The Discovery and Significance of Permian Emishan Basalt Formation and Rare Earth Enrichment Layer in Central Guizhou
-
摘要:
在开展“贵州1∶5万息烽幅矿产地质调查”项目工作过程中,笔者在该幅西部旗山地区新填绘出峨眉山玄武岩组和稀土矿化点,并对其上覆地层龙潭组底部假整合面附近地层实施了大比例尺剖面测量和刻槽取样,并对采集样品进行稀土分量和稀土氧化物总量分析。研究结果显示,研究剖面下部可采厚度1 m,加权平均为0.29%,矿化系数3.63;中部可采厚度1.4 m,稀土氧化物总量0.09%,矿化系数1.125;上部可采厚度1 m,加权平均为0.09%,矿化系数1.125。整体均具有进一步调查评价的价值,下部1 m潜力最大。该发现扩大了玄武岩风化壳的找矿范围,为黔中地区对区域寻找同类型矿产资源提供了找矿方向,为峨眉山大火成岩省表生/次生成矿作用研究提供了示范案例。
Abstract:During the implementation of the "1∶50,000 Geological Survey of the Xifeng Mining Area in Guizhou" project, the Emei Mountain Basalt Formation and rare earth mineralization sites was newly identified by the author in the Qishan region, situated to the west of Xifeng. Extensive profiling and channel sampling were conducted on the strata near the bottom false conformity of the overlying Longtan Formation. Subsequently, the rare earth elements and total rare earth oxides in the collected samples were analyzed. The results indicate that the lower section exhibits a mineable thickness of 1 m, with a weighted average of 0.29% and a mineralization coefficient of 3.63. The central section has a mineable thickness of 1.4 m, a total rare earth oxide content of 0.09%, and a mineralization coefficient of 1.125. The upper section features a mineable thickness of 1 m, a weighted average of 0.09%, and a mineralization coefficient of 1.125. All these sections warrant further investigation, with the lower 1 m section showing the greatest potential. This discovery not only broadens the exploration scope for basalt weathering crusts but also provides a direction for prospecting similar mineral resources in central Guizhou. Furthermore, it offers a valuable case study and research subject for investigating epigenetic/secondary mineralization within the Emeishan Large Igneous Province.
-
Key words:
- rare earth enrichment /
- Permian /
- Longtan Formation /
- Emeishan basalt Formation /
- Central Guizhou region
-
-
图 1 川滇黔相邻区稀土矿床(点)分布简图(据龚大兴等,2023修)
Figure 1.
图 7 贵州息烽旗山剖面稀土元素球粒陨石标准化配分模式图(峨眉山玄武岩稀土元素数引自文献廖宝丽等,2013)
Figure 7.
表 1 贵州息烽县旗山剖面稀土元素(10−6)分析结果及相关参数
Table 1. The analysis results and related parameters of rare earth elements(10−6) in the Qishan Profile, Xifeng County, Guizhou Province
样品号 H0 H1 H2 H3 H4 H5 平均值 La 679.70 231.00 119.70 126.00 88.64 116.50 226.92 Ce 1461.00 494.40 282.30 325.70 179.60 252.30 499.22 Pr 174.90 55.72 32.05 40.67 22.42 29.52 59.21 Nd 627.00 224.60 118.20 159.60 83.42 103.80 219.44 Sm 131.50 43.77 20.80 29.26 13.47 14.60 42.23 Eu 26.39 9.51 3.34 4.14 2.36 2.56 8.05 Gd 110.60 40.66 19.58 22.95 13.00 15.02 36.97 Tb 20.08 6.67 3.52 3.72 2.30 2.65 6.49 Dy 101.40 32.48 19.70 18.40 12.42 15.11 33.25 Ho 19.27 5.51 4.29 3.74 2.45 3.04 6.38 Er 55.41 13.87 13.17 11.43 6.80 8.85 18.25 Tm 8.58 1.90 2.25 1.88 1.04 1.43 2.85 Yb 49.39 10.61 13.06 11.07 5.80 8.21 16.36 Lu 6.59 1.31 1.87 1.55 0.79 1.12 2.20 ΣREE 3471.81 1172.01 653.82 760.10 434.51 574.70 1177.82 LREE 3100.49 1059.00 576.39 685.37 389.91 519.28 1055.07 HREE 371.32 113.01 77.44 74.74 44.60 55.42 122.75 L/H 8.35 9.37 7.44 9.17 8.74 9.37 8.74 δCe 1.01 1.04 1.09 1.08 0.96 1.02 1.03 δEu 0.71 0.73 0.54 0.52 0.58 0.56 0.61 TREO 4746.42 1567.46 934.50 1029.44 609.98 784.26 1612.01 注:L/H为轻、重稀土含量的比值;δCe=CeN/(LaN×PrN)1/2;δEu=EuN/(SmN×GdN)1/2;球粒陨石值据文献 Sun et al., 1989。 表 2 稀土元素数据分析结果对比表(10−6)
Table 2. Comparative table of rare earth element data analysis results (10−6)
参数 水城–纳雍地区① 威宁地区② 赫章地区③ 峨眉山玄武岩④ 息烽地区
(本次研究)ΣREE 556 4272 557 281 1178 LREE 496 3737 513 253 1055 HREE 60 535 45 28 123 L/H 8.27 8.15 11.40 9.05 8.60 δEu 0.70 0.31 0.77 1.10 0.61 注:①引自文献衮民汕等,2021,峨眉山玄武岩之上44个样品平均值;②引自文献陈智等,2017,峨眉山玄武岩之上7个样品平均值;③引自文献罗香建等,2023,峨眉山玄武岩之上21个样品平均值;④引自文献毛德明等,1992 表 3 贵州息烽县旗山剖面稀土富集层不同岩性稀土氧化物总量统计表
Table 3. Statistical table of total rare earth oxides of different lithologies in Qishan section of Xifeng County, Guizhou Province
样品号 岩性 可采厚度
(m)稀土氧化物总量(10−2) 矿化系数
(样品稀土氧化物总量/
最低工业品位)含量区间 加权平均 H0 灰绿色、深灰色薄–中层状黏土岩 1 0.16~0.48 0.29 3.625 H1 H2 灰白色、白色薄层在黏土岩 1.4 0.09 0.09 1.125 H3 灰白色、灰色、灰绿色、
灰黑色极薄–薄层状黏土岩1 0.06~0.10 0.09 1.125 H4 H5 -
[1] 池汝安, 田君 . 风化壳淋积型稀土矿评述[J]. 中国稀土学报,2007 (6 ):641 −650 .CHI Ru’an, TIAN Jun . Review of weathered crust rare earth ore[J]. Journal of the Chinese Rare Earth Society,2007 (6 ):641 −650 .[2] 陈智, 侯林洋, 莫兆 . 贵州威宁玉龙铌矿化体的发现及其意义[J]. 贵州地质,2015 ,32 (3 ):177 −180 .CHEN Zhi, HOU Linyang, MO Zhao . Discovery of Niobium Mineralization Body and Its Significance in Yulong[J]. Weining, Guizhou,2015 ,32 (3 ):177 −180 .[3] 陈文一, 刘家仁, 王中刚, 等 . 贵州峨眉山玄武岩喷发期的岩相古地理研究[J]. 古地理学报,2003 ,5 (1 ):17 −28 .CHEN Wenyi, LIU Jiaren, WANG Zhonggang, et al . Study on Lithofacies Palaeogeography During the Permian Emeishan Basalt Explosion in Guizhou Province[J]. Journal of Palaeogeography,2003 ,5 (1 ):17 −28 .[4] 陈智, 郑禄林, 陈军, 等 . 贵州威宁玉龙铌矿稀土富集层的发现及其成矿意义[J]. 稀土,2017 ,38 (6 ):117 −124 .CHEN Zhi, ZHENG Lulin, CHEN Jun, et al . The Discovery and Metallogenic Significance of Accumulation Zone of Rare Earth Elements in Xuanwei Group of Yulong Niobium Deposit, Weining, Western Guizhou[J]. Chinese Rare Earths,2017 ,38 (6 ):117 −124 .[5] 丁枫, 陈洪德, 侯明才, 等 . 黔南坳陷二叠系层序地层特征及岩相古地理[J]. 成都理工大学学报(自然科学版),2012 ,39 (1 ):76 −82 .DING Feng, CHEN Hongde, HOU Mingcai, et al . Characteristics of the Permian sequence stratigraphy and the paleogeographic environment in South Guizhou sag, China[J]. Journal of Chengdu University of Technology (Science and Technology Edition),2012 ,39 (1 ):76 −82 .[6] 衮民汕, 蔡国盛, 曾道国, 等 . 贵州西部二叠系峨眉山玄武岩顶部古风化壳钪-铌-稀土矿化富集层的发现与意义[J]. 矿物学报,2021 ,41 (4 ):531 −547 .GUN Minshan, CAI Guosheng, ZENG Daoguo, et al . Discovery and significance of the Sc-Nb-REE-enriched zone in the paleocrust of weathering atop the Permian Emeishan basalt in the western Guizhou, China[J]. Acta Mineralogica Sinica,2021 ,41 (4 ):531 −547 .[7] 龚大兴, 田恩源, 肖斌, 等 . 川滇黔相邻区古陆相沉积型稀土的发现及意义[J]. 矿床地质,2023 ,42 (5 ):1025 −1033 .GONG Daxing, TIAN Enyuan, XIAO Bin, et al . Significance and discovery of sedimentary REE deposits in adjacent areas of Sichuan, Yunnan and Guizhou[J]. Mineral Deposits,2023 ,42 (5 ):1025 −1033 .[8] 黄成敏, 王成善 . 风化成土过程中稀土元素地球化学特征[J]. 稀土,2002 ,23 (5 ):46 −49 .HUANG Chengmin, WANG Chengshan . Geochemical Features of Rare Earth Elements in Process of Rock Weathering and Soil Formation[J]. Chinese Rare Earths,2002 ,23 (5 ):46 −49 .[9] 李善平, 谢智勇, 李小雪, 等 . 青海大风山天青石矿稀土元素地球化学特征及物源分析[J]. 稀土,2013 ,34 (1 ):41 −48 .LI Shanping, XIE Zhiyong, LI Xiaoxue, et al . REE Geochemical Characteristics and Provenance Analysis of Dafengshan Celestite Deposit, Qinghai Province[J]. Chinese Rare Earths,2013 ,34 (1 ):41 −48 .[10] 廖宝丽. 贵州二叠纪碱性玄武岩的岩石学和地球化学研究[D]. 北京: 中国地质大学(北京), 2013. LIAO Baoli, Study of petrology and geochemistry of the Permian alkaline basalts in Guizhou Province[J]. Beijing: China University of Geosciences, 2013. [11] 罗香建, 覃英, 卢树藩, 等 . 赫章辅处地区沉积型富稀土岩系地球化学特征及物源分析[J]. 矿物学报,2023 ,43 :1 −17 .LUO Xiangjian, QIN Ying, LU Shufan, et al . Geochemical characteristics and provenance analysis of the sedimentary type REE-rich rock series in the Fuchu area, Hezhang county, Guizhou, China[J]. Acta Mineralogica Sinica,2023 ,43 :1 −17 .[12] 毛德明, 张启厚, 安树仁. 贵州西部峨眉山玄武岩及有关矿产[M]. 贵阳: 贵州科技出版社, 1992. [13] 王伟, 杨瑞东, 鲍淼, 等 . 贵州峨眉山玄武岩区风化壳与成矿关系[J]. 贵州大学学报: 自然科学版,2007 ,23 (4 ):366 −370 .WANG Wei, YANG Ruidong, BAO Miao, et al . Discussion on the mineralization associated with the wearthering crust on E’meishan basalt in Guizhou Province, China[J]. Jounal of Guizhou University (Natural Sciences),2007 ,23 (4 ):366 −370 .[14] 徐义刚, 何斌, 罗震宇, 等 . 我国大火成岩省和地幔柱研究进展与展望[J]. 矿物岩石地球化学通报,2013 ,32 (1 ):25 −39 .XU Yigang, HE Bin, LUO Zhenyu, et al . Study on Mantle Plume and Large Igneous Provinces in China: An Overview and Perspectives[J]. Bulletin of Mineralogy, Petrology and Geochemistry,2013 ,32 (1 ):25 −39 .[15] 杨瑞东, 王伟, 鲍淼, 等 . 贵州赫章二叠系玄武岩顶部稀土矿床地球化学特征[J]. 矿床地质,2006 ,25 (S1 ):205 −208 .YANG Ruidong, WANG Wei, BAO Miao, et al . Geochemical character of rare earth mineral from the top of Permian basalt, Hezhang County, Guizhou Province[J]. Mineral Deposits,2006 ,25 (S1 ):205 −208 .[16] 杨瑞东, 鲍淼, 廖琍, 等 . 贵州西部中、上二叠统界线附近风化壳类型及成矿作用[J]. 矿物学报,2007 ,27 (1 ):41 −48 .YANG Ruidong, BAO Miao, LIAO Li, et al . Ancient Weathering Crust and its Mineralization Near the Middle-upper Permian Boundary in Western Guizhou Province, China[J]. Acta Mineralogica Sinica,2007 ,27 (1 ):41 −48 .[17] 杨斌清, 张贤平 . 世界稀土生产与消费结构分析[J]. 稀土,2014 ,35 (1 ):110 −117 .YANG Binqing, ZHANG Xianping . Analysis of Global Rare Earth Production and Consumption Structure[J]. Chinese Rare Earths,2014 ,35 (1 ):110 −117 .[18] doi: 10.3969/j.issn.1671-1505.2000.01.002杨玉卿, 冯增昭 . 中国南方二叠纪沉积体系[J]. 古地理学报,2000 ,2 (1 ):11 −18 . doi: 10.3969/j.issn.1671-1505.2000.01.002YANG Yuqing, FENG Zengzhao . Permian Depositional Systems in South China[J]. Journal of Palaeogeography,2000 ,2 (1 ):11 −18 .[19] 叶远谋, 付勇, 周克林, 等 . 贵州西部二叠系龙潭组底部粘土岩物质来源分析[J]. 矿物学报,2018 ,38 (6 ):655 −665 .YE Yuanmo, FU Yong, ZHOU Kelin, et al . Provenance Analysis of Claystone at the Base of the Permian Longtan Formation in Western Guizhou[J]. Acta Mineralogica Sinica,2018 ,38 (6 ):655 −665 .[20] 朱江, 张招崇, 候通, 等 . 贵州盘县峨眉山玄武岩系顶部凝灰岩LA-ICP-MS锆石U-Pb年龄对峨眉山大火成岩省与生物大规模灭绝关系的约束[J]. 岩石学报,2011 ,27 (9 ):2743 −2751 .ZHU Jiang, ZHANG Zhaochong, HOU Tong, et al . LA-ICP-MS zircon U-Pb geochronology of the tuffs on the uppermost of the Emeishan basalt succession in Panxian County, Guizhou Province: Constraints on genetic link between Emeishan large igneous province and the mass extinction[J]. Acta Petrologica Sinica,2011 ,27 (9 ):2743 −2751 .[21] 张海. 黔西北地区稀土矿床地质地球化学特征及其成矿机制研究[D]. 成都: 成都理工大学, 2014. ZHANG Hai. Geological and Geochemical Characteristics and Metallogenic Mechanism of REE Deposits, Northwestern Guizhou[D]. Chengdu: Chengdu University of Technology, 2014. [22] 张震, 戴朝辉 . 贵州稀土矿及成矿地质特征[J]. 矿产与地质,2010 (5 ):433 −439 .ZHANG Zhen, DAI Chaohui . Rare earth ore and metallogenic geological characteristics in Guizhou[J]. Mineral Resources and Geology,2010 (5 ):433 −439 .[23] doi: 10.1016/S0016-7037(00)00345-8Aiuppa A, Allard P, D'Alessandro W, et al . Mobility and fluxes of major, minor and trace metals during basalt weathering and groundwater transport at Mt Etna volcano (Sicily)[J]. Geochimica et Cosmochimica Acta,2000 ,64 (11 ):1827 −1841 .[24] Barth M G, McDonough W F, Rudnick R L . Tracking the budget of Nb and Ta in the continental crust[J]. Chemical Geology,2000 ,165 (3 ):197 −213 .[25] Guo F, Fan W M, Wang Y J, et al . When did the Emeishan Mantle Plume activity start? Geochronological and geochemical evidence from ultramafic -mafic dikes in southwestern China[J]. International Geology Review,2004 ,46 (3 ):6 −234 .[26] doi: 10.1111/1755-6724.14508Gong D X, Hui B, Dai Z M, et al . A new type of REE Deposit found in clay rock at the top of the Permian Emeis- han basalt in Yunnan-Guizhou area[J]. Acta Geologica Sinica(English Edition),2020 ,94 :204 −205 .[27] doi: 10.1016/j.chemgeo.2003.08.013Hongbing J, Shijie W, Ziyuan O, et al . Geochemistry of red residua underlying dolomites in karst terrains of Yun-nan-Guizhou Plateau[J]. Chemical Geology,2004 ,203 (1-2 ):29 −50 .[28] doi: 10.1086/498103He B, Xu Y G, Wang Y M, et al . Sedimentation and lithofacies Paleogeography in southwestern China before and after the Emeishan flood volcanism: new insights into surface response to mantle plume activity[J]. Journal of Geology,2006 ,114 (1 ):117 −132 .[29] Lo C H, Chung S L, LEE T Y . Age of the Emeishan flood magmatism and relations to Permian - Triassic boundary events[J]. Earth Planet Sci Lett,2002 ,198 (3 ):449 −458 .[30] doi: 10.1144/GSL.SP.1989.042.01.19Sun S S, Mcdonough W F . Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society London Special Publications,1989 ,42 (1 ):313 −345 .[31] doi: 10.1016/S1002-0721(08)60177-5Yang R D, Wang W, Zhang X D, et al . A new type of rare earth elements deposit in weathering crust of Permian basalt in western Guizhou, NW China[J]. Journal of Rare Earths,2008 ,26 (5 ):753 −759 .[32] Zhou Y, Bohor B F, Ren Y . Trace element geochemistry of altered volcanic ash layers (tonsteins) in Late Permian coal-bearing formations of eastern Yunnan and western Guizhou Provinces, China[J]. International Journal of Coal Geology,2000 ,44 (3 ):305 −324 . -