Progress of Remote Sensing Geological Prospecting Domestic and Abroad in Recent Years
-
摘要:
近年来,随着卫星、航空和地面遥感数据源及处理技术的快速发展,国内外遥感地质找矿在技术方法与应用领域方面取得了显著进展。笔者系统梳理了目前主要的卫星遥感数据、航空高光谱遥感数据和地面数据。其中,Landsat-8、ASTER和Sentinel-2等多光谱影像应用最为广泛,GF-5、ZY1-02D等国产卫星高光谱遥感数据已覆盖全球大部分陆地范围,可满足全球矿产资源勘查数据需求,展现出巨大的应用潜力与社会经济效益;Headwall、HySpex和SSMAP等无人机高光谱传感器在矿区尺度岩性及矿物识别中潜力巨大。遥感技术在岩性分类、矿化蚀变信息提取、构造提取及遥感找矿模型方面均取得了良好的应用效果,随着人工智能技术的发展,其在遥感地质找矿中必将发挥更大的作用。目前,遥感地质找矿仍面临植被覆盖区等复杂地貌景观区示矿弱信息提取及遥感数据的尺度差异等问题,未来还需在多源遥感数据融合技术、更广阔的应用拓展及人工智能找矿应用方面进一步探索。
Abstract:In recent years, with the rapid development of satellite, aerial and ground remote sensing data sources and processing technology, significant progress has been made in the technical methods and applications of remote sensing geological prospecting at home and abroad. In this paper, major satellite remote sensing data, aerial hyperspectral remote sensing data and ground data are systematically reviewed. Among them, multi-spectral images such as Landsat-8, ASTER and Sentinel-2 are the most widely used, and hyperspectral remote sensing data of domestic satellites such as GF-5 and ZY1-02D have covered most of the world's land area. It can meet the demand of global mineral resources exploration data and show great application potential and social and economic benefits. UAV hyperspectral sensors such as Headwall, HySpex and SSMAP have great potential in lithology and mineral identification at mining area scale. Remote sensing technology has achieved good application results in lithology classification, mineralization alteration information extraction, structure extraction and remote sensing prospecting model. With the development of artificial intelligence technology, it will play a greater role in remote sensing geological prospecting. At present, remote sensing geological prospecting still faces problems such as weak ore information extraction and scale difference of remote sensing data in complex landscape areas such as vegetated areas. In the future, further exploration is needed in multi-source remote sensing data fusion technology, broader application expansion and artificial intelligence prospecting application.
-
-
图 2 青海省都兰县阿斯哈金矿区蚀变带1∶100高光谱地物分布图(孙雨等,2015)
Figure 2.
图 3 花牛山地区蚀变矿物实测光谱曲线图(孙雨等,2022)
Figure 3.
图 4 西昆仑成矿带西部研究区 RI与SI 指数岩性分类结果(于亚凤等,2015)
Figure 4.
图 5 高光谱混合像元分解技术路线图(于岩,2015)
Figure 5.
图 6 甘肃方山口地区蚀变矿物区域分布图(据 SASI 数据源)(刘德长等,2017)
Figure 6.
图 7 新疆白杨河铀矿床蚀变矿物图(Zhang et al.,2022)
Figure 7.
图 8 巴基斯坦查盖斑岩铜矿带Al-OH吸收波长图(Liu et al.,2024)
Figure 8.
图 9 西藏多龙地区成矿预测图(胡滨等,2014)
Figure 9.
表 1 国内外主要多光谱遥感卫星参数一览表
Table 1. Parameters of major multispectral remote sensing satellites worldwide
卫星名称 卫星发射国家 光谱范围(μm) 空间分辨率(m) 重访时间(d) 波段数量 Landsat-1~3 美国 0.50~1.10 80 18 4 Landsat-4~5 0.45~2.35 30 16 6 10.40~12.50 120 16 1 Landsat7 0.45~2.35 30 16 6 10.40~12.50 60 16 1 Landsat-8~9 0.43~2.29 30 16 7 10.60~12.51 100 16 2 Terra ASTER 0.52~0.86 15 16 3 1.60~2.43 30 16 6 8.125~11.65 90 16 5 Sentinel-2 欧洲 0.43~2.30 10/20/60 5 12 ZY1-02C 中国 0.52~0.89 10 3 4 ZY1-02D 0.45~1.047 10 3 9 ZY-3 0.45~0.89 6 5 4 GF-1 0.45~0.89 8/16 4 4 GF-2 0.45~0.89 4 5 4 GF-4 0.45~0.90 50 20 s 5 3.50~4.10 400 20 s 1 GF-5 0.45~2.35 20 5 6 3.50~12.5 40 5 6 GF-6 0.45~0.90 8 4 4 0.45~0.90 16 2 8 GF-7 0.45~0.89 3.2 5 4 HJ1A/1B,HJ2A/2B 0.43~0.90 30 4 4 SDGSAT-1 0.374~0.911 10 1 7 8~12.50 30 1 3 表 2 国内外主要高光谱遥感卫星参数一览表
Table 2. Parameters of major hyperspectral remote sensing satellites worldwide
卫星 卫星发射国家 光谱范围(μm) 光谱分辨率(nm) 空间分辨率(m) 重访时间(d) 波段数量 EO-1 美国 0.357~2.567 10 30 16 242 PRISMA 意大利 0.40~2.50 6.5/10 30 29 239 EnMAP 德国 0.42~2.45 10 30 27 224 ZY1-02D、ZY1-02E 中国 0.40~2.50 10/20 30 3 166 GF-5、GF-5 01A、GF-5B 0.40~2.50 5/10 30 5 330 HJ1A/1B,HJ2A/2B 0.45~0.95 5 100 4 110~128 -
[1] 白杨林, 吕凤军, 苏鸿博, 等. 高光谱遥感蚀变矿物信息提取研究综述[J]. 遥感信息, 2023, 38(1): 1−10.
BAI Yanglin, LV Fengjun, SU Hongbo, et al. Review of Hyperspectral Remote Sensing Altered Mineral Information Extraction[J]. Remote Sensing Information,2023,38(1):1−10.
[2] 陈硕彦. 秦岭地区的线、环构造及其地质、成矿意义[J]. 西北地质科学, 1983(6): 27−39.
CHEN Shuoyan. The Linear and Circular Structures in Qinling Area And its Significance[J]. Northwest Geoscience,1983(6):27−39.
[3] 代晶晶. 埃塞俄比亚西部岩浆熔离型铁矿遥感找矿模型[J]. 遥感技术与应用, 2012, 27(3): 380−386. doi: 10.11873/j.issn.1004-0323.2012.3.380
DAI Jingjing. Remote Sensing Model for Magma Tic Liquation Iron Deposit Prediction in Western Ethiopia[J]. Remote Sensing Technology and Application,2012,27(3):380−386. doi: 10.11873/j.issn.1004-0323.2012.3.380
[4] 韩海辉, 王艺霖, 任广利, 等. 蚀变矿物的遥感信息提取研究——以北山方山口为例[J]. 地质找矿论丛, 2016, 31(2): 270−275. doi: 10.6053/j.issn.1001-1412.2016.02.016
HAN Haihui, WANG Yilin, REN Guangli, et al. Extraction of altered mineral from remote sensing data in fangshankou, Beishan area[J]. Contributions to Geology and Mineral Resources Research,2016,31(2):270−275. doi: 10.6053/j.issn.1001-1412.2016.02.016
[5] 胡滨, 王锐, 何政伟, 等. 遥感技术在西藏朱诺地区岩性识别中的应用[J]. 桂林理工大学学报, 2014, 34(4): 651−658. doi: 10.3969/j.issn.1674-9057.2014.04.009
HU Bin, WANG Rui, HE Zhengwei, et al. Application of remote sensing technique for lithologic identification in Zhunuo region of Tibet[J]. Journal of Guilin University of Technology,2014,34(4):651−658. doi: 10.3969/j.issn.1674-9057.2014.04.009
[6] 胡滨. 基于多源遥感数据的西藏多龙地区热液蚀变矿物提取方法研究[D]. 武汉: 中国地质大学(武汉), 2020.
HU Bin. The study of methods for mapping hydrothermally altered minerals with multi-source remote sensing data in the Duolong area[D]. Hubei: China University of Geosciences(Wu Han), 2020.
[7] 黄祥芝. 湖北随州—大悟地区遥感预测成矿研究[J]. 资源环境与工程, 2012, 26(4): 388. doi: 10.3969/j.issn.1671-1211.2012.04.016
HUANG Xiangzhi. Study of Metallogenic Prognosis Based on Remote Sensing of Suizhou-Dawu Area, Hubei Province[J]. Resources Environment & Engineering,2012,26(4):388. doi: 10.3969/j.issn.1671-1211.2012.04.016
[8] 金剑, 田淑芳, 焦润成, 等. 基于地物光谱分析的 WorldView-2 数据岩性识别: 以新疆乌鲁克萨依地区为例[J]. 现代地质, 2013, 27(2): 489. doi: 10.3969/j.issn.1000-8527.2013.02.031
JIN Jian, TIAN Shufang, JIAO Runcheng, et al. Lithology Identification with WorldView-2 Data Based on Spectral Analysis of Surface Features: A Case Study of Wulukesayi District in Xinjiang[J]. Geoscience,2013,27(2):489. doi: 10.3969/j.issn.1000-8527.2013.02.031
[9] 蓝金辉, 邹金霖, 郝彦爽, 等. 高光谱遥感影像混合像元分解研究进展[J]. 遥感学报, 2018, 22(1): 13−27.
LAN Jinhui, ZOU Jinlin, HAO Yanshuang, et al. Research progress on unmixing of hyperspectral remote sensing imagery[J]. Journal of Remote Sensing,2018,22(1):13−27.
[10] 刘德长, 李志忠, 王俊虎. 我国遥感地质找矿的科技进步与发展前景[J]. 地球信息科学学报, 2011, 13(4): 431−438. doi: 10.3724/SP.J.1047.2011.00431
LIU Dechang, LI Zhizhong, WANG Junhu. The Technology Progress and Developing Future of Remote Sensing Geological Prospecting in China[J]. Journal of Geo-information Science,2011,13(4):431−438. doi: 10.3724/SP.J.1047.2011.00431
[11] 刘德长, 田丰, 邱骏挺, 等. 柳园-方山口地区航空高光谱遥感固体矿产探测及找矿效果[J]. 地质学报, 2017, 91(12): 2781−2795. doi: 10.3969/j.issn.0001-5717.2017.12.014
LIU Dechang, TIAN Feng, QIU Junting, et al. Application of Hyperspectral Remote Sensing in Solid Ore Exploration in the Liuyuan-Fangshankou Area[J]. Acta Geologica Sinica,2017,91(12):2781−2795. doi: 10.3969/j.issn.0001-5717.2017.12.014
[12] 梅佳成, 刘磊, 尹春涛, 等. 基于光谱—空间特征的ASTER影像岩性分类研究——以甘肃北山白峡尼山地区为例[J]. 地质论评, 2024, 70(1): 239−250.
MEI Jiacheng, LIU Lei, YIN Chuntao, et al. Study on lithologic classification of ASTER image based on spectral—spatial features——A case study of Baixiani Mountain, Beishan Mounntains, Gansu Province[J]. Geological Review,2024,70(1):239−250.
[13] 闵祥军, 朱永豪, 田庆久, 等. MAIS 成像光谱仪飞行定标和反射率反演[J]. 遥感学报, 1997, 1(3): 178−184. doi: 10.11834/jrs.19970303
MIN Xiangjun, ZHU Yonghao, TIAN Qingjiu, et al. In-filght Radiometric Calibration of MAIS Imaging Spectrometerand Reflectance Retrieval from its Image[J]. National Remote Sensing Bulletin,1997,1(3):178−184. doi: 10.11834/jrs.19970303
[14] 牟多铎, 刘磊. ELM与SVM在高光谱遥感图像监督分类中的比较研究[J]. 遥感技术与应用, 2019, 34(1): 115−124.
MOU Duoduo, LIU Lei. Comparative Study of ELM and SVM in Hyperspectral Image Supervision Classification[J]. Remote Sensing Technology and Application,2019,34(1):115−124.
[15] 孙伟伟, 杨刚, 陈超, 等. 中国地球观测遥感卫星发展现状及文献分析[J]. 遥感学报, 2020, 24(5): 479-510.
SUN Weiwei, YANG Gang, CHEN Chao, et al. Development Status and Literature Analysis of China’s Earth Observation Remote Sensing Satellites[J]. Journal of Remote Sensing, 2020, 24 (5): 479-510.
[16] 裴秋明, 沈家乐, 王世明, 等. 多源遥感卫星数据在脉状萤石矿床中的找矿预测应用: 以内蒙古水头萤石矿床为例[J]. 西北地质, 2024, 57(4): 121−134.
PEI Qiuming,SHEN Jiale,WANG Shiming,et al. Exploring Luorite Veins Using Multi-source Remote Sensing Astellite Data: A Case Study from the Shuitou Fluorite Deposit in Inner Mongolia, China[J]. Northwestern Geology,2024,57(4):121−134.
[17] 孙雨, 刘家军, 赵英俊, 等. 基于 GF-5 高光谱数据的蚀变矿物填图及地质应用——以甘肃省瓜州县花牛山地区为例[J]. 中国地质, 2022, 49(2): 558−574. doi: 10.12029/gc20220214
SUN Yu, LIU Jiajun, ZHAO Yingjun, et al. Alteration mineral mapping based on the GF-5 hyperspectral data and its geological application: An example of the Huaniushan area in Guazhou County of Gansu Province[J]. Geology in China,2022,49(2):558−574. doi: 10.12029/gc20220214
[18] 孙雨, 赵英俊, 李瀚波, 等. 青海省都兰县阿斯哈金矿区HySpex高光谱矿物填图及其找矿意义[J]. 地质学报, 2015, 89(1): 195−203.
SUN Yu, ZHAO Yingjun, LI Hanbo, et al. HySpex Hyperspectral Mineral Mapping of Asiha Gold Ore District in Dulan County Qinghai Province and Its Prospecting Implications[J]. Acta Geologica Sinica,2015,89(1):195−203.
[19] 唐淑兰. 基于多尺度分析和机器学习的遥感影像找矿预测及填图方法研究[D].西安: 长安大学, 2021.
TANG Shulan. Research on remote sensing image prospecting prediction and mapping method based on multi-scale analysis and machine learning[D].Xi’an: Chang’an University, 2021.
[20] 王晋年, 李志忠, 张立福, 等. “光谱地壳” 计划——探索新一代矿产勘查技术[J]. 地球信息科学学报, 2012, 14(3): 344−351. doi: 10.3724/SP.J.1047.2012.00344
WANG Jinnian, LI Zhizhong, ZHANG Lifu, et al. "Spectral Crust" Project: Research on New Mineral Exploration Technology[J]. Journal of Geo-information Science,2012,14(3):344−351. doi: 10.3724/SP.J.1047.2012.00344
[21] 王建宇, 李春来. 高光谱遥感成像技术的发展与展望[J]. 空间科学学报, 2021, 41(1): 22−33. doi: 10.11728/cjss2021.01.022
WANG Jianyu, LI Chunlai. Development and Prospect of Hyperspectral Imager and its Application[J]. Chinese Journal of Space Science,2021,41(1):22−33. doi: 10.11728/cjss2021.01.022
[22] 徐冠华, 柳钦火, 陈良富, 等. 遥感与中国可持续发展: 机遇和挑战[J]. 遥感学报, 2016, 20(5): 679−688.
XU Guanhua, LIU Qinhuo, CHEN Liangfu, et al. Remote Sensing for China’s Sustainable Development: Opportunities and Challenges[J]. Journal of Remote Sensing,2016,20(5):679−688.
[23] 杨波, 吴德文, 赖健清, 等. 矿化信息提取定量遥感模型的建立——以鹰嘴山硅化蚀变为例[J]. 遥感学报, 2021(6): 717−724.
YANG Bo, WU Dewen, LAI Jianqing, et al. The Set up of Quantitation Remote Sensing Models for Mineralization and Alteration: Take Silicification in Yingzuishan Gold Mine as an Example[J]. Journal of Remote Sensing,2021(6):717−724.
[24] 于亚凤, 杨金中, 陈圣波, 等. 基于光谱指数的遥感影像岩性分类[J]. 地球科学: 中国地质大学学报, 2015, 40(8): 1416−1419.
YU Yafeng, YANG Jinzhong, CHEN Shengbo, et al. Lithologic Classification from Remote Sensing Images Based on Spectral Index[J]. Earth Science-Journal of China University of Geosciences,2015,40(8):1416−1419.
[25] 于岩, 李建国, 陈圣波, 等. 基于不同岩性背景的遥感影像蚀变矿物信息提取[J]. 地球科学-中国地质大学学报, 2015, 40(8): 1391−1395. doi: 10.3799/dqkx.2015.123
YU Yan, LI Jianguo, CHEN Shengbo, et al. ASTER Image Alteration Minerals Information Extraction Based on Different Lithology Backgrounds[J]. Earth Science-Journal of China University of Geosciences,2015,40(8):1391−1395. doi: 10.3799/dqkx.2015.123
[26] 余晓霞, 高建国, 潘亚茹, 等. 基于沟里金矿集区线环构造与色调异常的找矿预测[J]. 黄金科学技术, 2014, 22(4): 32-38.
YU Xiaoxia, GAO Jianguo, PAN Yaru, WANG Ruixue, Ore Prediction Analysis Based on Line-ring Structure and Tone Anomaly in Gouli Gold Deposits[J]. Gold Science and Technology, 2014, 22(4): 32-38.
[27] 张翠芬, 余健, 郝利娜, 等. 多尺度纹理及多光谱影像协同的遥感岩性识别方法[J]. 地质科技通报, 2017, 36(4): 236−243.
ZHANG Cuifang, YU Jian, HAO Lina, et al. Lithology Extraction from Synergies Muti-scale Texture and Muti-spectra Images[J]. Geological Science and Technology Information,2017,36(4):236−243.
[28] 张野, 李明超, 韩帅. 基于岩石图像深度学习的岩性自动识别与分类方法[J]. 岩石学报, 2018, 34(2): 333−342.
ZHANG Ye, LI Mingchao and Han Shuai. Automatic identification and classification in lithology based on deep learning in rock images[J]. Acta Petrologica Sinica,2018,34(2):333−342.
[29] 赵玉灵. 遥感找矿模型的研究进展与评述[J]. 自然资源遥感, 2003(3): 1−4.
ZHAO Yuling. The Advances in The Study of The Remote Sensing Exploration Model: A Review[J]. Remote Sensing for Natural Resources,2003(3):1−4.
[30] Adiri Z, El Harti A, Jellouli A, et al. Comparison of Landsat-8, ASTER and Sentinel 1 satellite remote sensing data in automatic lineaments extraction: A case study of Sidi Flah-Bouskour inlier, Moroccan Anti Atlas[J]. Adv. Advances in Space Research,2017,60:2355−2367. doi: 10.1016/j.asr.2017.09.006
[31] Bedini E. Mapping lithology of the Sarfartoq carbonatite complex, southern West Greenland, using HyMap imaging spectrometer data[J]. Remote Sensing of Environment,2009,113(6):1208−1219. doi: 10.1016/j.rse.2009.02.007
[32] Beygi S, Talovina I V, Tadayon M, et al. Alteration and structural features mapping in Kacho-Mesqal zone, Central Iran using ASTER remote sensing data for porphyry copper exploration[J]. International Journal of Image and Data Fusion,2021,12(2):155−175. doi: 10.1080/19479832.2020.1838628
[33] Diaz G F, Ortiz J M, Silva J F, et al. Variogram-based descriptors for comparison and classification of rock texture images[J]. Mathematical Geosciences,2020,52(4):451−476. doi: 10.1007/s11004-019-09833-5
[34] El-Arafy R A, Shawky M M, Mahdy N M, et al. Using edge detection techniques and machine learning classifications for accurate lithological discrimination and structure lineaments extraction: a comparative case study from Gattar area, Northern Eastern Desert of Egypt[J]. Arabian Journal of Geosciences,2023,16(11):619. doi: 10.1007/s12517-023-11732-3
[35] Green R O, Eastwood M L, Sarture C M, et al. Imaging spectroscopy and the airborne visible/infrared imaging spectrometer (AVIRIS)[J]. Remote sensing of environment,1998,65(3):227−248. doi: 10.1016/S0034-4257(98)00064-9
[36] Gu X F, Tong X D. Overview of China earth observation satellite programs [space agencies][J]. IEEE Geoscience and Remote Sensing Magazine,2015,3(3):113−129. doi: 10.1109/MGRS.2015.2467172
[37] Hashim M, Ahmad S, Johari MAM, et al. Automatic lineament extraction in a heavily vegetated region using Landsat Enhanced Thematic Mapper (ETM+) imagery[J]. Advances in Space Research,2013,51:874−890.
[38] Hunt G R. Spectral Signatures of Particulate Minerals in the Visible and Near Infrared[J]. Geophysics,1977,42:501−513. doi: 10.1190/1.1440721
[39] Liu L, Feng J L, Rivard Benoit, et al. Mapping alteration using imagery from the Tiangong-1 hyperspectral spaceborne system: Example for the Jintanzi gold province, China[J]. International journal of applied earth observation and geoinformation,2018,64:275−286. doi: 10.1016/j.jag.2017.03.013
[40] Liu L, Yin C T, Khalil Shaheen Yasir, et al. Alteration mapping for porphyry Cu targeting in the western Chagai belt, Pakistan Using ZY1-02D spaceborne hyperspectral data[J]. Economic Geology,2024,119(2):331−353. doi: 10.5382/econgeo.5045
[41] Masoumi F, Eslamkish T, Abkar A A, et al. Integration of spectral, thermal, and textural features of ASTER data using Random Forests classification for lithological mapping[J]. Journal of African Earth Sciences,2017,129:445−457. doi: 10.1016/j.jafrearsci.2017.01.028
[42] Ninomiya Y, Fu B, Cudahy T J. Detecting lithology with Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) multispectral thermal infrared “radiance-at-sensor” data[J]. Remote Sensing of Environment,2005,99(1-2):127−139. doi: 10.1016/j.rse.2005.06.009
[43] Pour A B, Hashim M, van Genderen J. Detection of hydrothermal alteration zones in a tropical region using satellite remote sensing data: Bau goldfield, Sarawak, Malaysia[J]. Ore Geology Reviews,2013,54:181−196. doi: 10.1016/j.oregeorev.2013.03.010
[44] Shirmard H, Farahbakhsh E, Müller R D, et al. A review of machine learning in processing remote sensing data for mineral exploration[J]. Remote Sensing of Environment, 2022, 268, 112750.
[45] Van der Meer F D, Van der Werff H M A, Van Ruitenbeek F J A, et al. Multi-and hyperspectral geologic remote sensing: A review[J]. International Journal of Applied Earth Observation and Geoinformation, 2012, 14, 112–128.
[46] Van der Meer F D, Kopačková V, Koucká L, et al. Wavelength feature mapping as a proxy to mineral chemistry for investigating geologic systems: An example from the Rodalquilar epithermal system[J]. International Journal of Applied Earth Observation and Geoinformation, 2018, 64, 237–248.
[47] Yamaguchi Y, Naito C. Spectral indices for lithologic discrimination and mapping by using the ASTER SWIR bands[J]. International Journal of Remote Sensing,2003,24(22):4311−4323. doi: 10.1080/01431160110070320
[48] Yao F J, Liu S B, Wang D H, et al. Review on the development of multi-and hyperspectral remote sensing technology for exploration of copper–gold deposits[J]. Ore Geology Reviews,2023,162:105732. doi: 10.1016/j.oregeorev.2023.105732
[49] Yin C T, Long Y Q, Liu L, et al. Mapping Ni-Cu-Platinum Group Element-Hosting, Small-Sized, Mafic-Ultramafic Rocks Using WorldView-3 Images and a Spatial-Spectral Transformer Deep Learning Method[J]. Economic Geology,2024,119(3):665−680. doi: 10.5382/econgeo.5056
[50] Zhang C, Yi M, Ye F W, et al. Application and evaluation of deep neural networks for airborne hyperspectral remote sensing mineral mapping: A case study of the Baiyanghe uranium deposit in Northwestern Xinjiang, China[J]. Remote Sensing,2022,14(20):5122. doi: 10.3390/rs14205122
[51] Zhang Q J, Guo Z H, Liu L, et al. Lithological classification using SDGSAT-1 TIS data and three-dimensional spectral feature space model[J]. International Journal of Digital Earth,2025,18(1):2467983. doi: 10.1080/17538947.2025.2467983
[52] Zhang X L, Wang Z J, Liu D T, et al. Rock thin section image classification based on depth residuals shrinkage network and attention mechanism[J]. Earth Science Informatics,2023,16(2):1449−1457. doi: 10.1007/s12145-023-00981-1
-