走滑断裂的生长地层识别与应用:以塔里木盆地西北缘皮羌断裂为例

张子亚, 郭召杰, 宋岩, 杨威, 刘达东, 程翔. 2025. 走滑断裂的生长地层识别与应用:以塔里木盆地西北缘皮羌断裂为例. 西北地质, 58(3): 196-205. doi: 10.12401/j.nwg.2025011
引用本文: 张子亚, 郭召杰, 宋岩, 杨威, 刘达东, 程翔. 2025. 走滑断裂的生长地层识别与应用:以塔里木盆地西北缘皮羌断裂为例. 西北地质, 58(3): 196-205. doi: 10.12401/j.nwg.2025011
ZHANG Ziya, GUO Zhaojie, SONG Yan, YANG Wei, LIU Dadong, CHENG Xiang. 2025. Identification and Application of Growth Strata Associated with Strike-Slip Faults: Example from the Piqiang Fault in the Northwestern Margin of the Tarim Basin. Northwestern Geology, 58(3): 196-205. doi: 10.12401/j.nwg.2025011
Citation: ZHANG Ziya, GUO Zhaojie, SONG Yan, YANG Wei, LIU Dadong, CHENG Xiang. 2025. Identification and Application of Growth Strata Associated with Strike-Slip Faults: Example from the Piqiang Fault in the Northwestern Margin of the Tarim Basin. Northwestern Geology, 58(3): 196-205. doi: 10.12401/j.nwg.2025011

走滑断裂的生长地层识别与应用:以塔里木盆地西北缘皮羌断裂为例

  • 基金项目: 国家自然科学基金项目(42102255),安徽省高校优秀青年科研项目(2022AH030136)和宿州学院博士科研启动基金项目(2023BSK063)联合资助。
详细信息
    作者简介: 张子亚(1990−),男,博士研究生,从事构造地质和油气成藏方向研究。E−mail:zyzhang3327@163.com
    通讯作者: 程翔(1989−),男,博士研究生,从事构造地质和油气构造方向研究。E−mail:cxsandy@pku.edu.cn
  • 中图分类号: P548

Identification and Application of Growth Strata Associated with Strike-Slip Faults: Example from the Piqiang Fault in the Northwestern Margin of the Tarim Basin

More Information
  • 生长地层是指构造变形过程中沉积的地层,其年龄可用于限定构造变形发生的时间。通过生长地层分析约束构造活动的发生时限已在挤压和伸展构造发育区得到了广泛应用,然而与走滑断裂相关的生长地层分析案例尚鲜见报道。笔者通过野外地质调查、遥感影像分析和地震剖面解释等手段与方法,厘定塔里木盆地西北缘皮羌断裂的几何样式和构造属性;基于地层的平面特征,确定与该断裂构造活动同期的生长地层,并据此限定皮羌断裂的活动时间。研究结果表明,地表标志层的左旋错断、断层面发育的近水平擦痕和近竖直阶步、断层迹线的线性特征及地震剖面上的正花状构造特征指示皮羌断裂为左行走滑断裂。在平面上,中新统(N1)及以下地层的厚度在皮羌断裂西侧向斜的同一翼保持稳定,地层的曲率也基本协调;而上新统(N2)与下伏地层则呈角度不整合接触,且上新统—早更新统(N2-Q11)地层的厚度越靠近皮羌断裂越薄,且随着地层时代变新,地层的平面曲率逐渐变小,表明上新统至早更新统(N2-Q11)地层是与皮羌断裂强烈走滑活动相关的生长地层。这一认识与基于地震剖面的生长地层分析结果一致。研究成果不仅有助于深入理解皮羌断裂的构造演化过程,还可为走滑断裂构造背景下生长地层的识别与应用提供新思路。

  • 加载中
  • 图 1  数字高程图(DEM)显示塔里木盆地西北缘的柯坪塔格冲断带、皮羌断裂(A)和其大地构造位置(B)

    Figure 1. 

    图 2  皮羌断裂及其邻区的地质图(A)(改自ZanBiLe K-43-36 1∶200 000地质图)和遥感影像图(B)(Landsat ETM+真彩色,全合成)

    Figure 2. 

    图 3  皮羌断裂的断层面表现为线性的摩擦镜面(A)、皮羌断裂的断层面上发育的擦痕和阶步指示左旋走滑构造属性(B和C)、皮羌断裂的断层面及擦痕、方解石生长纤维束等线状构造要素的产状统计(D)

    Figure 3. 

    图 4  皮羌断裂西侧的向斜及前生长地层、生长地层的平面几何学地质图(A)和遥感图(B)

    Figure 4. 

    图 5  横穿皮羌断裂南段的地震剖面图A-A’

    Figure 5. 

  • [1]

    何文渊, 杨宪一, 刘胜. 塔里木盆地西北部构造演化特征—从皮羌断裂发育史想到[J]. 地球学报, 2003, 24(z1): 17−21. doi: 10.3321/j.issn:1006-3021.2003.z1.005

    HE Wenyuan, YANG Xianyi, LIU Sheng. The Evolution History of Northwest Tarim as Viewed from the Features of Piqiang Fault[J]. Acta Geoscientica Sinica,2003,24(z1):17−21. doi: 10.3321/j.issn:1006-3021.2003.z1.005

    [2]

    韩忠, 张枭, 刘晓煌, 等. 新疆哈拉奇地区柯坪塔格组砂岩粒度特征[J]. 西北地质, 2013, 46(4): 106−114.

    HAN Zhong, ZHANG Xiao, LIU Xiaohuang, et al. The Grain Size Characteristics of Kalpintag Formation’s Sandstones in Kharrazi Region, Xinjiang[J]. Northwestern Geology,2013,46(4):106−114.

    [3]

    李安, 冉勇康, 刘华国, 等. 西南天山柯坪推覆系西段全新世构造活动特征和古地震[J]. 地球科学进展, 2016, 31(4): 377−390. doi: 10.11867/j.issn.1001-8166.2016.04.0377.

    LI An, RAN Yongkang, LIU Huaguo, et al. Active Characteristics and Paleoearthquakes in the West Kalpin Nappe Since the Holocene, SW Tianshan Mountain[J]. Advances in Earth Science,2016,31(4):377−390. doi: 10.11867/j.issn.1001-8166.2016.04.0377.

    [4]

    吕明, 汤良杰, 岳勇. 塔里木盆地西南部麦盖提斜坡构造演化过程的记录—生长地层及生长不整合[J]. 地质论评, 2014, 60(1): 91−101.

    LV Ming, TANG Liangjie, YUE Yong. Records of Tectonic Evolution in Maigaiti Slope Southwestern Tarim Basin: Growth Strata and Growth Unconformity[J]. Geological Review,2014,60(1):91−101.

    [5]

    曲国胜, 李亦刚, 陈杰, 等. 柯坪塔格推覆构造几何学、运动学及其构造演化[J]. 地学前缘, 2003, 10(z1): 142−152. doi: 10.3321/j.issn:1005-2321.2003.z1.021

    QU Guosheng, LI Yigang, CHEN Jie, et al. Geometry, Kinematics and Tectonic Evolution of Kepingtage Thrust System[J]. Earth Science Frontiers,2003,10(z1):142−152. doi: 10.3321/j.issn:1005-2321.2003.z1.021

    [6]

    任建业, 张俊霞, 阳怀忠, 等. 塔里木盆地中央隆起带断裂系统分析[J]. 岩石学报, 2011, 27(1): 219−230.

    REN Jianye, ZHANG Junxia, YANG Huaizhong, et al. Analysis of fault systems in the Central uplift, Tarim Basin[J]. Acta Petrologica Sinica,2011,27(1):219−230.

    [7]

    王国林, 李曰俊, 孙建华, 等. 塔里木盆地西北缘柯坪冲断带构造变形特征[J]. 地质科学, 2009, 44(1): 50−62. doi: 10.3321/j.issn:0563-5020.2009.01.005

    WANG Guolin, LI Yuejun, SUN Jianhua, et al. Structural deformation characteristics of the Kalpin thrust belt. NW Tarim[J]. Chinese Journal of Geology,2009,44(1):50−62. doi: 10.3321/j.issn:0563-5020.2009.01.005

    [8]

    王鹏昊, 汤良杰, 邱海峻, 等. 塔里木盆地皮羌断裂晚期活动ESR年代学证据及其地质意义[J]. 石油与天然气地质, 2013, 34(1): 107−111. doi: 10.11743/ogg20130114

    WANG Penghao, TANG Liangjie, QIU Haijun, et al. Chronology evidence of EAR dating for the late movements of the Piqiang fault in the Tarim Basin and its geological implication[J]. Oil & Gas Geology,2013,34(1):107−111. doi: 10.11743/ogg20130114

    [9]

    肖安成, 杨树锋, 王清华, 等. 塔里木盆地巴楚-柯坪地区南北向断裂系统的空间对应性研究[J]. 地质科学, 2002, 37(z1): 64−72. doi: 10.3321/j.issn:0563-5020.2002.z1.009

    XIAO Ancheng, YANG Shufeng, WANG Qinghua, et al. Corresponding Relation of S-N-Striking Fault Systems in The Bachu-Kalpin Area, Tarim Basin[J]. Chinese Journal of Geology,2002,37(z1):64−72. doi: 10.3321/j.issn:0563-5020.2002.z1.009

    [10]

    肖安成, 杨树锋, 李曰俊, 等. 塔里木盆地巴楚隆起断裂系统主要形成时代的新认识[J]. 地质科学, 2005, 40(2): 291−302. doi: 10.3321/j.issn:0563-5020.2005.02.013

    XIAO Ancheng, YANG Shufeng, LI Yuejun, et al. Main Period for Creation of Fracture System in the Bachu Uplift, Tarim Basin[J]. Chinese Journal of Geology,2005,40(2):291−302. doi: 10.3321/j.issn:0563-5020.2005.02.013

    [11]

    杨海军, 李曰俊, 师骏, 等. 南天山晚新生代褶皱冲断带构造特征[J]. 第四纪研究, 2010, 30(5): 1030−1043. doi: 10.3969/j.issn.1001-7410.2010.05.21

    YANG Haijun, LI Yuejun, SHI Jun, et al. Tectonic Characteristics of The Late Cenozoic South Tianshan Fold-Thrust Belt[J]. Quaternary Sciences,2010,30(5):1030−1043. doi: 10.3969/j.issn.1001-7410.2010.05.21

    [12]

    杨勇, 汤良杰, 郭颖, 等. 柯坪冲断带皮羌断裂的新生代构造演化特征[J]. 中国矿业大学学报, 2016, 45(6): 1204−1210.

    YANG Yong, TANG Liangjie, GUO Ying, et al. Cenozoic structural evolution characteristics of Piqiang fault, Kalpin thrust belt[J]. Journal of China University,2016,45(6):1204−1210.

    [13]

    袁波, 汪新, 王心强, 等. 准噶尔盆地南缘构造分层分带特征及其油气勘探意义[J]. 地球科学, 2023, 48(10): 3946−3956.

    YUAN Bo, WANG Xin, WANG Xinqiang, et al. Characteristics of Structural Stratification and Zoning in Southern Junggar Basin and Its Significance for Oil and Gas Exploration[J]. Earth Science,2023,48(10):3946−3956.

    [14]

    张广良, 张培震, 闵伟, 等. 逆冲-褶皱造山过程中生长地层的识别及应用[J]. 地震地质, 2006, 28(2): 299−311. doi: 10.3969/j.issn.0253-4967.2006.02.013

    ZHANG Guangliang, ZHANG Peizhen, MIN Wei, et al. The Iden-Tificatoin and Application of Growth Strata Linked to The Foreland Fold-and-Thrust Belt During Mountain Building[J]. Seismology and Geology,2006,28(2):299−311. doi: 10.3969/j.issn.0253-4967.2006.02.013

    [15]

    张子亚. 塔里木盆地西北缘晚新生代构造解析——帕米尔前缘与南天山前缘的叠合[D]. 北京: 北京大学, 2014.

    ZHANG Ziya. The structural analysis at the northwest margin of the Tarim Basin——the foreland thrusts superimposition between Pamir and Southwest Tienshan[D]. Beijing: Peking University, 2014.

    [16]

    张义平, 陈宣华, 张进, 等. 印支运动在鄂尔多斯盆地和四川盆地启动时间的讨论: 来自生长地层的证据[J]. 中国地质, 2019, 46(5): 1021−1038. doi: 10.12029/gc20190505

    ZHANG Yiping, CHEN Xuanhua, ZHANG Jin, et al. Discussion on the initial timing of the Indosinian movement in the Ordos basin and the Sichuan basin: Constraints from growth strata evidence[J]. Geology in China,2019,46(5):1021−1038. doi: 10.12029/gc20190505

    [17]

    张永, 崔永平, 刘长磊. 塔里木盆地色力布亚断裂带几何学及运动学特征[J]. 新疆石油地质, 2018, 39(3): 264−276.

    ZHANG Yong, CUI Yongping, LIU Changlei. Geometrical and Kinematics Characteristics of Selibuya Fault Belt, Tarim Basin[J]. Xinjiang Petroleum Geology,2018,39(3):264−276.

    [18]

    张韬, 邬光辉, 陈鑫, 等. 皮羌走滑断裂构造演化研究综述[J]. 中国石油和化工标准与质量, 2020(1): 117−118. doi: 10.3969/j.issn.1673-4076.2020.01.059

    ZHANG Tao, WU Guanghui, CHEN Xin, et al. Review of tectonic evolution of the Piqiang strike-slip fault[J]. China Petroleum and Chemical Standard and Quality,2020(1):117−118. doi: 10.3969/j.issn.1673-4076.2020.01.059

    [19]

    Allen M B, Stephen V J. Late Cenozoic tectonics of the Kepingtage thrust zone: Interaction between the Tian Shan and the Tarim Basin, northwest China[J]. Tectonics,1999,18(4):639−654. doi: 10.1029/1999TC900019

    [20]

    Charreau J, Saint-Carlier D, Lavé J, et al. Late Pleistocene acceleration of deformation across the northern Tianshan piedmont (China) evidenced from the morpho-tectonic evolution of the Dushanzi anticline[J]. Tectonophysics,2018,730:132−140. doi: 10.1016/j.tecto.2018.02.016

    [21]

    Chen J, Burbank D W, Scharer K M, et al. Magnetochronology of the upper Cenozoic strata in the southwestern Chinese Tian Shan: Rates of pleistocene folding and thrusting[J]. Earth and Planetary Science Letters,2002,195:113−130. doi: 10.1016/S0012-821X(01)00579-9

    [22]

    Guo Q, Wen Y M, Xu C J, et al. Present-Day Tectonic Activities of Transverse Faults in the Keping Region, Southwest Tianshan[J]. Seismological Research Letters, 2024, 1−10.

    [23]

    Li A, Ran Y K, Gomez F, et al. Segmentation of the Kepingtage thrust fault based on paleoearthquake ruptures, southwestern Tianshan, China[J]. Natural Hazards,2020,103:1385−1406. doi: 10.1007/s11069-020-04040-6

    [24]

    Li J, Yao Y, Li R, et al. Present-Day Strike-Slip Faulting and Thrusting of the Kepingtage Fold-and-Thrust Belt in Southern Tianshan: Constraints From GPS Observations[J]. Geophysical Research Letters,2022,49:e2022GL099105. doi: 10.1029/2022GL099105

    [25]

    Medwedeff D W. Growth fault-bend folding at southeast Lost Hills, San Joaquin Valley, California[J]. AAPG Bulletin,1989,73(1):54−67.

    [26]

    Medwedeff D W. Geometry and kinematics of an active, laterally propagating wedge thrust, Wheeler Ridge, California[M]. Baltimore: Johns Hopkins University Press, 1992.

    [27]

    Qin X, Chen X H, Shao Z G, et al. Initiation timing of Cenozoic compression deformation of the southern Tianshan mountains: Implications from growth strata in the Kuqa Depression[J]. Geological Journal,2020,55(11):7206−7226. doi: 10.1002/gj.3953

    [28]

    Qiu J T, Ji L Y, Zhu L Y, et al. Present-day tectonic deformation partitioning across South Tianshan from satellite geodetic imaging[J]. Frontiers in Earth Science,2022,9:793890. doi: 10.3389/feart.2021.793890

    [29]

    Rafini S, Mercier R, Eric M. Forward modelling of foreland basins progressive unconformities[J]. Sedimentary Geology,2002,146(1-2):75−89. doi: 10.1016/S0037-0738(01)00167-1

    [30]

    Riba O. Syntectonic unconformities of the Alto Cardener, Spanish Pyrenees: a genetic interpretation[J]. Sedimentary Geology,1976,15:213−233. doi: 10.1016/0037-0738(76)90017-8

    [31]

    Shaw J H. Seismic interpretation of Structural styles in deepwater Fold-and-Thrust Belts[M]. Harvard University: Course Manual, 2005.

    [32]

    Shaw J H, Suppe J. Active faulting and growth folding in the eastern Santa Barbara Channel, California[J]. Geological Society of America Bulletin,1994,106(5):607−626. doi: 10.1130/0016-7606(1994)106<0607:AFAGFI>2.3.CO;2

    [33]

    Suppe J. Geometry and Kinematics of fault bend folding[J]. ‌American Journal of Science,1983,283:684−721.

    [34]

    Suppe J, Chou, G T, Hook S C. Rates of folding and faulting determined from growth strata In Thrust Tectonics[M]. London: Chapman and Hall, 1992.

    [35]

    Suppe J, Hubertferrari A, Wang X. Relationships Between Incremental and Cumulative Fold Growth With Neotectonic Examples From the Southern Tianshan, China[C]. AGU Fall Meeting Abstracts, 2004.

    [36]

    Suppe J, Medwedeff D A. Geometry and kinematics of fault-propagation folding[J]. Eclogae Geologicae Helvetiae,1990,83(3):409−454.

    [37]

    Suppe J, Sàbat F, Munoz J A. Bed-by-bed fold growth by kink-band migration Sant Llorenq de Morunys, eastern Pyrenees[J]. Journal of Structural Geology,1997,19:443−461. doi: 10.1016/S0191-8141(96)00103-4

    [38]

    Turner S A, Jian L G, John C W. Structural evolution of the Piqiang Fault Zone, NW Tarim Basin, China[J]. Journal of Asian Earth Sciences,2011,40:394−402. doi: 10.1016/j.jseaes.2010.06.005

    [39]

    Yang Y, Yao W Q, Yan J J, et al. Mesozoic and Cenozoic structural deformation in the NW Tarim Basin, China: a case study of the Piqiang-Selibuya Fault[J]. International Geological Review,2018,60(7):929−943. doi: 10.1080/00206814.2017.1360803

    [40]

    Zapata T R, Allmendinger R W. Growth stratal records of instantaneous and progressive limb rotation in the Precordillera thrust belt and Bermejo basin, Argentina[J]. Tectonics,1996,15:1065−1083. doi: 10.1029/96TC00431

    [41]

    Zhang T, Han W X, Fang X M, et al. Intensified tectonic deformation and uplift of the Altyn Tagh range recorded by rock magnetism and growth strata studies of the western Qaidam Basin, NE Tibetan Plateau[J]. Global and Planetary Change,2016,137:54−68. doi: 10.1016/j.gloplacha.2015.12.017

    [42]

    Zhang Z L, Sun J M, Tian Z H, et al. Magnetostratigraphy of syntectonic growth strata and implications for the late Cenozoic deformation in the Baicheng Depression, Southern Tian Shan[J]. Journal of Asian Earth Sciences,2016a,118:111−124. doi: 10.1016/j.jseaes.2015.12.024

    [43]

    Zhou Y X, Wu C D, Yuan B, et al. Cenozoic tectonic patterns and their controls on growth strata in the northern Tianshan fold and thrust belt, northwest China[J]. Journal of Asian Earth Sciences,2020,198:104237. doi: 10.1016/j.jseaes.2020.104237

    [44]

    Zhang C L, Xu Y G, Li Z X, et al. Diverse Permian magmatism in the Tarim Block, NW China: Genetically linked to the Permian Tarim mantle plume?[J]. Lithos,2010,119:537−552. doi: 10.1016/j.lithos.2010.08.007

    [45]

    Zhang Y, Yang S M, Chen H L, et al. The effect of overburden thickness on deformation mechanisms in the Keping fold-thrust belt, southwestern Chinese Tian Shan Mountains: Insights from analogue modeling[J]. Tectonophysics,2019,753:79−92. doi: 10.1016/j.tecto.2019.01.005

    [46]

    Zoetemeijer R, Sassi W, Roure F, et al. Stratigraphic and kinematic modeling of thrust evolution, northern Apennines, Italy[J]. Geology,1992,20:1035−1038.

  • 加载中

(5)

计量
  • 文章访问数:  18
  • PDF下载数:  3
  • 施引文献:  0
出版历程
收稿日期:  2024-12-17
修回日期:  2025-01-10
录用日期:  2025-01-21
刊出日期:  2025-06-20

目录