83 2.54 2.48 Al2O3 6.14 5.92 6.08 6.28 6.22 6.03 6.12 6.11 6.22 6.32 6.14 6.18 6.15 TFe2O3 21.32 20.39 19.88 19.92 19.57 19.45 19.13 18.54 14.52 13.49 14.24 13.51 12.68 MnO 0.18 0.18 0.16 0.18 0.18 0.18 0.17 0.17 0.16 0.16 0.17 0.18 0.17 MgO 10.17 10.44 10.48 10.34 10.47 10.56 10.68 10.72 11.65 11.93 11.94 12.14 12.41 CaO 14.02 14.18 14.34 13.87 14.29 14.52 14.55 14.61 14.78 15.31 15.35 14.84 15.28 Na2O 1.18 1.18 1.27 1.24 1.21 1.32 1.29 1.29 1.35 1.41 1.44 1.39 1.42 K2O 1.31 1.42 1.41 1.35 1.33 1.37 1.39 1.26 1.39 1.41 1.38 1.31 1.09 P2O5 0.14 0.16 0.14 0.11 0.15 0.15 0.17 0.16 0.18 0.17 0.19 0.17 0.18 LOI 0.59 0.65 0.53 0.35 0.68 0.5 0.45 0.53 0.91 1 0.93 1.52 1.68 Total 99.73 100.04 99.89 99.21 100.2 99.9 99.78 99.56 99.05 99.48 99.97 99.45 99.12 Sc 58.06 58.15 56.28 59.28 54.61 57.9 43.43 52.93 60.03 52.73 38.48 58.68 64.61 V 1307 1299 1181 1290 1130 1224 1198 1183 759.6 735.9 508.8 682 623.8 Co 179.3 175.6 119.9 127.3 108.7 161.7 166.1 123.1 92.31 163.3 62.64 122.7 92.54 Ni 348.4 342 311.7 333.9 279.7 312.4 315.7 304.1 227.8 250.8 157.6 238.3 232.5 Cu 437.85 607.18 398.16 416.29 338.73 378.42 367.36 335.3 322.98 256.2 164.64 171.64 133.77 Zn 145.15 136.83 127.13 153.46 134.98 141.91 143.22 144.45 98.87 109.88 69.11 110.11 99.1 Ga 20.02 19.65 18.87 19.3 17.29 19.26 19.02 18.74 15.18 16.21 10.3 15.83 15.38 Rb 35.19 36.25 34.29 35.66 30.68 34.18 34.31 33.15 34.37 39.09 24.41 37.64 33.56 Sr 397.44 300.56 349.72 393.28 402.4 393.76 393.08 436.8 415.6 503.6 258.12 310.04 250.92 Y 16.16 15.81 14.82 15.23 14.24 16.22 15.8 16.25 15.48 17.32 10.46 16.79 17.8 Zr 114.59 121.91 113.23 77.64 98.59 114.45 82.82 84.05 76.91 113.91 56.77 113.5 123.23 Nb 36.23 37.54 34.94 33.84 30.52 34.69 34.09 35 32.17 35.52 25.83 36.77 39.71 Mo 1.11 1.19 1.11 0.97 0.86 1.29 1.18 1.26 1.03 1.53 0.54 1.42 2.15 Sn 2.85 2.42 2.21 2.2 1.98 2.39 2.17 2.14 1.88 2.12 1.39 3.12 1.98 Ba 575.1 651.4 532.4 606.2 576.6 542.4 570.6 496.8 592.2 733 353 440.1 561.6 La 39.52 41.2 36.93 35.74 35.02 39.49 38.86 39.82 40.22 43.76 27.79 42 46.28 Ce 91.6 94.24 85.2 64.06 61.72 92 69.11 92.56 92.64 99.12 48.5 97.2 106.32 Pr 10.78 11.06 10.05 10.19 9.76 11.01 10.96 11.09 11.06 11.83 7.54 11.66 12.52 Nd 43.88 44.4 40.84 41.66 39.64 44.48 44.24 45.15 44.84 48.23 30.82 46.92 49.8 Sm 7.79 7.72 7.02 7.35 7.05 7.78 7.61 7.97 7.73 8.35 5.46 8.08 8.58 Eu 2.16 2.09 1.99 2.13 2.06 2.19 2.18 2.21 2.22 2.49 1.48 2.28 2.31 Gd 6.66 6.67 6.08 6.37 6.03 6.91 6.64 6.88 6.76 7.11 4.62 7.06 7.53 Tb 0.85 0.83 0.76 0.8 0.75 0.85 0.81 0.85 0.86 0.88 0.58 0.87 0.91 Dy 3.76 3.76 3.39 3.59 3.42 3.81 3.83 3.84 3.68 3.99 2.5 3.93 4.12 Ho 0.64 0.66 0.58 0.62 0.58 0.66 0.65 0.68 0.65 0.68 0.42 0.68 0.7 Er 1.67 1.64 1.55 1.67 1.56 1.72 1.66 1.71 1.71 1.78 1.14 1.76 1.82 Tm 0.2 0.2 0.2 0.2 0.18 0.2 0.2 0.2 0.2 0.23 0.14 0.21 0.24 Yb 1.25 1.31 1.13 1.23 1.17 1.3 1.26 1.28 1.27 1.28 0.83 1.31 1.39 Lu 0.19 0.19 0.16 0.18 0.17 0.18 0.17 0.18 0.19 0.19 0.12 0.19 0.2 Hf 6.07 6.31 5.72 5.62 5.3 6.17 5.74 5.78 5.47 5.87 4.06 5.88 6.26 Ta 2.75 2.92 2.63 2.58 2.39 2.63 2.57 2.61 2.39 2.55 1.95 2.7 2.79 Tl 0.12 0.13 0.11 0.14 0.1 0.11 0.11 0.11 0.09 0.09 0.06 0.11 0.08 Pb 4.72 4.57 5.4 3.61 5.07 6.21 5.75 5.26 6.33 8.28 5.24 6.7 4.58 Th 6.92 8.38 7.15 5.2 6.11 7.03 6.41 5.76 6 6.06 4.17 6.97 7.9 U 1.08 1.28 1.11 0.8 0.91 1.13 1.19 0.94 1.03 1.14 0.73 1.25 1.39 续表1 编号 ZK1101-106 ZK1101-114 ZK1101-117 ZK1101-121 ZK1101-126 ZK1101-129 ZK1101-133 ZK1101-135 ZK1101-136 ZK1101-139 ZK1101-141 岩性 含长单辉岩 SiO2 48.06 43.92 45.22 45.77 44.28 45.73 47.29 47.75 45.77 48.21 48.73 TiO2 1.81 3.48 2.89 2.58 2.82 2.54 2.29 2.22 2.42 1.84 1.55 Al2O3 5.95 6.34 5.49 5.24 5.3 5.54 5.87 5.98 5.76 6.21 6.94 TFe2O3 10.59 15.4 13.97 13.33 14.28 13.45 11.91 11 11.89 10.67 8.75 MnO 0.14 0.18 0.17 0.16 0.17 0.17 0.17 0.16 0.15 0.15 0.13 MgO 13.76 10.67 12.38 13.22 13.08 12.88 12.96 12.7 12.81 12.86 12.41 CaO 14.52 15.05 15.56 15.84 15.84 15.69 15.17 15.54 16.21 14.71 14.73 Na2O 0.96 1.49 1.16 0.96 1.09 1.17 1.17 1.51 1.29 1.56 1.55 K2O 2.17 1.36 0.94 0.95 1.12 1.2 1.55 1.29 1.26 1.48 2.31 P2O5 0.18 0.16 0.16 0.14 0.15 0.11 0.18 0.17 0.22 0.2 0.24 LOI 1.38 1.12 1.51 1.48 1.19 0.89 1.12 0.99 1.67 1.45 1.74 Total 99.52 99.17 99.45 99.67 99.32 99.37 99.68 99.31 99.45 99.34 99.08 Sc 54.5 72.39 54.66 44.89 70.09 49.48 69.47 71.82 55.91 67.46 51.31 V 406.7 995.5 773.2 690.1 777.7 686.1 601.5 665.1 718.4 480.8 203 Co 117.8 101.7 102.5 103 97.85 98.45 102.5 152.7 101.7 90.61 62.62 Ni 261.9 235.6 242.5 248.4 269 265.3 251.8 246.3 262.8 240 157.1 Cu 71.47 342.16 232.26 188.23 245.42 180.67 124.6 176.47 183.19 35.34 21.23 Zn 87.86 116.27 115.73 100.02 189.27 112.11 96.1 87.7 106.88 78.77 54.19 Ga 12.96 18.45 14.94 13.45 15.29 14.54 14.1 14.06 14.49 14.37 10.45 Rb 53.73 35.61 28.09 26.95 34.78 31.6 42.04 37.86 36.42 48.24 45.97 Sr 370.4 529.6 274.88 255 227.6 346.52 303.04 382.04 379.2 319.04 398.52 Y 14.97 18.2 15.09 14.23 15.69 14.89 17.28 16.73 16.53 19.3 14.46 Zr 85.55 126.09 97.64 67.5 102.95 76.23 121.05 117.64 80.27 193.36 69.86 Nb 40.85 42.92 30.98 26.97 33.07 32.26 37.38 39.17 36.17 50.56 29.93 Mo 1.62 1.37 1.33 0.93 1.28 1.37 1.49 1.3 1.31 2.05 0.93 Sn 1.55 2.4 2.02 1.58 1.91 1.8 1.61 2.05 2.27 2.05 1.32 Ba 932.3 621.6 457.8 472.5 631.3 502.3 826.7 572.8 607.6 676.8 1320 La 43.31 45.16 38.04 33.72 38.45 35.8 44.63 43.97 44.64 57.14 42.3 Ce 97.6 105.28 67.34 60.18 88.96 63.34 101.28 99.2 101.04 187.76 93.36 Pr 11.2 12.73 10.51 9.52 10.78 9.92 12.07 11.6 11.93 14.29 10.87 Nd 44.01 51.73 43.3 39 43.59 40.44 48.74 46.57 47.79 54.92 43.19 Sm 7.4 8.98 7.51 6.81 7.88 7.07 8.21 7.89 8.23 9.24 7.02 Eu 2.11 2.58 2.06 1.95 2.13 2.02 2.36 2.26 2.3 2.42 2.1 Gd 6.49 7.87 6.62 6.28 6.6 6.14 7.34 6.97 7.1 7.53 5.99 Tb 0.75 0.96 0.81 0.72 0.84 0.75 0.87 0.84 0.87 0.94 0.73 Dy 3.45 4.41 3.58 3.38 3.71 3.5 4.01 3.82 3.76 4.4 3.32 Ho 0.58 0.74 0.62 0.59 0.63 0.62 0.7 0.67 0.65 0.76 0.57 Er 1.65 1.89 1.59 1.47 1.63 1.6 1.75 1.69 1.69 1.93 1.48 Tm 0.19 0.24 0.19 0.18 0.2 0.2 0.21 0.2 0.21 0.23 0.17 Yb 1.17 1.43 1.26 1.13 1.2 1.21 1.38 1.29 1.27 1.46 1.13 Lu 0.18 0.2 0.17 0.17 0.17 0.18 0.2 0.19 0.18 0.21 0.16 Hf 5.12 6.76 5.3 4.74 5.65 5.24 6.02 5.93 5.19 7.15 4.54 Ta 2.82 3.2 2.33 2.02 2.68 2.39 2.65 2.8 2.55 3.59 2.01 Tl 0.13 0.11 0.13 0.1 0.12 0.09 0.11 0.11 0.1 0.14 0.1 Pb 5.44 9.92 8.72 5.48 8.91 6.38 4.92 11.11 9.5 9.76 5.92 Th 8.04 7.59 6.08 5.55 7.1 5.98 7.78 7.9 6.33 10.16 5.65 U 1.33 1.34 1.1 1.08 1.17 1.1 1.41 1.38 1.14 1.89 1.02 续表1 编号 ZK0001-81 ZK0001-82 ZK0001-85 ZK0001-88 ZK0001-89 ZK0001-90 ZK0001-92 ZK0001-93 ZK0001-94 ZK0001-95 ZK0001-96 岩性 含钛磁铁矿单辉岩 SiO2 40.5 40.8 40.98 41.63 41.77 42.22 42.5 43.1 43.37 44.09 44.85 TiO2 4.26 4.21 4.08 3.83 3.62 3.71 3.43 3.26 3.28 2.97 2.69 Al2O3 5.3 5.32 5.3 5.38 5.56 5.05 5.02 4.93 5.24 5.28 5.06 TFe2O3 20.75 20.62 19.72 18.55 17.86 18.46 17.08 16.67 15.49 14.4 13.93 MnO 0.16 0.16 0.18 0.16 0.16 0.16 0.17 0.18 0.16 0.16 0.15 MgO 11.22 11.27 11.38 11.67 11.68 11.79 11.94 11.86 12.51 12.59 12.79 CaO 14.85 14.59 15.05 15.45 15.62 15.79 16.22 16.55 15.93 16.26 16.6 Na2O 0.95 0.95 0.88 0.87 0.9 0.87 0.87 0.87 0.78 0.95 0.97 K2O 0.95 0.97 1.14 1.14 1.09 0.97 0.92 0.92 1.35 1.42 1 P2O5 0.12 0.11 0.13 0.29 0.53 0.09 0.2 0.23 0.27 0.21 0.12 LOI 0.36 0.47 0.53 0.69 0.7 0.43 1.36 0.66 0.73 0.88 1.42 Total 99.42 99.47 99.37 99.66 99.49 99.54 99.71 99.23 99.11 99.21 99.58 Sc 64.87 70.16 70.98 62.49 66.95 53.33 64.25 74.26 67.04 72.04 66.52 V 1351 1375 1319 1178 1096 1175 1078 1071 959.7 891.8 792.8 Co 139.4 188.1 137.6 131.2 123.8 128.4 125.3 121.5 111.7 106.4 102.3 Ni 382.6 394.4 376.3 336.8 324.3 363.8 321.4 311.7 282.1 280.2 260.6 Cu 473.41 470.61 404.53 244.86 241.08 303.24 289.17 242.41 203.84 187.11 204.33 Zn 150.23 151.54 185.8 129.44 128.36 130.13 128.51 120.27 122.05 104.57 97.41 Ga 18.9 19.67 19.15 18.32 18.13 17.9 17.34 17.38 15.44 15.71 15.21 Rb 24.86 27 31.63 31.12 29.5 26 25.18 26.72 38.21 39.18 27.07 Sr 306.92 295.56 421.2 352.72 371 289.16 342.44 305.56 297.6 330.32 261.92 Y 14.24 14.52 15.48 17.35 19.92 14.78 15.91 16.79 15.56 16.09 15.31 Zr 69.23 72.86 77.18 77 71.32 76 70.73 75.05 63.05 71.41 78.27 Nb 26.97 27.7 29.33 29.4 27.41 27.54 26.9 27 27.73 27.52 28.2 Mo 0.9 0.96 1.17 1.13 0.98 1.03 1.02 1.01 0.72 0.95 1.13 Sn 2.13 2.19 2.18 2.06 2.22 2.08 2.01 2.92 1.73 1.95 1.99 Ba 322.5 405 491.2 672.8 578 324.6 441.1 333.7 1636 757.1 364.3 La 30.93 30.59 33.03 42.71 52.71 30.34 32.74 38.43 34.74 37.25 33.17 Ce 56.18 55.92 60.51 99.44 154.32 55.83 61.04 69.63 65.06 68.32 60.06 Pr 9.12 9.03 9.78 12.21 14.99 8.98 10.13 11.17 10.57 10.99 9.58 Nd 37.88 37.54 40.63 49.74 61.23 38.02 42.94 46.59 44.88 45.59 39.86 Sm 6.83 6.83 7.31 8.59 10.25 6.96 7.73 8.37 7.82 8.22 7.19 Eu 1.87 1.95 2.04 2.26 2.71 1.94 2.15 2.4 2.22 2.22 1.95 Gd 5.93 6.08 6.48 7.28 8.64 6.21 6.78 7.27 7 7.08 6.25 Tb 0.73 0.73 0.81 0.91 1.06 0.76 0.82 0.87 0.84 0.86 0.78 Dy 3.34 3.37 3.59 4.05 4.6 3.58 3.73 3.89 3.66 3.92 3.55 Ho 0.56 0.58 0.64 0.69 0.78 0.61 0.66 0.68 0.64 0.66 0.62 Er 1.43 1.45 1.59 1.75 1.98 1.5 1.62 1.69 1.62 1.61 1.49 Tm 0.18 0.17 0.19 0.19 0.24 0.19 0.2 0.19 0.2 0.2 0.19 Yb 1.09 1.08 1.24 1.27 1.39 1.18 1.15 1.23 1.17 1.26 1.14 Lu 0.17 0.16 0.17 0.19 0.21 0.17 0.18 0.18 0.17 0.17 0.18 Hf 5.11 5.16 5.51 5.4 5.16 5.48 5.31 5.6 4.8 5.22 5.64 Ta 2.09 2.12 2.19 2.19 1.99 2.07 2.08 2.14 2.04 2.1 2.28 Tl 0.06 0.06 0.09 0.07 0.07 0.08 0.09 0.11 0.11 0.15 0.07 Pb 12.25 8.03 9.76 5.86 6.74 4.41 3.95 4.1 2.25 3.11 8.24 Th 4.82 5.25 5.4 6.29 5.46 5.42 4.64 5.75 4.03 5.34 6.48 U 0.75 0.83 0.89 1.01 0.9 0.87 0.83 1.07 0.72 0.97 1.16 表 2 安益镁铁–超镁铁质岩体全岩Nd-Sr同位素分析结果统计表
Table 2. Whole rock Nd-Sr concentrations and isotopes of the Anyi mafic–ultramafic intrusion
样品 岩性 Rb Sr (87Sr/86Sr) ±2σ (87Sr/86Sr)i Sm Nd 143Nd/144Nd ±2σ (143Nd/144Nd)i εNd(t) (10–6) (10–6) (10–6) (10–6) ZK1101-3 含钛磁铁矿
单辉岩35.19 397.44 0.709943 0.000006 0.708995 7.79 43.88 0.512148 0.000008 0.511964 −13.15 ZK1101-9 36.25 300.56 0.709946 0.000005 0.708654 7.72 44.4 0.512143 0.000009 0.511963 −13.17 ZK1101-10 34.29 349.72 0.709521 0.000005 0.708471 7.02 40.84 0.512195 0.000007 0.512017 −12.12 ZK1101-11 35.66 393.28 0.709409 0.000005 0.708438 7.35 41.66 0.512207 0.000006 0.512024 −11.97 ZK1101-12 30.68 402.4 0.709373 0.000005 0.708556 7.05 39.64 0.512203 0.000007 0.512019 −12.08 ZK1101-13 34.18 393.76 0.709333 0.000004 0.708403 7.78 44.48 0.512203 0.000007 0.512022 −12.02 ZK1101-14 34.31 393.08 0.709345 0.000006 0.70841 7.61 44.24 0.512195 0.000006 0.512017 −12.12 ZK1101-15 33.15 436.8 0.709176 0.000005 0.708363 7.97 45.15 0.512201 0.000007 0.512018 −12.09 ZK1101-20 34.37 415.6 0.710548 0.000005 0.709662 7.73 44.84 0.512198 0.000006 0.512019 −12.07 ZK1101-23 39.09 503.6 0.709754 0.000005 0.708923 8.35 48.23 0.512194 0.000007 0.512015 −12.16 ZK1101-26 24.41 258.12 0.709815 0.000004 0.708802 5.46 30.82 0.512199 0.000006 0.512016 −12.14 ZK1101-39 含长单辉岩 37.64 310.04 0.709923 0.000006 0.708623 8.08 46.92 0.512203 0.000007 0.512025 −11.97 ZK1101-41 33.56 250.92 0.710217 0.000005 0.708785 8.58 49.8 0.512201 0.000009 0.512023 −12.01 ZK1101-106 53.73 370.4 0.710541 0.000006 0.708987 7.4 44.01 0.512233 0.000009 0.512059 −11.3 ZK1101-114 35.61 529.6 0.709989 0.000004 0.709269 8.98 51.73 0.512201 0.000006 0.512021 −12.03 ZK1101-117 28.09 274.88 0.710103 0.000006 0.709009 7.51 43.3 0.512205 0.000007 0.512025 −11.95 ZK1101-121 26.95 255 0.710014 0.000006 0.708882 6.81 39 0.512208 0.000007 0.512027 −11.92 ZK1101-126 34.78 227.6 0.710582 0.000006 0.708945 7.88 43.59 0.512204 0.000006 0.512017 −12.12 ZK1101-129 31.6 346.52 0.709629 0.000005 0.708652 7.07 40.44 0.512195 0.000007 0.512014 −12.17 ZK1101-133 42.04 303.04 0.710153 0.000005 0.708667 8.21 48.74 0.512193 0.000006 0.512019 −12.08 ZK1101-135 37.86 382.04 0.709557 0.000005 0.708496 7.89 46.57 0.512193 0.000006 0.512017 −12.11 ZK1101-136 36.42 379.2 0.709576 0.000005 0.708547 8.23 47.79 0.512203 0.000007 0.512025 −11.97 ZK1101-139 48.24 319.04 0.710638 0.000006 0.709019 9.24 54.92 0.512183 0.000007 0.512009 −12.27 ZK1101-141 45.97 398.52 0.710166 0.000006 0.708931 7.02 43.19 0.512186 0.000006 0.512018 −12.1 ZK0001-81 含钛磁铁矿
单辉岩24.86 306.92 0.709166 0.000006 0.708298 6.83 37.88 0.512202 0.000009 0.512015 −12.15 ZK0001-82 27 295.56 0.709251 0.000006 0.708273 6.83 37.54 0.512196 0.000007 0.512008 −12.3 ZK0001-85 31.63 421.2 0.710638 0.000005 0.709834 7.31 40.63 0.512198 0.000008 0.512012 −12.22 ZK0001-88 31.12 352.72 0.709537 0.000006 0.708592 8.59 49.74 0.512194 0.000007 0.512015 −12.15 ZK0001-89 29.5 371 0.709195 0.000005 0.708343 10.25 61.23 0.51219 0.000006 0.512017 −12.12 ZK0001-90 26 289.16 0.709582 0.000006 0.708619 6.96 38.02 0.512206 0.000008 0.512016 −12.12 ZK0001-92 25.18 342.44 0.709581 0.000005 0.708793 7.73 42.94 0.512199 0.000007 0.512013 −12.2 ZK0001-93 26.72 305.56 0.709855 0.000006 0.708918 8.37 46.59 0.512194 0.000007 0.512008 −12.29 ZK0001-94 38.21 297.6 0.710275 0.000007 0.7089 7.82 44.88 0.512187 0.000006 0.512007 −12.32 ZK001-95 39.18 330.32 0.710408 0.000007 0.709138 8.22 45.59 0.512173 0.000007 0.511986 −12.71 ZK0001-96 27.07 261.92 0.709224 0.000007 0.708117 7.19 39.86 0.512206 0.000007 0.512019 −12.07 注:(87Sr/86Sr)i 和 εNd 的计算采用现今球粒陨石值:143Nd/144Nd = 0.512638 ,147Sm/144Nd =0.1967 ,87Sr/86Sr =0.7045 ,87Rb/86Sr =0.0816 ,λ (87Rb) = 1.42×10−11 y−1,λ (147Sm) = 6.54×10−12 y−1,87Sr/86Sr =0.7045, 87Rb/86Sr =0.0816, λ (87Rb) = 1.42×10−11 y−1,λ (147Sm) = 6.54×10−12 y−1。 -
[1] 柏中杰, 钟宏, 朱维光 . 峨眉山大火成岩省钒钛磁铁矿矿床成因研究进展[J]. 矿物岩石地球化学通报,2024 ,43 (3 ):292 −305 .BAI Zhongjie, ZHONG Hong, ZHU Weiguang . Progresses of studies on the genesis of Fe-Ti oxide deposits in the Emeishan Large Igneous Province[J]. Bulletin of Mineralogy, Petrology and Geochemistry,2024 ,43 (3 ):292 −305 .[2] 邓尚贤. 滇中苍山群和苴林群的变质作用演化与地球化学研究[D]. 广州: 中国科学院广州地球化学研究所, 2000. DENG Shangxian. The Evolution of Metamorphism and Geochemistry for the Cangshan and Julin Groups in Central Yunnan, China[D]. Guangzhou: Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 2000. [3] 高晓峰, 隋清霖, 尤敏鑫, 等. 造山带岩浆铜镍硫化物矿床深部动力学机制探讨[J]. 西北地质, 2025, 58(3): 206−220. GAO Xiaofeng, SUI Qinglin, YOU Minxin, et al. Study on Dynamic Mechanism of Magmatic Copper-Nickel Sulfide Deposits in Orogenic Belts[J]. Northwestern Geology, 2025, 58(3): 206−220. [4] 郭锐. 云南牟定县戌街地区黄草坝岩体地球化学特征与成岩时代[D]. 成都: 成都理工大学, 2020. GUO Rui. Geochemical Characteristics and Petrogenic Age of Huangcaoba Intrusion in Xujie Area, Muding County, Yunnan Province[D]. Chengdu: Chengdu University of Technology, 2020. [5] 姜寒冰, 姜常义, 钱壮志, 等 . 云南峨眉山高钛和低钛玄武岩的岩石成因[J]. 岩石学报,2009 ,25 (5 ):1117 −1134 .JIANG Hanbing, JIANG Changyi, QIAN Zhuangzhi, et al . Petrogenesis of high-Ti and low-Ti basalts in Emeishan, Yunnan, China[J]. Acta Petrologica Sinica,2009 ,25 (5 ):1117 −1134 .[6] 梁有彬, 李艺 . 中国铂族元素矿床类型和地质特征[J]. 矿产与地质,1997 ,17 (3 ):2 −8 .LIANG Youbin, LI Yi . Types and geological characteristics of platinum group element deposits in China[J]. Mineral Resources and Geology,1997 ,17 (3 ):2 −8 .[7] 孙力. 扬子陆块西南缘中-新元古代沉积盆地构造演化及其地质意义[D]. 武汉: 中国地质大学(武汉), 2022. SUN Li. Tectonic Evolution of the Meso-Neoproterozoic Sedimentary Basins and Its Geological Significance on the Southwestern Margin of the Yangtze Block[D]. Wuhan: China University of Geosciences, 2022. [8] 唐冬梅, 秦克章, 刘秉光, 等 . 铂族元素矿床的主要类型、成矿作用及研究展望[J]. 岩石学报,2008 ,24 (3 ):569 −588 .TANG Dongmei, QIN Kezhang, LIU Bingguang, et al . The major types, metallogenesis of platinum-group element deposits and some prospects[J]. Acta Petrologica Sinica,2008 ,24 (3 ):569 −588 .[9] doi: 10.3969/j.issn.1009-1742.2002.06.003汤中立 . 中国的小岩体岩浆矿床[J]. 中国工程科学,2002 ,4 (6 ):9 −12 . doi: 10.3969/j.issn.1009-1742.2002.06.003TANG Zhongli . Magmatic Ore Deposits in Small Rockbody in China[J]. Strategic Study of CAE,2002 ,4 (6 ):9 −12 .[10] doi: 10.3969/j.issn.1009-1742.2015.02.002汤中立, 焦建刚, 闫海卿, 等 . 小岩体成(大)矿理论体系[J]. 中国工程科学,2015 ,17 (2 ):4 −18 . doi: 10.3969/j.issn.1009-1742.2015.02.002TANG Zhongli, JIAO Jiangang, YAN Haiqing, et al . Theoretical system for(large) deposit formed by smaller intrusion[J]. Strategic Study of CAE,2015 ,17 (2 ):4 −18 .[11] 汪刚. 云南牟定地区混合岩特征及铀成矿作用[D]. 成都: 成都理工大学, 2016. WANG Gang. Characteristics and Uranium of Migmatite Rocks in the Mouding Area in Yunnan Province[D]. Chengdu: Chengdu University of Technology, 2016. [12] doi: 10.1360/TB-2020-0202王焰, 钟宏, 曹勇华, 等 . 我国铂族元素、钴和铬主要矿床类型的分布特征及成矿机制[J]. 科学通报,2020 ,65 (33 ):3825 −3838 . doi: 10.1360/TB-2020-0202WANG Yan, ZHONG Hong, CAO Yonghua, et al . Genetic classification, distribution and ore genesis of major PGE, Co and Cr deposits in China: A critical review[J]. Chinese Science Bulletin,2020 ,65 (33 ):3825 −3838 .[13] 杨宗良, 张正清, 李石英, 等 . 牟定安益地区超贫磁铁矿产出特征[J]. 地球学报,2013 ,34 (1 ):122 −126 .YANG Zongliang, ZHANG Zhengqing, LI Shiying, et al . Characteristics of ultra-poor magnetite ore in Mouding Anyi area[J]. Acta Geoscientica Sinica,2013 ,34 (1 ):122 −126 .[14] 殷顺媛, 张爱萍, 黄锦辉, 等 . 云南牟定安益铂钯钛磁铁矿床铂族矿物特征及成因初探[J]. 矿床地质,2024 ,43 (2 ):415 −428 .YIN Shunyuan, ZHANG Aiping, HUANG Jinhui, et al . Characteristics of platinum group minerals of Anyi Fe-PGE deposit and its genesis, Yunnan, China[J]. Mineral Deposits,2024 ,43 (2 ):415 −428 .[15] 云南省有色地质局楚雄勘查院. 云南省牟定县大板田-象鼻山(安益)贫铁、铂钯矿详查报告[R].2012, 1−107. [16] doi: 10.3321/j.issn:0001-5717.2004.02.005张招崇, 王福生, 郝艳丽, 等 . 峨眉山大火成岩省中苦橄岩与其共生岩石的地球化学特征及其对源区的约束[J]. 地质学报,2004 ,78 (2 ):171 −180 . doi: 10.3321/j.issn:0001-5717.2004.02.005ZHANG Zhaochong, WANG Fusheng, HAO Yanli, et al . Geochemistry of the Picrites and Associated Basalts from the Emeishan Large Igneous Basalt Province and Constraints on Their Source Region[J]. Acta Geologica Sinica,2004 ,78 (2 ):171 −180 .[17] 张照伟, 钱兵, 王亚磊, 等 . 中国西北地区岩浆铜镍矿床地质特点与找矿潜力[J]. 西北地质,2021 ,54 (1 ):82 −99 .ZHANG Zhaowei, QIAN Bing, WANG Yalei, et al . Geological Characteristics and Prospecting Potential of Magmatic Ni-Cu Sulfide Deposits in Northwest China[J]. Northwestern Geology,2021 ,54 (1 ):82 −99 .[18] doi: 10.1016/0016-7037(89)90286-XAnders E, Grevesse N . Abundances of the elements: Meteoritic and solar[J]. Geochimica et Cosmochimica Acta,1989 ,53 (1 ):197 −214 .[19] doi: 10.1016/j.jseaes.2011.07.020Anh T V, Pang K N, Chung S L, et al . The Song Da magmatic suite revisited: a petrologic, geochemical and Sr–Nd isotopic study on picrites, flood basalts and silicic volcanic rocks[J]. Journal of Asian Earth Sciences,2011 ,42 (6 ):1341 −1355 .[20] doi: 10.1093/petroj/38.10.1359Baker J A, Menzies M A, Thirlwall M F, et al . Petrogenesis of Quaternary intraplate volcanism, Sana'a, Yemen: implications for plume-lithosphere interaction and polybaric melt hybridization[J]. Journal of Petrology,1997 ,38 (10 ):1359 −1390 .[21] doi: 10.1016/S0040-1951(97)00186-8Chen J F, Jahn B M . Crustal evolution of southeastern China: Nd and Sr isotopic evidence[J]. Tectonophysics,1998 ,284 (1–2 ):101 −133 .[22] doi: 10.1093/petrology/19.3.463Frey F A, Green D H, Roy S D . Integrated models of basalt petrogenesis: a study of quartz tholeiites to olivine melilitites from south eastern Australia utilizing geochemical and experimental petrological data[J]. Journal of Petrology,1978 ,19 (3 ):463 −513 .[23] doi: 10.1016/S0016-7037(99)00153-2Gao S, Ling W L, Qiu Y M, et al . Contrasting geochemical and Sm-Nd isotopic compositions of Archean metasediments from the Kongling high-grade terrain of the Yangtze craton: Evidence for cratonic evolution and redistribution of REE during crustal anatexis[J]. Geochimica et Cosmochimica Acta,1999 ,63 (13-14 ):2071 −2088 .[24] doi: 10.1130/0091-7613(1975)3<15:GOAPMA>2.0.CO;2Green D H . Genesis of Archean peridotitic magmas and constraints on Archean geothermal gradients and tectonics[J]. Geology,1975 ,3 (1 ):15 −18 .[25] Hastie A R, Mitchell S F, Treloar P J, et al . Geochemical components in a Cretaceous island arc: the Th/La–(Ce/Ce*) Nd diagram and implications for subduction initiation in the inter-American region[J]. Lithos,2013 ,162 :57 −69 .[26] Hess P C. Phase equilibria constraints on the origin of ocean floor basalts. In: Morgan J P, Blackman D K, Sinton J M (eds). Mantle flow and Melt Generation at Mid-Ocean Ridges[M]. Geophysical Monograph, American Geophysical Union, 1992, 71: 67−102. [27] doi: 10.1016/j.oregeorev.2011.07.005Hou T, Zhang Z C, Kusky T, et al . A reappraisal of the high-Ti and low-Ti classification of basalts and petrogenetic linkage between basalts and mafic–ultramafic intrusions in the Emeishan Large Igneous Province, SW China[J]. Ore Geology Reviews,2011 ,41 (1 ):133 −143 .[28] Li C, Ripley E M, Tao Y, et al . The significance of PGE variations with Sr–Nd isotopes and lithophile elements in the Emeishan flood basalt province from SW China to northern Vietnam[J]. Lithos,2016 ,248 :1 −11 .[29] doi: 10.1016/j.lithos.2010.06.002Li J, Xu J F, Suzuki K, et al . Os, Nd and Sr isotope and trace element geochemistry of the Muli picrites: insights into the mantle source of the Emeishan Large Igneous Province[J]. Lithos,2010 ,119 (1-2 ):108 −122 .[30] doi: 10.1016/j.chemgeo.2021.120636Liu X, Qiu N, Søager N, et al . Geochemistry of Late Permian basalts from boreholes in the Sichuan Basin, SW China: Implications for an extension of the Emeishan large igneous province[J]. Chemical Geology,2022 ,588 :120636 .[31] doi: 10.1016/S0301-9268(00)00069-3Ma C Q, Ehlers C, Xu C H, Li Z C, Yang K G . The roots of the Dabieshan ultrahigh-pressure metamorphic terrane: constraints from geochemistry and Nd–Sr isotope systematics[J]. Precambrian Research,2000 ,102 (3-4 ):279 −301 .[32] doi: 10.1093/petrology/42.5.877Macdonald R, Rogers N W, Fitton J G, et al . Plume–lithosphere interactions in the generation of the basalts of the Kenya Rift, East Africa[J]. Journal of Petrology,2001 ,42 (5 ):877 −900 .[33] doi: 10.1016/j.jseaes.2022.105477Meng F, Tian Y, Kerr A C, et al . Geochemistry and petrogenesis of Late Permian basalts from the Sichuan Basin, SW China: Implications for the geodynamics of the Emeishan mantle plume[J]. Journal of Asian Earth Sciences,2023 ,241 :105477 .[34] Naldrett A J . Fundamentals of magmatic sulfide deposits[J]. Economic Geology,2011 ,17 :1 −50 .[35] Palme H, O’Neill H S C . Cosmochemical estimates of mantle composition[J]. Treatise on Geochemistry (Second Edition),2014 ,3 :1 −38 .[36] doi: 10.1016/j.lithos.2007.06.016Pearce J A . Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust[J]. Lithos,2008 ,100 (1–4 ):14 −48 .[37] doi: 10.1016/j.chemgeo.2007.11.004Qi L, Zhou M F . Platinum-group elemental and Sr–Nd–Os isotopic geochemistry of Permian Emeishan flood basalts in Guizhou Province, SW China[J]. Chemical Geology,2008 ,248 (1-2 ):83 −103 .[38] doi: 10.1016/j.gca.2017.01.054Ren Z Y, Wu Y D, Zhang L, et al . Primary magmas and mantle sources of Emeishan basalts constrained from major element, trace element and Pb isotope compositions of olivine-hosted melt inclusions[J]. Geochimica et Cosmochimica Acta,2017 ,208 :63 −85 .[39] Shellnutt J G, Jahn B M. Origin of Late Permian Emeishan basaltic rocks from the Panxi region (SW China): Implications for the Ti-classification and spatial–compositional distribution of the Emeishan flood basalts [J] Journal of Volcanology and Geothermal Research, 2011, 199( 1–2): 85-95. [40] doi: 10.1016/j.chemgeo.2008.04.005Song X Y, Zhou M F, Tao Y, et al . Controls on the metal compositions of magmatic sulfide deposits in the Emeishan large igneous province, SW China[J]. Chemical Geology,2008 ,253 (1–2 ):38 −49 .[41] doi: 10.1016/j.chemgeo.2009.01.021Song X Y, Keays R R, Xiao L, et al . Platinum-group element geochemistry of the continental flood basalts in the central Emeisihan Large Igneous Province, SW China[J]. Chemical Geology,2009 ,262 (3–4 ):246 −261 .[42] doi: 10.1002/ggge.20068Song X Y, Qi H W, Hu R Z, et al . Formation of thick stratiform Fe‐Ti oxide layers in layered intrusion and frequent replenishment of fractionated mafic magma: evidence from the Panzhihua intrusion, SW China[J]. Geochemistry, Geophysics, Geosystems,2013 ,14 (3 ):712 −732 .[43] doi: 10.1144/GSL.SP.1989.042.01.19Sun S S, McDonough W F . Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society, London, Special Publications,1989 ,42 (1 ):313 −345 .[44] doi: 10.1111/1755-6724.12534Sun T, Wang D H, Qian Z Z, et al . A preliminary review of the metallogenic regularity of nickel deposits in China[J]. Acta Geologica Sinica (English Edition),2015 ,89 :1375 −1397 .[45] Tang Q Y, Ma Y S, Zhang M J, et al. The Origin of Ni-Cu-PGE Sulfide Mineralization in the Margin of the Zhubu Mafic-Ultramafic Intrusion in the Emeishan Large Igneous Province, Southwestern China[J]. Economic Geology, 2013, 108: 1889–1901. [46] doi: 10.1007/s00410-006-0149-5Tao Y, Li C, Hu R, et al . Petrogenesis of the Pt–Pd mineralized Jinbaoshan ultramafic intrusion in the Permian Emeishan large igneous province, SW China[J]. Contributions to Mineralogy and Petrology,2007 ,153 :321 −337 .[47] doi: 10.1007/s00126-008-0207-1Tao Y, Li C, Song X Y, et al . Mineralogical, petrological, and geochemical studies of the Limahe mafic–ultramatic intrusion and associated Ni–Cu sulfide ores, SW China[J]. Mineralium Deposita,2008 ,43 :849 −872 .[48] Tian H C, Yang W, Li S G, et al . Could sedimentary carbonates be recycled into the lower mantle? Constraints from Mg isotopic composition of Emeishan basalts[J]. Lithos,2017 ,292 :250 −261 .[49] doi: 10.1016/j.gr.2019.07.016Tian S, Hou Z, Mo X, et al . Lithium isotopic evidence for subduction of the Indian lower crust beneath southern Tibet[J]. Gondwana Research,2020 ,77 :168 −183 .[50] doi: 10.1016/j.jpgl.2004.10.002Xiao L, Xu Y G, Mei H J, et al . Distinct mantle sources of low-Ti and high-Ti basalts from the western Emeishan large igneous province, SW China: implications for plume–lithosphere interaction[J]. Earth and Planetary Science Letters,2004 ,228 (3–4 ):525 −546 .[51] doi: 10.1016/S0024-4937(01)00055-XXu Y G, Chung S L, Jahn B M, et al . Petrologic and geochemical constraints on the petrogenesis of Permian–Triassic Emeishan flood basalts in southwestern China[J]. Lithos,2001 ,58 (3-4 ):145 −168 .[52] doi: 10.5382/econgeo.5017Xue S C, Wang Q F, Wang Y L, et al . The Roles of Various Types of Crustal Contamination in the Genesis of the Jinchuan Magmatic Ni-Cu-PGE Deposit: New Mineralogical and C-S-Sr-Nd Isotope Constraints[J]. Economic Geology,2023 ,118 (8 ):1795 −1812 .[53] doi: 10.1016/j.chemgeo.2007.05.017Wang C Y, Zhou M F, Qi L . Permian flood basalts and mafic intrusions in the Jinping (SW China)–Song Da (northern Vietnam) district: mantle sources, crustal contamination and sulfide segregation[J]. Chemical Geology,2007 ,243 (3–4 ):317 −343 .[54] Yao J H, Zhu W G, Wang Y J, et al . Geochemistry of the Yumen picrites-basalts from the Emeishan large igneous province: Implications for their mantle source, PGE behaviors, and petrogenesis[J]. Lithos,2021 ,400 :106364 .[55] doi: 10.1016/j.oregeorev.2013.08.006Yu S Y, Song X Y, Chen L M, et al . Postdated melting of subcontinental lithospheric mantle by the Emeishan mantle plume: Evidence from the Anyi intrusion, Yunnan, SW China[J]. Ore Geology Reviews,2014 ,57 :560 −573 .[56] Yu S Y, Song X Y, Chen L M. Interaction between mantle plume and subduction-modified lithospheric mantle: Geochemical evidence from the picritic lavas from the Emeishan large igneous province[J]. Chemical Geology, 2024, 648: 121964. [57] doi: 10.1093/petrology/egl034Zhang Z C, Mahoney J J, Mao J W, et al . Geochemistry of picritic and associated basalt flows of the western Emeishan flood basalt province, China[J]. Journal of Petrology,2006 ,47 (10 ):1997 −2019 .[58] doi: 10.1016/j.jpgl.2008.09.005Zhang Z, Zhi X, Chen L, et al . Re–Os isotopic compositions of picrites from the Emeishan flood basalt province, China[J]. Earth and Planetary Science Letters,2008 ,276 (1–2 ):30 −39 .[59] doi: 10.1007/s00126-001-0220-0Zhong H, Zhou X H, Zhou M F, et al . Platinum-group element geochemistry of the Hongge Fe–V–Ti deposit in the Pan-Xi area, southwestern China[J]. Mineralium Deposita,2002 ,37 :226 −239 .[60] doi: 10.1016/S0012-821X(01)00608-2Zhou M F, Malpas J, Song X Y, et al . A temporal link between the Emeishan large igneous province (SW China) and the end-Guadalupian mass extinction[J]. Earth and Planetary Science Letters,2002 ,196 (3−4 ):113 −122 .[61] doi: 10.1016/j.lithos.2007.10.006Zhou M F, Arndt N T, Malpas J, et al . Two magma series and associated ore deposit types in the Permian Emeishan large igneous province, SW China[J]. Lithos,2008 ,103 (3−4 ):352 −368 . -