多金属矿床重磁勘探关键技术及研究进展

刘双, 胡祥云, 张百帆, 朱丹, 吕梦芝, 舒一鸣. 2025. 多金属矿床重磁勘探关键技术及研究进展. 西北地质, 58(3): 1-21. doi: 10.12401/j.nwg.2025054
引用本文: 刘双, 胡祥云, 张百帆, 朱丹, 吕梦芝, 舒一鸣. 2025. 多金属矿床重磁勘探关键技术及研究进展. 西北地质, 58(3): 1-21. doi: 10.12401/j.nwg.2025054
LIU Shuang, HU Xiangyun, ZHANG Baifan, ZHU Dan, LYU Mengzhi, SHU Yiming. 2025. Key Technologies and Research Advances in Gravity and Magnetic Exploration for Polymetallic Deposits. Northwestern Geology, 58(3): 1-21. doi: 10.12401/j.nwg.2025054
Citation: LIU Shuang, HU Xiangyun, ZHANG Baifan, ZHU Dan, LYU Mengzhi, SHU Yiming. 2025. Key Technologies and Research Advances in Gravity and Magnetic Exploration for Polymetallic Deposits. Northwestern Geology, 58(3): 1-21. doi: 10.12401/j.nwg.2025054

多金属矿床重磁勘探关键技术及研究进展

  • 基金项目: 深地国家科技重大专项课题"浅覆盖区锡多金属矿三维探测与隐伏矿体定位"(2024ZD1001502)资助。
详细信息
    作者简介: 刘双(1985–),男,教授、博士生导师,从事应用地球物理位场勘探理论与方法技术研究。E−mail:lius@cug.edu.cn
  • 中图分类号: P631

Key Technologies and Research Advances in Gravity and Magnetic Exploration for Polymetallic Deposits

  • 重力与磁法勘探凭借对密度与磁性异常的高灵敏度响应,以及低成本、高效率的优势,在多金属矿床勘探中起到重要作用。笔者系统梳理了近年来重磁勘探方法在目标信息提取、新型反演方法、人工智能等热门研究方向的最新进展和关键技术,结合国内外典型应用案例总结和展望了重磁勘探方法的发展趋势和未来研究方向。本研究可为矿产勘探工作提供技术参考,并为国家战略性金属矿床的深部勘查与资源保障提供技术支撑。

  • 加载中
  • 图 1  复杂叠加异常信息提取示意图(据Zhu et al.,2022修改)

    Figure 1. 

    图 2  强剩磁条件下的叠加磁异常分解与磁性参数反演(据Zhu et al.,2022修改)

    Figure 2. 

    图 3  不同测线联合/单独成像磁化强度模型截面图(据Shu et al., 2024修改)

    Figure 3. 

    图 4  不同测线联合/单独成像密度模型截面图(据Shu et al., 2024修改)

    Figure 4. 

    图 5  九嶷山花岗岩区实测、预测重力异常(a)及无约束重力反演结果(b)(据Liu et al., 2025修改)

    Figure 5. 

    图 6  起始模型约束(a)、参考模型约束反演结果(b)、依据反演结果推断的花岗岩体分布(c)(据Liu et al., 2025修改)

    Figure 6. 

    图 7  3D磁化强度矢量反演方法流程及比较(据Liu et al., 2018d修改)

    Figure 7. 

    图 8  磁化强度(≥18 Am−1)和真磁化率(≥0.33 SI)的三维等值面图(据Liu et al., 2018b修改)

    Figure 8. 

    图 9  湖北省大冶铁矿床不同区域翻转向斜(a)和断层构造导致剩磁方向的变化(b)(据Liu et al., 2018b修改)

    Figure 9. 

    图 10  加拿大安大略省铬铁矿重磁三维联合反演结果(据Cai et al.,2024修改)

    Figure 10. 

    图 11  山东济宁某铁矿重磁三维模糊C均值聚类联合反演结果 (据刘武,2024修改)

    Figure 11. 

    图 12  新疆蒙库铁矿地表磁异常单独反演结果(a)、空–地联合反演结果(b)、空–地–井磁异常三维联合反演结果(c)(据Shi et al.,2025修改)

    Figure 12. 

    图 13  尕林格矿床归一化磁源强度反演结果(a)、总磁异常模量反演结果(b)(据李昌隆,2023修改)

    Figure 13. 

    图 14  圣尼古拉斯矿区反演结果剖面图(Lv et al., 2023

    Figure 14. 

  • [1]

    陈华根, 李嘉虓, 吴健生, 等. MT-重力模拟退火联合反演研究[J]. 地球物理学报, 2012, 552): 663670. doi: 10.6038/j.issn.0001-5733.2012.02.030

    CHEN Huagen, LI Jiaxiao, WU Jiansheng, et al. Study on simulated-anncaling MT-gravity joint inversion[J]. Chinese Journal of Geophysics, 2012, 552): 663670. doi: 10.6038/j.issn.0001-5733.2012.02.030

    [2]

    程建华, 尹秉喜, 杨勇. 双石垒子航磁异常查证中的重磁电综合解释[J]. 西北地质, 2010, 432): 163168. doi: 10.3969/j.issn.1009-6248.2010.02.024

    CHENG Jianhua, YIN Bingxi, YANG Yong. Comprehensive Interpretation of Gravity, Magnetism, and Electricity in Aeromagnetic Anomalies Confirmation at Shuangshileizi[J]. Northwestern Geology, 2010, 432): 163168. doi: 10.3969/j.issn.1009-6248.2010.02.024

    [3]

    冯杰, 刘天佑, 杨宇山, 等. 3D井地磁测联合反演技术及应用[J]. 地球物理学进展, 2010, 255): 16851691.

    FENG Jie, LIU Tianyou, YANG Yushan, et al. 3D Joint Inversion of Surface and Borehole Magnetic Data and its Application[J]. Progress in Geophys, 2010, 255): 16851691.

    [4]

    高秀鹤, 于长春, 李行素, 等. 深源矿致异常提取方法对比及应用: 以山东齐河—禹城地区航磁数据为例[J]. 现代地质, 2024, 381): 2534.

    GAO Xiuhe, YU Changchun, LI Xingsu, et al. Comparison and Application of Extraction Methods for Aeromagnetic Anomaly Caused by Deep Magnetite: A Case Study of the Qihe-Yucheng Ore Area, Shandong[J]. Geoscience, 2024, 381): 2534.

    [5]

    管志宁. 地磁场与磁力勘探[M]. 北京: 地质出版社, 2005.

    [6]

    纪晓琳, 王万银, 邱之云. 最小曲率位场分离方法参数选择试验研究[J]. 地球物理学进展, 2019, 344): 14411452. doi: 10.6038/pg2019AA0098

    JI Xiaolin, WANG Wanyin, QIU Zhiyun. Parameter choose experimental research to the minimum curvature technique potential field data separation method[J]. Progress in Geophysics, 2019, 344): 14411452. doi: 10.6038/pg2019AA0098

    [7]

    李昌隆. 基于深度学习的磁异常三维反演研究及应用[D]. 武汉: 中国地质大学, 2023.

    LI Changlong. Research and Application of 3D Inversion of Magnetic Anomalies Based on Deep Learning[D]. Wuhan: China University of Geosciences, 2023.

    [8]

    刘乃征, 朱培民, 杜利明. 基于改进FCM聚类算法的三维重力反演[J]. 地质科技通报, 2023, 423): 338349.

    LIU Naizheng, ZHU Peimin, DU Liming. Three-dimensional gravity inversion based on improved FCM clustering algorithm[J]. Bulletin of Geological Science and Technology, 2023, 423): 338349.

    [9]

    刘双, 张大莲, 刘天佑, 等. 井地磁测资料联合反演及应用[J]. 地质与勘探, 2008, 446): 6972.

    LIU Shuang, ZHANG Dalian, LIU Tianyou, et al. Cooperative Inversion and Application of Surface and Borehole Magnetic Data[J]. Geology and Prospecting, 2008, 446): 6972.

    [10]

    刘双, 胡祥云, 郭宁, 等. 无人机航磁测量技术综述[J]. 武汉大学学报(信息科学版), 2023, 486): 823840.

    LIU Shuang, HU Xiangyun, GUO Ning, et al. Overview on UAV Aeromagnetic Survey Technology[J]. Geomatics and Information Science of Wuhan University, 2023, 486): 823840.

    [11]

    刘武. 三维重磁联合反演研究及应用——以山东济宁铁矿为例[D]. 武汉: 中国地质大学, 2024.

    LIU Wu. Research and Application of 3D Joint Gravity-Magnetic Inversion: A Case Study of the Jining Iron Deposit, Shandong[D]. Wuhan: China University of Geosciences, 2024.

    [12]

    马国庆, 吴琪, 熊盛青, 等. 基于重磁数据梯度比值的深度学习技术实现场源位置反演方法[J]. 地球科学, 2021, 469): 33653375.

    MA Guoqing, WU Qi, XIONG Shengqing, et al. Ratio Method for Calculating the Source Location of Gravity and Magnetic Anomalies Based on Deep Learning[J]. Earth Science, 2021, 469): 33653375.

    [13]

    马国庆, 杜晓娟, 李丽丽. 改进的位场相关成像方法[J]. 地球科学(中国地质大学学报), 2013, 385): 11211127. doi: 10.3799/dqkx.2013.111

    MA Guoqing, DU Xiaojuan, LI Lili. Improved Potential Field Correlation Imaging Method[J]. Earth Science–Journal of Chian University of Geoscience, 2013, 385): 11211127. doi: 10.3799/dqkx.2013.111

    [14]

    那旭. 基于Pearson相关性约束的航空电磁与航空磁法数据三维联合反演研究[D]. 长春: 吉林大学, 2022.

    NA Xu. 3D joint inversion of airborne electromagnetic and magnetic data based on Pearson correlation constraints[D]. Changchun: Jilin University, 2022.

    [15]

    孙石达. 磁总场异常及其梯度联合反演方法研究[D]. 武汉: 中国地质大学, 2016.

    SUN Shida. Research on Joint Inversion Methods of Total Magnetic Anomaly and Its Gradient[D]. Wuhan: China University of Geosciences, 2016.

    [16]

    王泰涵, 马国庆, 熊盛青, 等. 空-地-井重力异常正则化协同密度反演方法[J]. 地球物理学报, 2020, 637): 27372750. doi: 10.6038/cjg2020N0200

    WANG Taihan, MA Guoqing, XIONG Shengqing, et al. Joint regularized density inversion method of airborne. surface and borehole gravity anomaly data[J]. Chinese Journal of Geophysics, 2020, 637): 27372750. doi: 10.6038/cjg2020N0200

    [17]

    王逸宸, 柳林涛, 许厚泽. 利用卷积自编码器重建含噪重力数据[J]. 武汉大学学报(信息科学版), 2022, 474): 543550.

    WANG Yichen, LIU Lintao, XU Houze. Noisy Gravity Data Reconstruction Using the Convolutional Autoencoder[J]. Geomatics and Information Science of Wuhan University, 2022, 474): 543550.

    [18]

    魏泽坤, 冯旭亮, 马佳月, 等. 鄂尔多斯盆地东南部重磁场特征及其氦气勘探意义[J]. 西北地质, 2023, 565): 98110. doi: 10.12401/j.nwg.2023070

    WEI Zekun, FENG Xuliang, MA Jiayue, et al. Characteristics of Gravity and Magnetic Field and their Significance of Helium Resources Exploration in the Southeastern Ordos Basin[J]. Northwestern Geology, 2023, 565): 98110. doi: 10.12401/j.nwg.2023070

    [19]

    文百红, 程方道. 用于划分磁异常的新方法—插值切割法[J]. 中南矿冶学院学报, 1990, 213): 229235.

    WEN Baihong, CHENG Fangdao. A New Interpolating Cut Method for Identifying Regional and Local Fields of Magnetic Anomaly[J]. Journal of Central South University(Science and Technology), 1990, 213): 229235.

    [20]

    习宇飞, 刘天佑, 刘双. 井中磁测三分量联合反演[J]. 石油地球物理勘探, 2012, 472): 344352.

    XI Yufei, LIU Tianyou, LIU Shuang. A Joint Inversion Method for Borehole Magnetic Three-Component Data[J]. Oil Geophysical Prospecting, 2012, 472): 344352.

    [21]

    相鹏, 谭绍泉, 陈学国, 等. 利用高斯径向基函数的拟神经网络重力反演方法[J]. 石油地球物理勘探, 2021, 566): 14091418.

    XIANG Peng, TANG Shaoquan, CHEN Xueguo, et al. Gravity inversion method based on quasi-neural network featuring Gaussian radial basis function[J]. Oil Geophysical Prospecting, 2021, 566): 14091418.

    [22]

    熊盛青. 航空地球物理勘查科技创新与应用[J]. 地质力学学报, 2020, 265): 791818. doi: 10.12090/j.issn.1006-6616.2020.26.05.063

    XIONG Shengqing. Innovation and application of airborne geophysical exploration technology[J]. Journal of Geomechanics, 2020, 265): 791818. doi: 10.12090/j.issn.1006-6616.2020.26.05.063

    [23]

    杨文采. 非线性地球物理反演方法: 回顾与展望[J]. 地球物理学进展, 2002, (2): 255261. doi: 10.3969/j.issn.1004-2903.2002.02.010

    YANG Wencai. Non-linear Geophysical Inversion Methods: Review and Perspective[J]. Progress in Geophysics, 2002, (2): 255261. doi: 10.3969/j.issn.1004-2903.2002.02.010

    [24]

    殷长春, 孙思源, 高秀鹤, 等. 基于局部相关性约束的三维大地电磁数据和重力数据的联合反演[J]. 地球物理学报, 2018, 611): 358367. doi: 10.6038/cjg2018K0765

    YIN Changchun, SUN Siyua, GAO Xiuhe, et al. 3D joint inversion of magnetotelluric and gravity data based on local correlation constraints[J]. Chinese Journal of Geophysics, 2018, 611): 358367. doi: 10.6038/cjg2018K0765

    [25]

    于鹏, 王家林, 吴健生, 等. 地球物理联合反演的研究现状和分析[J]. 勘探地球物理进展, 2006, (2): 8793.

    YU Peng, WANG Jialin, WU Jiansheng, et al. Review and Discussions on Geophysical Joint Inversion[J]. Progress in Exploration Geophysics, 2006, (2): 8793.

    [26]

    于长春, 熊盛青, 郭志红, 等. 改进的非线性滤波方法在中高山地区的应用[J]. 物探与化探, 2003, 271): 3942.

    YU Changchun, XIONG Shengqing, GUO Zhihong, et al. The Improved Nonlinear Filtering Method and Its Application in Middle and High Mountain Areas[J]. Geophysical and Geochemical Exploration, 2003, 271): 3942.

    [27]

    曾华霖. 重力场与重力勘探[M]. 北京: 地质出版社, 2005.

    ZENG Hualin. Gravity Field and Gravity Exploration[M]. Beijing: Geological Publishing House, 2005.

    [28]

    张镕哲, 李桐林, 邓海, 等. 大地电磁、重力、磁法和地震初至波走时的交叉梯度二维联合反演研究[J]. 地球物理学报, 2019, 626): 21392149. doi: 10.6038/cjg2019L0713

    ZHANG Rongzhe, LI Tonglin, DENG Hai, et al. 2D Joint Inversion Of MT, Gravity, Magnetic and Seismic First-Arrival Wave Traveltime with Cross-Gradient Constraints[J]. Chinese Journal of Geophysics, 2019, 626): 21392149. doi: 10.6038/cjg2019L0713

    [29]

    张志厚, 廖晓龙, 曹云勇, 等. 基于深度学习的重力异常与重力梯度异常联合反演[J]. 地球物理学报, 2021, 644): 14351452. doi: 10.6038/cjg2021O0151

    ZHANG Zhihong, LIAO Xiaolong, CAO Yunyong, et al. Joint Gravity and Gravity Gradient Inversion Based on Deep Learning[J]. Chinese Journal of Geophysics, 2021, 644): 14351452. doi: 10.6038/cjg2021O0151

    [30]

    张紫薇, 李厚朴, 张恒磊, 等. 基于低秩稀疏分解的重磁异常分离方法及应用[J]. 物探与化探, 2025, 491): 118128.

    ZHANG Ziwei, LI Houpu, ZHANG Henglei, et al. A low-rank decomposition-based method for separating gravity and magnetic anomalies and its application[J]. Geophysical and Geochemical Exploration, 2025, 491): 118128.

    [31]

    Abbas M A, Fedi M, Florio G. Improving the local wavenumber method by automatic DEXP transformation[J]. Journal of Applied Geophysics, 2014b, 111: 250255. doi: 10.1016/j.jappgeo.2014.10.004

    [32]

    Abbas M A, Fedi M. Automatic DEXP imaging of potential fields independent of the structural index[J]. Geophysical Journal International, 2014a, 1993): 16251632. doi: 10.1093/gji/ggu354

    [33]

    Agocs W B. Least squares residual anomaly determination[J]. Geophysics, 1951, 164): 686696. doi: 10.1190/1.1437720

    [34]

    Al-Garni M A. Inversion of residual gravity anomalies using neural network[J]. Arabian Journal of Geosciences, 2013, 65): 15091516. doi: 10.1007/s12517-011-0452-y

    [35]

    Baniamerian J, Fedi M, Oskooi B. Research Note: Compact Depth from Extreme Points: a tool for fast potential field imaging[J]. Geophysical Prospecting, 2016, 645): 13861398. doi: 10.1111/1365-2478.12365

    [36]

    Barbosa V C F, Silva J B C. Generalized compact gravity inversion[J]. Geophysics, 1994, 591): 5768. doi: 10.1190/1.1443534

    [37]

    Bertete-Aguirre H, Cherkaev E, Oristaglio M. Non-smooth gravity problem with total variation penalization functional[J]. Geophysical Journal International, 2002, 1492): 499507. doi: 10.1046/j.1365-246X.2002.01664.x

    [38]

    Bianco L, La Manna M, Russo V, et al. Magnetic and GPR data modelling via multiscale methods in San Pietro in Crapolla Abbey, Massa Lubrense (Naples)[J]. Archaeological Prospection, 2024, 312): 139147. doi: 10.1002/arp.1936

    [39]

    Bosch M, Meza R, Jiménez R, et al. Joint gravity and magnetic inversion in 3D using Monte Carlo methods[J]. Geophysics, 2006, 714): G153G156. doi: 10.1190/1.2209952

    [40]

    Bosch M. The optimization approach to lithological tomography: Combining seismic data and petrophysics for porosity prediction[J]. Geophysics, 2004, 695): 12721282. doi: 10.1190/1.1801944

    [41]

    Cai H, Kong R, He Z, et al. Joint inversion of potential field data with adaptive unstructured tetrahedral mesh[J]. Geophysics, 2024, 893): G45G63. doi: 10.1190/geo2023-0280.1

    [42]

    Camacho A G, Montesinos F G, Vieira R. Gravity inversion by means of growing bodies[J]. Geophysics, 2000, 651): 95101. doi: 10.1190/1.1444729

    [43]

    Candès E J, Li X, Ma Y, et al. Robust principal component analysis?[J]. Journal of the ACM (JACM), 2011, 583): 137.

    [44]

    Cella F, Fedi M. High-resolution geophysical 3D imaging for archaeology by magnetic and EM data: The case of the iron age settlement of Torre Galli, Southern Italy[J]. Surveys in Geophysics, 2015, 366): 831850. doi: 10.1007/s10712-015-9341-3

    [45]

    Cribb J. Application of the Generalized Linear Inverse to the Inversion of Static Potential Data[J]. Geophysics, 1976, 416): 13651369. doi: 10.1190/1.1440686

    [46]

    Ehmann S, Virgil C, Hördt A, et al. Directional location of buried objects using three-component magnetic borehole data demonstrated for the case of a drill string[J]. Geophysical Journal International, 2016, 2053): 19161925. doi: 10.1093/gji/ggw139

    [47]

    Farquharson C G, Ash M R, Miller H G. Geologically constrained gravity inversion for the Voisey's Bay ovoid deposit[J]. The Leading Edge, 2008, 271): 6469. doi: 10.1190/1.2831681

    [48]

    Farquharson C G. Constructing piecewise-constant models in multidimensional minimum-structure inversions[J]. Geophysics, 2008a, 731): K1K9. doi: 10.1190/1.2816650

    [49]

    Fedi M, Abbas M A. A fast interpretation of self-potential data using the depth from extreme points method[J]. Geophysics, 2013, 782): E107E116. doi: 10.1190/geo2012-0074.1

    [50]

    Fedi M, Florio G, Rapolla A. A method to estimate the total magnetization direction from a distortion analysis of magnetic anomalies[J]. Geophysical Prospecting, 1994, 423): 261274. doi: 10.1111/j.1365-2478.1994.tb00209.x

    [51]

    Fedi M, Pilkington M. Understanding imaging methods for potential field data[J]. Geophysics, 2012, 771): G13G24. doi: 10.1190/geo2011-0078.1

    [52]

    Fedi M, Primiceri R, Quarta T, et al. Joint application of continuous and discrete wavelet transform on gravity data to identify shallow and deep sources[J]. Geophysical Journal International, 2004, 1561): 721. doi: 10.1111/j.1365-246X.2004.02118.x

    [53]

    Fedi M, Quarta T. Wavelet analysis for the regional-residual and local separation of potential field anomalies[J]. Geophysical Prospecting, 1998, 465): 507525. doi: 10.1046/j.1365-2478.1998.00105.x

    [54]

    Fedi M. DEXP: A fast method to determine the depth and the structural index of potential fields sources[J]. Geophysics, 2007, 721): I1I11. doi: 10.1190/1.2399452

    [55]

    Feng W, Zheng J. Triassic magmatism and tectonic setting of the eastern Tianshan, NW China: constraints from the Weiya intrusive complex[J]. Lithos, 2021, 394: 106171.

    [56]

    Gallardo L A, Meju M A. Characterization of heterogeneous near-surface materials by joint 2D inversion of dc resistivity and seismic data[J]. Geophysical Research Letters, 2003, 30(13).

    [57]

    Gao B L, Tao D Y, Zhan Y L, et al. Application of aero-surface and borehole magnetic exploration to the prospecting of exhausted mines in the Daye iron mine[J]. Geology & Exploration, 2010, 463): 04830490.

    [58]

    Gao J, Sacchi M D, Chen X. A fast reduced-rank interpolation method for prestack seismic volumes that depend on four spatial dimensions[J]. Geophysics, 2013, 781): V21V30. doi: 10.1190/geo2012-0038.1

    [59]

    Guillen A, Menichetti V. Gravity and magnetic inversion with minimization of a specific functional[J]. Geophysics, 1984, 498): 13541360. doi: 10.1190/1.1441761

    [60]

    Guo L, Meng X, Chen Z, et al. Preferential filtering for gravity anomaly separation[J]. Computers & Geosciences, 2013, 51: 247254.

    [61]

    Guo W, Dentith M C, Bird R T, et al. Systematic error analysis of demagnetization and implications for magnetic interpretation[J]. Geophysics, 2001, 662): 562570. doi: 10.1190/1.1444947

    [62]

    Han M, Wan L, Zhdanov M S. Joint iterative migration of surface and borehole gravity gradiometry data[C]. SEG International Exposition and Annual Meeting, SEG, 2018: SEG-2018-2996358.

    [63]

    Hornik K. Approximation capabilities of multilayer feedforward networks[J]. Neural Networks, 1991, 42): 251257.

    [64]

    Huang R, Liu S, Qi R, et al. Deep learning 3D sparse inversion of gravity data[J]. Journal of Geophysical Research: Solid Earth, 2021, 12611): 118.

    [65]

    Innocent Oboué Y A S, Chen W, Wang H, et al. Robust damped rank-reduction method for simultaneous denoising and reconstruction of 5D seismic data[J]. Geophysics, 2021, 861): V71V89. doi: 10.1190/geo2020-0032.1

    [66]

    Iuliano T, Mauriello P, Patella D. Looking inside Mount Vesuvius by potential fields integrated probability tomographies[J]. Journal of Volcanology and Geothermal Research, 2002, 1133-4): 363378. doi: 10.1016/S0377-0273(01)00271-2

    [67]

    Jordi C, Doetsch J, Günther T, et al. Structural joint inversion on irregular meshes[J]. Geophysical Journal International, 2020, 2203): 19952008. doi: 10.1093/gji/ggz550

    [68]

    Krahenbuhl R A, Li Y. Investigation of magnetic inversion methods in highly magnetic environments under strong self-demagnetization effect[J]. Geophysics, 2017, 826): J83J97. doi: 10.1190/geo2016-0676.1

    [69]

    Last B J, Kubik K. Compact gravity inversion[J]. Geophysics, 1983, 486): 713721. doi: 10.1190/1.1441501

    [70]

    Lelièvre P G, Oldenburg D W. A 3D total magnetization inversion applicable when significant, complicated remanence is present[J]. Geophysics, 2009a, 743): L21L30. doi: 10.1190/1.3103249

    [71]

    Lelièvre P G, Oldenburg D W. A comprehensive study of including structural orientation information in geophysical inversions[J]. Geophysical Journal International, 2009b, 1782): 623637. doi: 10.1111/j.1365-246X.2009.04188.x

    [72]

    Lelièvre P G, Oldenburg D W. Magnetic forward modelling and inversion for high susceptibility[J]. Geophysical Journal International, 2006, 1661): 7690. doi: 10.1111/j.1365-246X.2006.02964.x

    [73]

    Lelièvre P G, Farquharson C G, Hurich C A. Joint inversion of seismic traveltimes and gravity data on unstructured grids with application to mineral exploration[J]. Geophysics, 2012, 771): K1K15.

    [74]

    Li G, Liu S, Shi K, et al. Transformations of borehole magnetic data in the frequency domain and estimation of the total magnetization direction: A case study from the Mengku iron-ore deposit, Northwest China[J]. Geophysics, 2023, 881): B1B19. doi: 10.1190/geo2022-0216.1

    [75]

    Li W, Qian J, Li Y. Joint inversion of surface and borehole magnetic data: A level-set approach[J]. Geophysics, 2020, 851): J15J32. doi: 10.1190/geo2019-0139.1

    [76]

    Li Y, Oldenburg D W. 3-D inversion of gravity data[J]. Geophysics, 1998, 631): 109119. doi: 10.1190/1.1444302

    [77]

    Li Y, Oldenburg D W. 3-D inversion of magnetic data[J]. Geophysics, 1996, 612): 394408. doi: 10.1190/1.1443968

    [78]

    Li Y, Oldenburg D W. Incorporating geological dip information into geophysical inversions[J]. Geophysics, 2000a, 651): 148157. doi: 10.1190/1.1444705

    [79]

    Li Y, Oldenburg D W. Joint inversion of surface and three-component borehole magnetic data[J]. Geophysics, 2000b, 652): 540552. doi: 10.1190/1.1444749

    [80]

    Li Y, Oldenburg D W. Separation of regional and residual magnetic field data[J]. Geophysics, 1998a, 632): 431439. doi: 10.1190/1.1444343

    [81]

    Li Y, Shearer S E, Haney M M, et al. Comprehensive approaches to 3D inversion of magnetic data affected by remanent magnetization[J]. Geophysics, 2010, 751): L1L11. doi: 10.1190/1.3294766

    [82]

    Li Y, Sun J, Li S L, et al. A paradigm shift in magnetic data interpretation: Increased value through magnetization inversions[J]. The Leading Edge, 2021, 402): 8998. doi: 10.1190/tle40020089.1

    [83]

    Lin W, Zhdanov M S. Joint multinary inversion of gravity and magnetic data using Gramian constraints[J]. Geophysical Journal International, 2018, 2153): 15401557.

    [84]

    Lin Z, Chen M, Ma Y. The augmented lagrange multiplier method for exact recovery of corrupted low-rank matrices[J]. arXiv preprint arXiv: 1009.5055, 2010.

    [85]

    Lin Z, Zhang H. Low-rank models in visual analysis: Theories, algorithms, and applications[M]. New York, NY, USA: Academic Press, 2017.

    [86]

    Liu S, Baniamerian J, Fedi M. Imaging Methods Versus Inverse Methods: An Option or An Alternative?[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 585): 34843494. doi: 10.1109/TGRS.2019.2957412

    [87]

    Liu S, Fedi M, Hu X, et al. Extracting induced and remanent magnetizations from magnetic data modeling[J]. Journal of Geophysical Research: Solid Earth, 2018a, 12311): 92909309. doi: 10.1029/2017JB015364

    [88]

    Liu S, Fedi M, Hu X, et al. Three-dimensional inversion of magnetic data in the simultaneous presence of significant remanent magnetization and self-demagnetization: Example from Daye iron-ore deposit, Hubei province, China[J]. Geophysical Journal International, 2018b, 2151): 614634. doi: 10.1093/gji/ggy299

    [89]

    Liu S, Hu X, Fedi M, et al. Petrophysical and geophysical constrained inversion of gravity data based on starting and referenced models[J]. Journal of Geophysics and Engineering, 2025, 221): 3647. doi: 10.1093/jge/gxae111

    [90]

    Liu S, Hu X, Liu T, et al. Ant colony optimisation inversion of surface and borehole magnetic data under lithological constraints[J]. Journal of Applied Geophysics, 2015a, 112: 115128. doi: 10.1016/j.jappgeo.2014.11.010

    [91]

    Liu S, Hu X, Liu T, et al. Magnetization vector imaging for borehole magnetic data based on magnitude magnetic anomaly[J]. Geophysics, 2013, 786): D429D444. doi: 10.1190/geo2012-0454.1

    [92]

    Liu S, Hu X, Liu T. A stochastic inversion method for potential field data: ant colony optimization[J]. Pure and Applied Geophysics, 2014, 171: 15311555. doi: 10.1007/s00024-013-0712-8

    [93]

    Liu S, Hu X, Xi Y, et al. 2D sequential inversion of total magnitude and total magnetic anomaly data affected by remanent magnetization[J]. Geophysics, 2015b, 803): K1K12. doi: 10.1190/geo2014-0019.1

    [94]

    Liu S, Hu X, Zhu R. Joint inversion of surface and borehole magnetic data to prospect concealed orebodies: A case study from the Mengku iron deposit, northwestern China[J]. Journal of Applied Geophysics, 2018c, 154: 150158. doi: 10.1016/j.jappgeo.2018.05.004

    [95]

    Liu S, Liang M, Hu X. Particle swarm optimization inversion of magnetic data: Field examples from iron ore deposits in China[J]. Geophysics, 2018d, 834): 4359.

    [96]

    Lv M, Zhang Y, Liu S. Fast forward approximation and multitask inversion of gravity anomaly based on UNet3+[J]. Geophysical Journal International, 2023, 2342): 972984. doi: 10.1093/gji/ggad106

    [97]

    Maag E, Li Y. Discrete-valued gravity inversion using the guided fuzzy c-means clustering technique[J]. Geophysics, 2018, 834): G59G77. doi: 10.1190/geo2017-0594.1

    [98]

    Mandal A, Niyogi S. Filter assisted bi-dimensional empirical mode decomposition: A hybrid approach for regional-residual separation of gravity anomaly[J]. Journal of Applied Geophysics, 2018, 159: 218227. doi: 10.1016/j.jappgeo.2018.09.003

    [99]

    Medeiros W E, Silva J B C. Geophysical inversion using approximate equality constraints[J]. Geophysics, 1996, 616): 16781688. doi: 10.1190/1.1444086

    [100]

    Mickus K L, Aiken C L V, Kennedy W D. Regional-residual gravity anomaly separation using the minimum-curvature technique[J]. Geophysics, 1991, 562): 279283. doi: 10.1190/1.1443041

    [101]

    Moghadas D, Behroozmand A A, Christiansen A V. Soil electrical conductivity imaging using a neural network-based forward solver: applied to large-scale Bayesian electromagnetic inversion[J]. Journal of Applied Geophysics, 2020, 176: 104012. doi: 10.1016/j.jappgeo.2020.104012

    [102]

    Molodtsov D M, Troyan V N, Roslov Y V, et al. Joint inversion of seismic traveltimes and magnetotelluric data with a directed structural constraint[J]. Geophysical Prospecting, 2013, 616): 12181228. doi: 10.1111/1365-2478.12060

    [103]

    Montesinos F G, Arnoso J, Vieira R. Using a genetic algorithm for 3-D inversion of gravity data in Fuerteventura (Canary Islands)[J]. International Journal of Earth Sciences, 2005, 94: 301316. doi: 10.1007/s00531-005-0471-6

    [104]

    Moorkamp M, Heincke B, Jegen M, et al. A framework for 3-D joint inversion of MT, gravity and seismic refraction data[J]. Geophysical Journal International, 2011, 1841): 477493. doi: 10.1111/j.1365-246X.2010.04856.x

    [105]

    Moreau F, Gibert D, Holschneider M, et al. Wavelet analysis of potential fields[J]. Inverse Problems, 1997, 131): 165178. doi: 10.1088/0266-5611/13/1/013

    [106]

    Mosher C R W, Farquharson C G. Minimum-structure borehole gravity inversion for mineral exploration: A synthetic modeling study[J]. Geophysics, 2013, 782): G25G39. doi: 10.1190/geo2012-0373.1

    [107]

    Nind C, Seigel H O, Chouteau M, et al. Development of a borehole gravimeter for mining applications[J]. First Break, 2007, 25(7).

    [108]

    Oropeza V, Sacchi M. Simultaneous seismic data denoising and reconstruction via multichannel singular spectrum analysis[J]. Geophysics, 2011, 763): V25V32. doi: 10.1190/1.3552706

    [109]

    Paoletti V, Hintersberger E, Schattauer I, et al. Geophysical Study of the Diendorf-Boskovice Fault System (Austria)[J]. Remote Sensing, 2022, 14(8).

    [110]

    Patella D. Introduction to ground surface self-potential tomography[J]. Geophysical Prospecting, 1997, 454): 653681. doi: 10.1046/j.1365-2478.1997.430277.x

    [111]

    Pawlowski R S, Hansen R O. Gravity anomaly separation by Wiener filtering[J]. Geophysics, 1990, 555): 539548. doi: 10.1190/1.1442865

    [112]

    Pedersen L B. Relations Between Potential Fields and Some Equivalent Sources[J]. Geophysics, 1991, 567): 961971. doi: 10.1190/1.1443129

    [113]

    Pilkington M, Beiki M. Mitigating remanent magnetization effects in magnetic data using the normalized source strength[J]. Geophysics, 2013, 783): J25J32. doi: 10.1190/geo2012-0225.1

    [114]

    Pilkington M, Cowan D R. Model-based separation filtering of magnetic data[J]. Geophysics, 2006, 712): L17L23. doi: 10.1190/1.2187772

    [115]

    Pilkington M. 3D magnetic data-space inversion with sparseness constraints[J]. Geophysics, 2009, 741): L7L15. doi: 10.1190/1.3026538

    [116]

    Portniaguine O, Zhdanov M S. Focusing geophysical inversion images[J]. Geophysics, 1999, 643): 874887. doi: 10.1190/1.1444596

    [117]

    Rim H, Li Y. Advantages of borehole vector gravity in density imaging[J]. Geophysics, 2015, 801): G1G13. doi: 10.1190/geo2013-0394.1

    [118]

    Rothman D H. Nonlinear inversion, statistical mechanics, and residual statics estimation[J]. Geophysics, 1985, 5012): 27842796. doi: 10.1190/1.1441899

    [119]

    Rybakov M, Goldshmidt V, Rotstein Y, et al. Petrophysical constraints on gravity/magnetic interpretation in Israel[J]. The Leading Edge, 1999, 182): 269272. doi: 10.1190/1.1438274

    [120]

    Seigel H O, Nind C J M, Milanovic A, et al. Results from the initial field trials of a borehole gravity meter for mining and geotechnical applications[C]. 11th SAGA Biennial Technical Meeting and Exhibition, European Association of Geoscientists & Engineers, 2009: cp-241-00021.

    [121]

    Shamsipour P, Marcotte D, Chouteau M, et al. 3D stochastic inversion of gravity data using cokriging and cosimulation[J]. Geophysics, 2010, 751): I1I10. doi: 10.1190/1.3295745

    [122]

    Shamsipour P, Marcotte D, Chouteau M. 3D stochastic joint inversion of gravity and magnetic data[J]. Journal of Applied Geophysics, 2012, 79: 2737. doi: 10.1016/j.jappgeo.2011.12.012

    [123]

    Shamsipour P, Schetselaar E, Bellefleur G, et al. 3D stochastic inversion of potential field data using structural geologic constraints[J]. Journal of Applied Geophysics, 2014, 111: 173182. doi: 10.1016/j.jappgeo.2014.09.013

    [124]

    Shearer S, Li Y. 3D inversion of magnetic total gradient data in the presence of remanent magnetization[C]. SEG International Exposition and Annual Meeting, SEG, 2004: SEG-2004-0774.

    [125]

    Shi B, Yu P, Zhao C, et al. Linear correlation constrained joint inversion using squared cosine similarity of regional residual model vectors[J]. Geophysical Journal International, 2018, 2152): 12911307. doi: 10.1093/gji/ggy336

    [126]

    Shi K, Liu S, Jian X, et al. 3D Joint Inversion of Borehole, Surface, and Airborne Magnetic Anomaly[J]. Pure and Applied Geophysics, 2025: 1-23.

    [127]

    Shu Y, Liu S, Wang T, et al. Gravity and magnetic joint imaging based on Gramian constraints[J]. Geophysics, 2024, 895): G75G92. doi: 10.1190/geo2023-0732.1

    [128]

    Silva J B C, Barbosa V C F. Generalized radial inversion of 2D potential field data[J]. Geophysics, 2004, 696): 14051413. doi: 10.1190/1.1836815

    [129]

    Simpson Jr S M. Least squares polynomial fitting to gravitational data and density plotting by digital computers[J]. Geophysics, 1954, 192): 255269. doi: 10.1190/1.1437990

    [130]

    Spector A, Grant F S. Statistical models for interpreting aeromagnetic data[J]. Geophysics, 1970, 352): 293302. doi: 10.1190/1.1440092

    [131]

    Sun J, Li Y. Geophysical inversion using petrophysical constraints with application to lithology differentiation[C]. 12th International Congress of the Brazilian Geophysical Society, European Association of Geoscientists & Engineers, 2011: cp-264-00114.

    [132]

    Sun J, Li Y. Inversion of surface and borehole gravity with thresholding and density constraints[M]. SEG Technical Program Expanded Abstracts 2010, Society of Exploration Geophysicists, 2010: 1798−1803.

    [133]

    Sun J, Li Y. Joint inversion of multiple geophysical data using guided fuzzy c-means clustering[J]. Geophysics, 2016, 813): ID37ID57. doi: 10.1190/geo2015-0457.1

    [134]

    Sun J, Li Y. Multidomain petrophysically constrained inversion and geology differentiation using guided fuzzy c-means clustering[J]. Geophysics, 2015, 804): ID1ID18. doi: 10.1190/geo2014-0049.1

    [135]

    Tikhonov A N, Arsenin V. Solutions of ill-posed problems[M]. Winston, New York: V. H. Winston & Sons, 1977.

    [136]

    Vatankhah S, Liu S, Renaut R A, et al. An Efficient Alternating Algorithm for the Lp-Norm Cross-Gradient Joint Inversion of Gravity and Magnetic Data Using the 2-D Fast Fourier Transform[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020: 1−16.

    [137]

    Vatankhah S, Renaut R A, Huang X, et al. Large-scale focusing joint inversion of gravity and magnetic data with Gramian constraint[J]. Geophysical Journal International, 2022, 2303): 15851611. doi: 10.1093/gji/ggac138

    [138]

    Virgil C, Ehmann S, Hördt A, et al. Measuring and interpretation of three-component borehole magnetic data[C]//EGU General Assembly Conference Abstracts. 2012: 10105.

    [139]

    Wan L, Zhdanov M S. Iterative migration of gravity and gravity gradiometry data[C]. SEG Technical Program Expanded Abstracts 2013, 2013: 1211−1215.

    [140]

    Xiao F. Gravity correlation imaging with a moving data window[J]. Journal of Applied Geophysics, 2015, 112: 2932. doi: 10.1016/j.jappgeo.2014.11.004

    [141]

    Yang Q, Hu X, Liu S, et al. 3-D gravity inversion based on deep convolution neural networks[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 19: 15.

    [142]

    Zeng H, Xu D, Tan H. A model study for estimating optimum upward-continuation height for gravity separation with application to a Bouguer gravity anomaly over a mineral deposit, Jilin province, northeast China[J]. Geophysics, 2007, 724): I45I50. doi: 10.1190/1.2719497

    [143]

    Zhang C, Lü Q, Yan J, et al. Numerical solutions of the mean-value theorem: New methods for downward continuation of potential fields[J]. Geophysical Research Letters, 2018, 458): 34613470. doi: 10.1002/2018GL076995

    [144]

    Zhang H, Qian J, Zhang B, et al. Low-rank matrix recovery via modified Schatten-p norm minimization with convergence guarantees[J]. IEEE Transactions on Image Processing, 2019, 29: 31323142.

    [145]

    Zhang L, Hao T, Jiang W. Separation of potential field data using 3-D principal component analysis and textural analysis[J]. Geophysical Journal International, 2009, 1793): 13971413. doi: 10.1111/j.1365-246X.2009.04357.x

    [146]

    Zhang L, Zhang G, Liu Y, et al. Deep learning for 3-D inversion of gravity data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021c, 60: 118.

    [147]

    Zhang R, Li T, Liu C. Joint inversion of multiphysical parameters based on a combination of cosine dot-gradient and joint total variation constraints[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021a, 60: 110.

    [148]

    Zhang Y, Xu Y, Mooney W D, et al. Local separation of potential field anomalies using equivalent sources: application for the 3-D structure of mantle uplift beneath Von Kármán crater, the Moon[J]. Geophysical Journal International, 2021b, 2273): 16121623. doi: 10.1093/gji/ggab307

    [149]

    Zhdanov M S, Gribenko A, Wilson G. Generalized joint inversion of multimodal geophysical data using Gramian constraints[J]. Geophysical Research Letters, 2012, 39(9).

    [150]

    Zhdanov M S, Liu X J, Wilson G A, et al. Potential field migration for rapid imaging of gravity gradiometry data[J]. Geophysical Prospecting, 2011, 596): 10521071. doi: 10.1111/j.1365-2478.2011.01005.x

    [151]

    Zhdanov M S. Geophysical inverse theory and regularization problems[M]. Amsterdam, Boston: Elsevier Science, 2002.

    [152]

    Zhu D, Hu X, Liu S, et al. Can Targeted Source Information Be Extracted From Superimposed Magnetic Anomalies?[J]. Journal of Geophysical Research: Solid Earth, 2022, 1275): e2022JB024279. doi: 10.1029/2022JB024279

    [153]

    Zhu D, Li H, Liu T, et al. Low-rank matrix decomposition method for potential field data separation[J]. Geophysics, 2020a, 851): G1G16. doi: 10.1190/geo2019-0016.1

    [154]

    Zhu D, Renaut R, Li H, et al. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory[J]. Inverse Problems and Imaging, 2020b, 151): 125.

    [155]

    Zuo B, Hu X, Leão-Santos M, et al. Downward continuation and transformation of total-field magnetic anomalies into magnetic gradient tensors between arbitrary surfaces using multilayer equivalent sources[J]. Geophysical Research Letters, 2020, 4716): e2020GL088678. doi: 10.1029/2020GL088678

  • 加载中

(14)

计量
  • 文章访问数:  30
  • PDF下载数:  0
  • 施引文献:  0
出版历程
收稿日期:  2025-04-01
修回日期:  2025-04-24
录用日期:  2025-04-25
刊出日期:  2025-06-20

目录