The Discovery of Antimony Deposit in Yuling, Danfeng County, Shaanxi Province and Its Prospecting Significance
-
摘要:
新发现的丹凤县庾岭锑矿位于北秦岭复合岛弧杂岩带之东部,成矿区划为北秦岭Au-Cu-Mo-Sb-石墨-蓝晶石-红柱石-金红石成矿带。矿体赋存于中元古界峡河岩群寨根岩组中,圈定锑矿体4条,初步估算锑潜在资源约为
8000 t。矿石中有用矿物主要为辉锑矿、黄锑矿。矿石结构主要为自形、半自形,矿石构造类型为星散浸染状构造,少量呈条带状构造。该发现增加了该区锑矿床数量,也为在该区进一步寻找锑矿补充了矿床实例。笔者在对成矿地质背景、矿床地质特征、矿石质量特征及矿石类型研究的基础上,对矿床成因进行了初步探讨并归纳总结区域找矿标志。辉锑矿微量元素中Sb、W较为富集,稀土元素分配曲线表现为轻稀土元素富集重稀土元素亏损的右倾曲线。辉锑矿中δ34S值为5.20‰ ~7.12‰,Pb同位素组成较稳定,变化范围较小,比值比较均一。研究表明,庾岭锑矿可分为石英–辉锑矿型、石英–辉锑矿–方解石型两种矿石类型,是构造–热液再造型锑矿床,成矿作用受到上地壳岩浆活动以及构造活动、变质变形作用的控制,成矿物质来源于上地壳岩浆热液与早期沉积地层。找矿标志具有特定层位、岩性、构造、岩浆岩及围岩蚀变特征。Abstract:The newly discovered Yuling antimony deposit in Danfeng County is located in the eastern part of the North Qinling Composite Island Arc Complex. The mineralization area is classified as the North Qinling Au-Cu-Mo-Sb-Graphite-Kyanite-Sillimanite-Rutile mineralization belt. The ore body is hosted in the Zhai Gen Formation of the Xiahe Rock Group of the Mesoproterozoic. Four antimony ore bodies have been delineated, and the estimated potential antimony resources are approximately
8000 tons. The useful minerals in the ore are mainly stibnite and hauerite. The ore structure is mainly euhedral and subhedral, and the ore texture type is disseminated and disseminated in a starry pattern, with a small amount of banded texture. This discovery has increased the number of antimony deposits in this area and provided an additional example for further exploration of antimony deposits in this area. Based on the study of the geological background of mineralization, geological characteristics of the deposit, quality characteristics of the ore, and types of ore, the author has made a preliminary discussion on the genesis of the deposit and summarized the regional exploration indicators. The trace elements in stibnite are relatively enriched in Sb and W, and the rare earth element distribution curve shows a right-inclined curve with enrichment of light rare earth elements and depletion of heavy rare earth elements. The δ34S value of stibnite is between 5.20‰ and 7.12‰, and the lead isotope composition is relatively stable with a small range of variation and relatively uniform ratios. The research shows that the Yuling antimony deposit can be divided into two ore types: quartz-stibnite type and quartz-stibnite-calcite type. It is a tectonic-hydrothermal remobilization type antimony deposit, and the mineralization is controlled by magmatic activity in the upper crust, tectonic activity, and metamorphic deformation. The ore-forming materials are derived from magmatic hydrothermal fluids in the upper crust and early sedimentary strata. The exploration indicators have specific stratigraphic, lithologic, structural, magmatic rock, and wall rock alteration characteristics.-
Key words:
- antimony deposit /
- geological characteristics /
- deposit genesis /
- prospecting mark /
- Yuling
-
-
图 1 庾岭锑矿区域地质简图(据张勇等,2022修改)
Figure 1.
表 1 庾岭锑矿体形态、规模、产状一览表
Table 1. List of the form, scale and occurrence of Yuling antimony deposit
矿体
编号规 模(m) 锑品位 赋矿岩性 矿 体
形 态产状 工程个数(个) 长度 真厚度 (%) 槽探 钻探 Ⅰ-1 170 1.28~4.43 0.53~2.21 深灰色硅质大理岩 波状、
似层状340°~350°
∠54°~60°2 2 Ⅱ-1 120 2.20~2.61 1.18~2.30 深灰色硅质大理岩 似层状 15°~28°
∠72°~77°3 2 Ⅲ-1 300 1.82~3.26 0.79~2.23 深灰色硅质大理岩 缓波状、
似层状15°~30°
∠62°~77°5 3 Ⅳ-1 60 0.82~2.86 0.73~1.65 深灰色硅质大理岩 波状、
似层状10°~14°
∠47°~60°2 1 表 2 研究区锑矿石样品微量元素组成(10–6)
Table 2. Trace element composition and characteristic parameters of antimony ore samples in the study area (10–6)
样品编号 Sb W Sn Pb Bi Be Li Sc V Cr Co Ni Cu Zn Ga Mo TC50-1HX 33.24 20.43 0.45 47.98 0.11 0.69 93.17 6.37 21.72 79.03 60.96 32.42 9.85 117.16 5.90 0.34 TC51-1HX 197.62 246.30 1.98 71.83 0.25 1.13 111.70 8.54 54.66 129.79 73.97 58.60 27.62 157.54 10.68 0.31 TC52-1HX 107.61 63.69 0.60 54.01 0.15 0.86 119.60 6.86 38.19 86.88 67.24 49.03 13.28 227.98 5.59 0.25 TC53-1HX 158.71 37.45 0.83 54.40 0.27 0.86 98.99 6.81 32.03 93.50 62.02 55.12 21.58 90.92 8.01 0.20 TC54-1HX 418.67 37.06 0.69 26.16 0.25 0.78 67.62 6.29 22.55 101.45 45.77 85.39 18.05 86.95 7.69 0.13 TC60-1HX 61.60 26.51 1.97 50.69 0.31 1.50 106.30 9.57 60.61 107.11 56.98 46.23 32.26 62.56 15.00 1.06 TC60-2HX 281.29 25.89 1.01 57.90 0.15 1.08 86.94 8.52 29.64 90.26 31.62 47.48 12.40 118.26 10.25 0.19 TC61-1HX 251.02 27.70 1.14 32.75 0.16 0.84 70.17 7.75 33.59 64.07 35.67 23.87 11.05 78.02 9.23 0.29 TC61-2HX 195.63 38.25 0.73 55.66 0.15 1.03 84.53 8.06 27.38 77.51 61.44 31.85 24.38 681.21 10.23 0.19 TC61-3HX 272.27 63.57 1.17 25.27 0.39 1.06 122.50 6.68 40.86 76.50 55.26 27.09 14.27 110.82 8.40 0.23 样品编号 Rb Sr Cd In Te Cs Ba Tl Th U Zr Hf Nb Ta Zr/Hf Nb/Ta TC50-1HX 43.65 141.59 0.34 0.03 0.04 5.12 162.88 0.71 4.54 1.71 71.79 2.35 1.26 0.38 30.55 3.34 TC51-1HX 78.62 108.14 0.264 0.04 0.03 10.62 378.73 0.92 8.18 2.25 129.89 4.12 3.91 0.73 31.50 5.38 TC52-1HX 40.01 166.95 0.53 0.03 0.07 6.50 111.41 0.86 4.66 2.19 78.77 2.72 0.79 0.17 28.95 4.73 TC53-1HX 60.34 106.54 0.29 0.03 0.02 7.02 313.72 0.87 6.19 2.69 90.65 3.20 0.59 0.10 28.36 5.67 TC54-1HX 55.81 97.55 0.43 0.03 0.03 6.15 180.19 0.96 5.33 2.48 80.29 2.68 0.50 0.18 29.91 2.77 TC60-1HX 114.14 100.14 0.09 0.04 0.03 14.18 427.08 1.21 16.39 3.19 202.65 6.36 1.87 0.13 31.88 14.04 TC60-2HX 74.37 113.51 0.41 0.03 0.06 9.78 298.36 0.91 8.39 2.42 125.85 3.93 0.88 0.16 32.04 5.41 TC61-1HX 69.83 74.28 0.23 0.04 0.05 8.27 312.46 0.96 6.29 2.71 96.64 3.23 0.56 0.11 29.90 5.00 TC61-2HX 77.96 76.59 1.48 0.04 0.04 7.76 372.78 1.05 5.61 2.32 91.06 3.33 0.29 0.09 27.32 3.24 TC61-3HX 71.03 82.33 0.27 0.03 0.08 7.58 176.23 1.33 6.47 4.00 96.04 3.29 1.34 0.32 29.23 4.16 注:测试单位为西安兆年矿物测试技术有限公司。 表 3 研究区锑矿石样品稀土元素组成(10–6)
Table 3. Trace element composition and characteristic parameters of antimony ore samples in the study area (10–6)
样品编号 La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Y TC50-1HX 18.10 36.87 4.12 15.46 2.81 0.60 2.60 0.38 2.29 0.46 1.33 0.20 1.19 0.18 11.85 TC51-1HX 28.80 57.14 6.39 23.95 4.36 0.88 3.80 0.55 3.07 0.60 1.67 0.24 1.58 0.26 16.21 TC52-1HX 23.69 45.55 5.59 21.67 3.71 0.76 3.17 0.47 2.65 0.57 1.57 0.24 1.48 0.22 15.84 TC53-1HX 21.92 43.48 4.92 18.50 3.38 0.70 2.90 0.44 2.35 0.46 1.23 0.19 1.19 0.21 11.64 TC54-1HX 25.64 48.23 5.53 20.52 3.76 0.78 3.22 0.48 2.62 0.54 1.45 0.21 1.37 0.21 14.70 TC60-1HX 41.13 85.84 9.40 34.98 6.21 1.16 4.83 0.69 3.66 0.74 2.06 0.30 2.04 0.31 18.40 TC60-2HX 31.27 59.54 6.76 25.52 4.61 0.87 3.70 0.54 2.89 0.57 1.55 0.24 1.45 0.24 15.44 TC61-1HX 25.66 49.70 5.57 21.54 3.94 0.78 3.83 0.57 3.22 0.63 1.67 0.26 1.54 0.23 16.75 TC61-2HX 21.26 43.36 4.81 18.01 3.23 0.64 2.81 0.38 2.13 0.43 1.12 0.17 1.10 0.18 11.03 TC61-3HX 27.13 51.03 5.94 22.23 4.13 0.90 4.32 0.68 3.60 0.72 1.91 0.28 1.69 0.26 19.26 样品编号 Y/Ho ∑REE LREE HREE LREE/HREE LRE MRE HRE δEu δCe (La/Sm)n (Gd/Yb)n (La/Yb)n TC50-1HX 25.71 86.59 77.96 8.63 9.03 74.55 9.14 2.90 0.67 1.01 4.16 1.81 10.91 TC51-1HX 26.92 133.29 121.51 11.78 10.32 116.28 13.26 3.75 0.64 0.99 4.27 1.99 13.04 TC52-1HX 27.83 111.32 100.96 10.36 9.74 96.49 11.33 3.50 0.66 0.94 4.12 1.77 11.50 TC53-1HX 25.42 101.86 92.89 8.97 10.36 88.81 10.23 2.82 0.66 0.99 4.18 2.01 13.18 TC54-1HX 27.03 114.55 104.45 10.10 10.34 99.91 11.39 3.24 0.66 0.95 4.40 1.95 13.42 TC60-1HX 24.87 193.35 178.72 14.63 12.22 171.35 17.29 4.71 0.62 1.03 4.27 1.96 14.49 TC60-2HX 26.90 139.76 128.57 11.18 11.50 123.09 13.18 3.48 0.62 0.96 4.38 2.11 15.43 TC61-1HX 26.55 119.14 107.19 11.95 8.97 102.46 12.99 3.69 0.61 0.97 4.20 2.06 11.95 TC61-2HX 25.58 99.61 91.31 8.30 11.00 87.44 9.61 2.56 0.63 1.01 4.25 2.10 13.83 TC61-3HX 26.83 124.81 111.36 13.45 8.28 106.33 14.34 4.14 0.65 0.94 4.25 2.11 11.52 注:测试单位为西安兆年矿物测试技术有限公司。 表 4 辉锑矿岩(矿)石样品S同位素样品测试结果
Table 4. Sulfur isotope results of stibnite ore (rock) samples
样号 矿物名称 δ34S(‰) 平均(‰) 采样 DX-1 辉锑矿 5.84 6.19 庾岭地区 DX-2 辉锑矿 5.20 XN-1 辉锑矿 6.59 XN-2 辉锑矿 7.12 ⅡC-2 辉锑矿 5.30 6.77 蔡凹锑矿 ⅡC-3 辉锑矿 7.00 ⅡC-5 辉锑矿 8.00 注:测试单位为西安兆年矿物测试技术有限公司。 表 5 庾岭-蔡凹锑矿辉锑矿石Pb同位素样品测试结果统计表
Table 5. Lead isotope analysis results of stibnite ore samples from Guying-Caiwo antimony deposit
样号 矿物名称 206Pb/204Pb 2SE 207Pb/204Pb 2SE 208Pb/204Pb 2SE 采样位置 DX-1 辉锑矿 18.3062 0.003 15.6664 0.004 38.4032 0.009 庾岭地区
西沟矿段DX-2 辉锑矿 18.2959 0.004 15.6359 0.005 38.3711 0.008 XN-1 辉锑矿 18.4870 0.002 15.6925 0.003 38.6555 0.007 庾岭地区
南沟矿段XN-2 辉锑矿 18.4589 0.005 15.6797 0.004 38.5994 0.007 CW-1 辉锑矿 17.8705 0.003 15.5950 0.002 38.3596 0.008 蔡凹锑矿 CW-2 辉锑矿 18.1103 0.007 15.5460 0.004 38.1244 0.014 注:测试单位为西安兆年矿物测试技术有限公司。 表 6 庾岭-蔡凹锑矿辉锑矿Pb同位素比值与相关参数表
Table 6. Pb isotope ratio and related parameters of stibnite in Yuling-Caiwa antimony mine
样号 样品名称 206Pb/204Pb 207Pb/204Pb 208Pb/204Pb t(Ma) 206Pb/207Pb μ ω Th/U △α △β △γ DX-1 辉锑矿 18.3062 15.6664 38.4032 470 1.1685 9.61 37.57 3.78 91.08 23.86 45.12 DX-2 辉锑矿 18.2959 15.6359 38.3711 470 1.1701 9.55 37.21 3.77 90.46 21.87 44.25 XN-1 辉锑矿 18.487 15.6925 38.6555 470 1.1781 9.64 37.86 3.80 101.85 25.57 51.99 XN-2 辉锑矿 18.4589 15.6797 38.5994 470 1.1772 9.62 37.66 3.79 100.18 24.73 50.46 CW-1 辉锑矿 17.8705 15.595 38.3596 470 1.1459 9.52 39.27 3.99 65.11 19.20 43.93 CW-2 辉锑矿 18.1103 15.546 38.1244 470 1.1649 9.39 36.37 3.75 79.40 15.99 37.53 注:Pb同位素特征参数μ为238U/204Pb值;ω为232Th/204Pb值;t为漂池岩体成岩年龄(秦拯纬,2016);∆α,∆β和∆γ计算参考朱炳泉(1998)。 -
[1] doi: 10.3969/j.issn.1674-6082.2020.10.007董延涛, 袁博, 牛颖超 . 我国锑矿资源产业高质量发展研究[J]. 现代矿业,2020 ,36 (10 ):19 −21 . doi: 10.3969/j.issn.1674-6082.2020.10.007DONG Yantao, YUAN Bo, NIU Yinchao . Research on high quality development of antimony mineral resource industry in China[J]. Modern Mining,2020 ,36 (10 ):19 −21 .[2] doi: 10.3969/j.issn.1672-6979.2015.01.004范红科, 张代斌, 韩代成, 等 . 陕西省丹凤县蔡凹锑矿床地质特征及找矿方向[J]. 山东国土资源,2015 ,31 (1 ):18 −22 . doi: 10.3969/j.issn.1672-6979.2015.01.004FAN Hongke, ZHANG Daibin, HAN Daicheng, et al . Geological Characteristics and Prospecting Direction of Caiwa Antimony Deposit in Danfeng County in Shanxi Province[J]. Shandong Land and Resources,2015 ,31 (1 ):18 −22 .[3] doi: 10.3969/j.issn.1674-7801.2012.05.009伏雄, 门道改, 李娜 . 河南大河沟—掌耳沟锑矿田地质特征及找矿潜力初评[J]. 矿产勘查,2012 ,3 (5 ):624 −631 . doi: 10.3969/j.issn.1674-7801.2012.05.009FU Xiong, MEN Daogai, LI Na . Geological characteristics of Dahegou-Zhangergou antimony field and evaluation on prospecting potential, Henan[J]. Minneral Exploration,2012 ,3 (5 ):624 −631 .[4] 高菊生 . 陕西蔡凹锑矿构造特征及其对成矿的控制[J]. 有色金属矿产与勘查,1999 ,8 (1 ):53 −59 .GAO Jusheng . Structures of the Caiwa Antimony deposit and their controles over Minerallzation, Shaanxi[J]. Geological exploration for non-ferrous metals,1999 ,8 (1 ):53 −59 .[5] 胡雄伟. 湖南锡矿山超大型锑矿床成矿地质背景及矿床成因[D]. 北京: 中国地质科学院, 1995. HU Xiongwei. The Geological Setting ang Genisis of Xikuangshan Super-Giant Antimony Deposits, Hunan, China[D]. Beijing: Chinese Academy of Geological Sciences, 1995. [6] doi: 10.3969/j.issn.1002-5065.2022.11.073胡兴旺, 赵灿, 朱满怀, 等 . 陕西省看山寺一带金锑矿地质特征与找矿标志研究[J]. 世界有色金属,2022 , (11 ):217 −219 . doi: 10.3969/j.issn.1002-5065.2022.11.073HU Xingwang, ZHAO Can, ZHU Manhuai, et al . Study on the Geological Characteristics and Prospecting Marks of Gold Antimony Mine in Guanshan Temple Shaanxi Province[J]. Non-ferrous Metals of the World,2022 , (11 ):217 −219 .[7] doi: 10.3969/j.issn.1009-6248.2006.03.005侯满堂, 唐永忠 . 陕西旬阳地区志留系铅锌矿带成矿地球化学特征及物理化学条件[J]. 西北地质,2006 ,39 (3 ):28 −38 . doi: 10.3969/j.issn.1009-6248.2006.03.005HOU Mantang, TANG Yongzhong . Metallogenic Geochemistry and Physico-Chemical Condition of Silurian Pb-Zn Mineralization in the Xunyang County, Shaanxi[J]. Northwestern Geology,2006 ,39 (3 ):28 −38 .[8] doi: 10.12401/j.nwg.2023179焦阳, 冯俊环 . 西秦岭地区猪婆沟金矿成矿物质来源及矿床成因分析[J]. 西北地质,2024 ,57 (1 ):219 −229 . doi: 10.12401/j.nwg.2023179JIAO Yang, FENG Junhuan . Source of ore Forming Materials and Genesis of Zhupogou Gold Deposit in West Qinling Mountains[J]. Northwestern Geology,2024 ,57 (1 ):219 −229 .[9] 李涛. 陕西镇安县金龙山地区金汞锑成矿特征及矿床成因研究[D]. 西安: 长安大学, 2013. LI Tao. Metallogenic charcteristics and genesis of Au-Hg-Sb ore deposits in Jinlongshan district in Zhen’an, Shanxi[D]. Xi’an: Chang’an University, 2013. [10] doi: 10.18654/1000-0569/2024.01.12李彬, 许德如, 柏道远, 等 . 湘西沃溪金锑钨矿床燕山期幕式成矿作用: 来自原位白钨矿U-Pb定年与黄铁矿元素-同位素的约束[J]. 岩石学报,2024 ,40 (1 ):215 −240 . doi: 10.18654/1000-0569/2024.01.12LI Bin, XU Deru, BAI Daoyuan, et al . Episodic mineralization at Yanshannian in the Woxi Au-Sb-W deposit, western Hunan, South China: Constraints from in-situ scheelite LA-ICP-MS U-Pb geochronology and element-isotope of pyrite[J]. Acta Petrologica Sinica,2024 ,40 (1 ):215 −240 .[11] 刘保申 . 卢氏掌耳沟锑矿田断裂构造控矿作用初步探讨[J]. 河南地质,1985 , (4 ):43 −47 .LIU Baoshen . A preliminary study on the ore-controlling effect of fault structure in Lui's Shuergou antimony ore field[J]. Geology of Henan,1985 , (4 ):43 −47 .[12] 刘文均 . 华南几个锑矿床的成因探讨[J]. 成都地质学院学报,1992 ,19 (2 ):13 −22 .LIU Wenjun . Genesis of Some Antimony Deposits in Southern China[J]. Journal of Chengdu College of Geology,1992 ,19 (2 ):13 −22 .[13] 吕鹏瑞, 姚文光, 吴亮, 等 . 巴基斯坦西北喜马拉雅构造结科希斯坦—拉达克地体Pb同位素组成特征及其示踪意义[J]. 西北地质,2015 ,48 (1 ):56 −62 .LÜ Pengrui, YAO Wenguang, WU Liang, et al . Lead Isotopic Compositions of the Kohistan-Ladakh Terrane in NW Himalayan Syntax, Pakistan and their Tracer Significance[J]. Northwestern Geology,2015 ,48 (1 ):56 −62 .[14] 马渊博. 南秦岭镇安−旬阳盆地金、汞、锑矿床成矿作用研究[D]. 西安: 西北大学, 2021. MA Yuanbo. Metallogenesis of gold, mercury and antimony deposits in the Zhen’an-Xunyang basin, South Qinling Orogen[D]. Xi'an: Northwest University,2021. [15] 毛景文, 杨宗喜, 谢桂青, 等 . 关键矿产———国际动向与思考[J]. 矿床地质,2019 ,38 (4 ):689 −698 .MAO Jingwen, YANG Zongxi, XIE Guiqing, et al . Critical minerals: International trends and thinking[J]. Mineral Deposits,2019 ,38 (4 ):689 −698 .[16] 孟浩. 陕西旬阳公馆Hg-Sb矿床地质地球化学特征及成因[D]. 北京: 中国地质大学(北京), 2020. MENG Hao. Geological and Geochemical Characteristics and Causes of Formation of the Gongguan Hg-Sb deposit, Shaanxi province, China[D]. Beijing: China University of Geosciences (Beijing), 2020. [17] doi: 10.3321/j.issn:0001-5717.2006.04.010彭渤, Robert F, 涂湘林 . 湘西沃溪W-Sb-Au 矿床白钨矿Nd-Sr-Pb 同位素对成矿流体的示踪[J]. 地质学报,2006 ,80 (4 ):561 −570 . doi: 10.3321/j.issn:0001-5717.2006.04.010PEN Bo, Robert F, XU Xianglin . Nd-Sr-Pb Isotopic Geochemistry of Scheelite from the Woxi W-Sb-Au Deposit, Western Hunan: Implications for Sources and Evolution of Ore-forming Fluids[J]. Acta Geological Sinica,2006 ,80 (4 ):561 −570 .[18] 秦拯纬. 北秦岭造山带早古生代岩浆作用及其大陆地壳演化意义[D]. 武汉: 中国地质大学, 2016. QIN Zhengwei. Early Paleozoic Magmatsm in the North Qinling Orogenic Belt and Its Implications for Continental Crust Evolution[D]. Wuhan: China University of Geosciences, 2016. [19] 沈能平, 苏文超, 符亚洲, 等 . 贵州独山巴年锑矿床硫、铅同位素特征及其对成矿物质来源的指示[J]. 矿物学报,2013 ,33 (3 ):271 −277 .SHEN Nengping, SU Wenchao, FU Yazhou, et al . Characteristics of Sulfur and Lead Isotopes for Banian Antimony Deposit in Dushan Area, Guizhou Province, China: Implication for Origin of Ore-forming Materials[J]. Acta Mieralogica Sinica,2013 ,33 (3 ):271 −277 .[20] doi: 10.12401/j.nwg.2023124孙非非, 张爱奎, 刘智刚, 等 . 东昆仑西段阿其音金矿成矿流体特征及其成因机制[J]. 西北地质,2023 ,56 (6 ):82 −94 . doi: 10.12401/j.nwg.2023124SUN Feifei, ZHANG Aikui, LIU Zhigang, et al . Analysis of the Genesis and H−O−S−Pb Isotopic Characteristics of Aqiyin Gold Deposit in the Western Section of the East Kunlun[J]. Northwestern Geology,2023 ,56 (6 ):82 −94 .[21] 陶琰, 高振敏, 金景福, 等 . 湘中锡矿山式锑矿成矿物质来源探讨[J]. 地质地球化学,2001 ,29 (1 ):14 −20 .TAO Yan, GAO Zhenmin, JIN Jingfu, et al . The Origin of Ore-Forming Fluid of Xikuangshan-Type Antimony Deposits in Central Hunan Province[J]. Geology Geochemistry,2001 ,29 (1 ):14 −20 .[22] 唐明锋. 陕西省旬阳县公馆−青铜沟汞锑金成矿带控矿构造与成矿作用专题研究[R]. 2021. [23] doi: 10.3969/j.issn.0001-5717.2019.06.003王登红 . 关键矿产的研究意义、矿种厘定、资源属性、找矿进展、存在问题及主攻方向[J]. 地质学报,2019 ,93 (6 ):1189 −1209 . doi: 10.3969/j.issn.0001-5717.2019.06.003WANG Denghong . Study on critical mineral resources, determination of types, attributes of resources, progress of prospecting, problems of utilization, and direction[J]. Acta Geologica Sinica,2019 ,93 (6 ):1189 −1209 .[24] 王长春, 袁攀, 吴新斌, 等 . 陕西略阳东沟坝多金属矿床地质特征及成矿规律研究[J]. 西北地质,2022 ,55 (4 ):300 −315 .WANG Changchun, YUAN Pan, WU Xinbin, et al . Study on Geological Characteristics and Metallogenic Regularity of the Donggouba Polymetallic Deposit in Lueyang, Shaanxi Province[J]. Northwestern Geology,2022 ,55 (4 ):300 −315 .[25] doi: 10.19981/j.cn23-1581/g3.2019.17.031王强, 刘振川, 车伟锋 . 陕西省旬阳县张坪-西岔汞锑多金属矿成矿地质条件分析[J]. 科技创新与应用,2019 , (17 ):69 −70 . doi: 10.19981/j.cn23-1581/g3.2019.17.031WANG Qiang, LIU Zhenchuan, CHE Weifeng . Analysis of metallogenic geological conditions of Zhangping-Xicha mercury-antimony polymetallic deposit in Xunyang County, Shaanxi Province[J]. Technology Innovation and Application,2019 , (17 ):69 −70 .[26] 王绪现 . 商县高岭沟一丹凤蔡凹锑矿带主要控矿因素和成因探讨[J]. 西北地质,1985 , (5 ):28 −37 .WANG Xuguan . Discussion on main ore-controlling factors and genesis of Gaolinggou-Danfeng Caiwa antimony ore belt in Shangxian County[J]. Northwestern Geology,1985 ,(5 ):28 −37 .[27] 王淑玲 . 锑资源形势分析[J]. 中国有色金属,2009 ,(24 ):64 −65 .WANG Shuling . Situation analysis of antimony resources[J]. Chinese Non-ferrous Metals,2009 ,(24 ):64 −65 .[28] 肖宪国. 贵州半坡锑矿床年代学、地球化学及成因[D]. 昆明: 昆明理工大学, 2014. XIAO Xianguo. Geochronology, Ore Geochemistry and Genesis of the Banpo Antimony Deposit, Guizhou Province, China[D]. Kunming: Kunming University, 2014. [29] 向舜. 陕西旬阳公馆Hg-Sb矿床成矿流体地球化学研究[D]. 北京: 中国地质大学(北京), 2020. XIANG Shun. Geochemical study on ore-forming fluids of the Gongguan Hg-Sb deposit in Xunyang mansion, Shaanxi Province[D]. Beijing: China University of Geosciences (Beijing), 2020. [30] 赵圣涛, 毛世德, 张文高, 等 . 辉锑矿在热液中的溶解度与沉淀机制: 来自热力学计算的约束[J]. 地球化学,2025 ,12 (1 ):1 −12 .ZHAO Shengtao, MAO Shide, ZHANG Wengao, et al . Stibnite solubility and precipitation in hydrothermal fluids: Constraints from thermodynamic modeling[J]. Geochimica,2025 ,12 (1 ):1 −12 .[31] 张拴厚, 韩芳林, 王根宝, 等. 陕西省区域地质志[M]. 北京: 地质出版社, 2013. [32] 张勇, 邵志刚, 陈伟男 . 陕西商洛市商州区看山寺金锑矿地质特征及找矿方向[J]. 能源研究与管理,2022 ,14 (3 ):42 −47 .ZHANG Yong, SHAO Zhigang, CHEN Weinan . Geological Characteristics and Prospecting Direction of Kanshansi Au-Sb Deposit, Shangzhou District, Shangluo City, Shaanxi Province[J]. Energy Research and Management,2022 ,14 (3 ):42 −47 .[33] 张颖, 陈衍景, 郝进平, 等 . 陕西旬阳公馆—青铜沟汞锑矿床地球化学研究[J]. 矿物学报,2010 ,30 (1 ):1 −8 .ZHANG Yin, CHEN Yanjing, HAO Jinping, et al . Geochemistry of Gongguan-Qingtonggou Hg-Sb deposit in Xunyang, Shaanxi Province[J]. Acta Mineralogica Sinica,2010 ,30 (1 ):1 −8 .[34] doi: 10.3969/j.issn.1004-4051.2014.10.004周艳晶, 李建武, 王高尚, 等 . 全球锑矿资源分布及开发现状[J]. 中国矿业,2014 ,23 (10 ):13 −16 . doi: 10.3969/j.issn.1004-4051.2014.10.004ZHOU Yanjing, LI Jianwu, WANG Gaoshang, et al . Distribution and development situation of global antimony resources[J]. China Mining Magazine,2014 ,23 (10 ):13 −16 .[35] 中国自然资源报 . 北秦岭高岭沟——五里川成矿带找锑获进展[J]. 黄金科学技术,2024 ,32 (1 ):54 .China Natural Resources News . Progress in finding antimony in the Gaolinggou-Wulichuan metallogenic belt, North Qinling Mountains[J]. Gold Science and Technology,2024 ,32 (1 ):54 .[36] 朱炳泉. 地球科学中同位素体系理论与应用——兼论中国大陆壳幔演化[M]. 北京: 科学出版社, 1998, 1−330. [37] doi: 10.1016/S0009-2541(98)00142-9Breeding M . Comparing yttrium and rare earths in hydrothermal fluids from the Mid-Atlantic Ridge: implications for Y and REE behaviour during near-vent mixing and for the Y/Ho ratio of Proterozoic seawater[J]. Chemical Geology,1999 ,155 (1−2 ):77 −90 .[38] doi: 10.2113/gsecongeo.80.1.126Drummond S E, Ohmoto H . Chemical evolution and mineral deposition in boiling hydrothermal systems[J]. Economic Geology,1985 ,80 (1 ):126 −147 .[39] doi: 10.1016/S0016-7037(99)00024-1Douville E, Bienvenu P, Charlou J L, et al . Yttrium and rare earth elements in fluids from various deep-sea hydrothermal systems[J]. Geochimica et Cosmochimica Acta,1999 ,63 (5 ):627 −643 .[40] Fu S L, Hu R Z, Bi X W, et al.Trace element composition of stibnite: Substitution mechanism and implications for the genesis of Sb deposits in southern China[J]. Applied Geochemistry, 2020, 118: 104637. [41] Li W, Xie G Q, Mao J W, et al . Precise age constraints for the Woxi Au-Sb-W deposit, south China[J]. Economic Geology,2023 ,118 (2 ):509 −518 .[42] Krupp R E . Solnbility of stibnite in hydrogen sulfide solutions, speciation and equilibrium constants from 25 to 350 °C[J]. Geochimica et Cosmochimica Acta,1988 ,52 :3005 −3015 .[43] Ohmoto H, Rye R O. Isotopes of sulfur and carbon[M]. New York: Wiley, 1979, 979: 509−567. [44] Olsen N J, Mountain B W, Seward T M . Antimony (III) Speciation in Hydrosulfide Solutions from 70 to 400 ℃ and up to 300 bar[J]. ACS Earth and Space Chemistry,2019 ,3 :1058 −1072 .[45] doi: 10.2113/gsecongeo.67.5.551Ohmoto H . Systematics of sulfur and carbon isotopes in hydrothermal ore deposits[J]. Economic Geology,1972 ,67 (5 ):551 −578 .[46] doi: 10.1016/0016-7037(96)00212-8Papike J J, Fowler G W, Shearer C K, et al . Ion microprobe investigation of plagioclase and orthopyroxene from lunar Mg-suite norites: Implications for calculating parental melt REE concentrations and for assessing postcrystallization REE redistribution[J]. Geochimica et Cosmochimica Acta,1996 ,60 (20 ):3967 −3978 .[47] doi: 10.2138/rmg.2006.61.12Seal R R . Sulfur Isotope Geochemistry of Sulfide Minerals[J]. Reviews in Mineralogy and Geochemistry,2006 ,61 (1 ):633 −677 .[48] doi: 10.1144/GSL.SP.1989.042.01.19Sun S S, McDonough W F . Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society, London, Special Publications,1989 ,42 (1 ):313 −345 .[49] doi: 10.1016/0040-1951(81)90213-4Zartman R E, Doe B R . Plumbotectonics—the model[J]. Tectonophysics,1981 ,75 (1−2 ):135 −162 . -