-
摘要:
铜铅分离是复杂硫化矿选矿技术难题之一。在分析铜铅硫化矿资源概况及矿物组成特点的基础上,综合评述了现阶段铜铅硫化矿浮选分离的主要工艺流程,总结了铜铅浮选分离的药剂制度及机理研究,并指出绿色环保的新型靶向浮选药剂的研发、生物浸出技术和电位调控浮选技术的应用,是未来提高铜铅分离效率和资源综合利用水平的主要发展方向。
Abstract:The separation of copper and lead is one of the technical difficulties in complex sulfide ore beneficiation. On the basis of analyzing the general situation of copper-lead sulfide ore resources and the characteristics of mineral composition, this paper comprehensively reviews the main process flow of copper-lead sulfide ore flotation separation at the present stage, summarizes the research on the chemical system and mechanism of copper-lead flotation separation, and points out that the research and development of green and environmentally friendly new targeted flotation reagents, the application of bioleaching technology and potential control flotation technology are the main development directions for improving the separation efficiency of copper and lead and the comprehensive utilization level of resources in the future.
-
Key words:
- chalcopyrite /
- galena /
- sulfide ore /
- flotation /
- separation
-
-
表 1 常用的硫化铜矿浮选捕收剂
Table 1. Common collectors for the copper sulfide ore flotation
药剂名称 结构式或化学名称 备注 烷基二硫代碳酸盐(黄药) ROCSS-M+ R=C2~C6 烷基或芳基二硫代磷酸盐(黑药) (RO)2PSS-M+ R=C2~C6 二硫代氨基甲酸盐(硫氮) (R)2NCSS-M+ R=C1~C3 一硫代氨基甲酸酯(硫氨酯) R1OC(=S)N(R2)2 R=H,C1~C6 硫代均二苯脲(白药) (C6H5NH)2C(=S) 烷基双黄原酸酯 (ROCS)2S R=C2~C6 黄原酸酯 ROCSSR’ R=C2~C6
R′有多种选择巯基苯并噻唑 C6H4(-N=)(-S-)C-SH 烷基或芳基二硫代膦酸盐 (R)2PSS-M+ R=C2~C6 烷基硫醇 RSH R=C10~C12 二烷基二硫化物 RSSR R=C4~C8 烷基三硫代碳酸盐 RSCSS-M+ R=C2~C6 表 2 硫化铜矿浮选的新型捕收剂
Table 2. New type collectors for the copper sulfide ore flotation
药剂名称 结构式或化学名称 备注 烷基或芳基一硫代磷酸烷基或芳基亚磷酸盐 (RO)2PSO-M+
(R)2 PSO-M+R=C2~C6 N-烯丙基一硫代氨基甲酸盐 ROC(=S)NHCH2CH=CH2 R=C2~C6 烷氧羰基烷基一硫代氨基甲酸酯 R1OC(=S)NHC(=O)OR2 R=C2~C5 烷氧羰基烷基硫脲 R1NHC(=S)NHC(=O)OR2 R=C2~C6 二烷基硫化物 RSR R=C2~C6 烷基硫代胺 RSR′NH2 R=C2~C10 二硫代氨基甲酸-α-羰基酯 RC(=O)SC(=S)NH2 R=C4~C8
R′=C2~C3MIG-4E捕收剂 HC≡CH-CH=CH-O-C4H9 HATT 捕收剂[21] 3-己基-4-氨基-1,2,4-三唑-5-硫酮 MBT 捕收剂[22] (2-巯基苯并噻唑) DTPINa捕收剂[23] (二异丁基二硫代次磷酸钠) -
[1] 冯博, 朱贤文, 彭金秀, 等. 有色金属硫化矿中伴生金银资源回收研究进展[J]. 贵金属., 2016(2):70-76.FENG B, ZHU X W, PENG J X, et al. The research progress of the recycling of gold and silver resources in the non-colored metal sulfur ore[J]. Precious Metals, 2016(2):70-76.
FENG B, ZHU X W, PENG J X, et al. The research progress of the recycling of gold and silver resources in the non-colored metal sulfur ore[J]. Precious Metals, 2016(2):70-76.
[2] 李磊, 魏旭, 阳珊, 等. 安徽省金寨县迎风崖铅锌铜多金属矿床物质组分及赋存状态研究[J]. 矿产综合利用, 2022(3):198-201.LI L, WEI X, YANG S, et al. Study on the material composition and occurrence state of yingfengya lead zinc copper polymetallic deposit, Jinzhai County, Anhui Province[J]. Multipurpose Utilization of Mineral Resources, 2022(3):198-201. doi: 10.3969/j.issn.1000-6532.2022.03.035
LI L, WEI X, YANG S, et al. Study on the material composition and occurrence state of yingfengya lead zinc copper polymetallic deposit, Jinzhai County, Anhui Province[J]. Multipurpose Utilization of Mineral Resources, 2022(3):198-201. doi: 10.3969/j.issn.1000-6532.2022.03.035
[3] 顾佳妮, 张新元, 韩九曦, 等. 全球铅矿资源形势及中国铅资源发展[J]. 中国矿业, 2017, 26(2):16-20.GU J N, ZHANG X Y, HAN J X, et al. Global lead mines and the development of Chinese lead resources[J]. China Mining Magazine, 2017, 26(2):16-20. doi: 10.3969/j.issn.1004-4051.2017.02.004
GU J N, ZHANG X Y, HAN J X, et al. Global lead mines and the development of Chinese lead resources[J]. China Mining Magazine, 2017, 26(2):16-20. doi: 10.3969/j.issn.1004-4051.2017.02.004
[4] 康博文, 谢贤, 陈国举, 等. 铜铅硫化矿物分离过程铅抑制剂的研究现状与进展[J]. 金属矿山, 2018(10):104-109.KANG B W, XIE X, CHEN G J, et al. Research status and progress of the leading inhibitors of lead in inhibitors of copper leading minerals[J]. Metal Mine, 2018(10):104-109.
KANG B W, XIE X, CHEN G J, et al. Research status and progress of the leading inhibitors of lead in inhibitors of copper leading minerals[J]. Metal Mine, 2018(10):104-109.
[5] 冉银华, 杨茂椿, 肖东升, 等. 云南某复杂混合型铜矿的试验研究[J]. 矿产综合利用, 2019(3):52-55.RAN Y H, YANG M C, XIAO D S, et al. Experimental study on a complex mixed copper ore in Yunnan[J]. Multipurpose Utilization of Mineral Resources, 2019(3):52-55. doi: 10.3969/j.issn.1000-6532.2019.03.012
RAN Y H, YANG M C, XIAO D S, et al. Experimental study on a complex mixed copper ore in Yunnan[J]. Multipurpose Utilization of Mineral Resources, 2019(3):52-55. doi: 10.3969/j.issn.1000-6532.2019.03.012
[6] 陈海亮,崔毅琦,童雄. 硫化铜铅矿物浮选分离的研究现状及进展[J]. 矿冶, 2016, 25(1):13-16.CHEN H L,CUI Y Q,TONG X. Research status and progress of the flotation of copper-vulcanized lead minerals[J]. Mining and Metallurgy, 2016, 25(1):13-16. doi: 10.3969/j.issn.1005-7854.2016.01.004
CHEN H L,CUI Y Q,TONG X. Research status and progress of the flotation of copper-vulcanized lead minerals[J]. Mining and Metallurgy, 2016, 25(1):13-16. doi: 10.3969/j.issn.1005-7854.2016.01.004
[7] 孙若凡,刘丹,杜钰,等. 黄铜矿、方铅矿分离研究现状及进展[J]. 矿产综合利用, 2021(4):80-86.SUN R F, LIU D, DU Y, et al. Research status and development of separation of chalcopyrite and galena[J]. Multipurpose Utilization of Mineral Resources, 2021(4):80-86. doi: 10.3969/j.issn.1000-6532.2021.04.012
SUN R F, LIU D, DU Y, et al. Research status and development of separation of chalcopyrite and galena[J]. Multipurpose Utilization of Mineral Resources, 2021(4):80-86. doi: 10.3969/j.issn.1000-6532.2021.04.012
[8] Zhao K , Ma C , Gu G , et al. Selective separation of chalcopyrite from galena using a green reagent scheme[J]. Minerals, 2021, 11(8):796. doi: 10.3390/min11080796
[9] 李俊旺,张红华,洪建华. 铜精矿提质降杂试验研究[J]. 矿产综合利用, 2017(3):55-57+61.LI J W, ZHANG H H, HONG J H. Research on copper essence mineral quality and miscellaneous miscellaneous test[J]. Multipurpose Utilization of Mineral Resources, 2017(3):55-57+61. doi: 10.3969/j.issn.1000-6532.2017.03.009
LI J W, ZHANG H H, HONG J H. Research on copper essence mineral quality and miscellaneous miscellaneous test[J]. Multipurpose Utilization of Mineral Resources, 2017(3):55-57+61. doi: 10.3969/j.issn.1000-6532.2017.03.009
[10] Jiao F , Cui Y , Wang D , et al. Research of the replacement of dichromate with depressants mixture in the separation of copper-lead sulfides by flotation[J]. Separation and Purification Technology, 2022, 278:119330.
[11] 田树国,崔立凤,王军荣,等. 国外某铜铅锌多金属矿工艺矿物学特性及影响浮选的因素[J]. 矿产综合利用, 2019(1):78-82.TIAN S G,CUI L F,WANG J R,et al. Process mineralogy and factors affecting mineral processing for a foreign copper-lead-zinc polymetallic ore[J]. Multipurpose Utilization of Mineral Resources, 2019(1):78-82. doi: 10.3969/j.issn.1000-6532.2019.01.017
TIAN S G,CUI L F,WANG J R,et al. Process mineralogy and factors affecting mineral processing for a foreign copper-lead-zinc polymetallic ore[J]. Multipurpose Utilization of Mineral Resources, 2019(1):78-82. doi: 10.3969/j.issn.1000-6532.2019.01.017
[12] 肖庆飞,郭运鑫,黄胤淇,等. 提高冬瓜山铜矿粗磨磨矿效率的对比试验研究[J]. 矿产综合利用, 2020(3):100-104.XIAO Q F, GUO Y X, HUANG Y Q, et al. Comparative experimental study on improving the grinding efficiency of the Dongguashan copper mine[J]. Multipurpose Utilization of Mineral Resources, 2020(3):100-104. doi: 10.3969/j.issn.1000-6532.2020.03.016
XIAO Q F, GUO Y X, HUANG Y Q, et al. Comparative experimental study on improving the grinding efficiency of the Dongguashan copper mine[J]. Multipurpose Utilization of Mineral Resources, 2020(3):100-104. doi: 10.3969/j.issn.1000-6532.2020.03.016
[13] 王刚, 于云龙, 马波, 等. 内蒙古某复杂多金属铅铜锌硫化矿选矿工艺研究[J]. 矿产综合利用, 2022(3):172-180.WANG G,YU Y L, MA B, et al. Study on mineral processing technology of complex polymetallic lead-copper-zinc sulfide ores from Inner Mongolia[J]. Multipurpose Utilization of Mineral Resources, 2022(3):172-180. doi: 10.3969/j.issn.1000-6532.2022.03.031
WANG G,YU Y L, MA B, et al. Study on mineral processing technology of complex polymetallic lead-copper-zinc sulfide ores from Inner Mongolia[J]. Multipurpose Utilization of Mineral Resources, 2022(3):172-180. doi: 10.3969/j.issn.1000-6532.2022.03.031
[14] 肖炜,田小松. 云南迪庆铜铅锌硫化矿浮选分离研究[J]. 矿产综合利用, 2020(1):65-70.XIAO W, TIAN X S. Study on flotation separation of copper-lead-zinc sulfide ore in Diqing Yunnan[J]. Multipurpose Utilization of Mineral Resources, 2020(1):65-70. doi: 10.3969/j.issn.1000-6532.2020.01.014
XIAO W, TIAN X S. Study on flotation separation of copper-lead-zinc sulfide ore in Diqing Yunnan[J]. Multipurpose Utilization of Mineral Resources, 2020(1):65-70. doi: 10.3969/j.issn.1000-6532.2020.01.014
[15] 黄雄. 内蒙古某含铜铅精矿抑铅浮铜试验[J]. 矿产综合利用, 2020(4):116-120.HUANG X. Experiment on preferential separation of copper by depressing lead from a copper-containing lead concentrate[J]. Multipurpose Utilization of Mineral Resources, 2020(4):116-120. doi: 10.3969/j.issn.1000-6532.2020.04.019
HUANG X. Experiment on preferential separation of copper by depressing lead from a copper-containing lead concentrate[J]. Multipurpose Utilization of Mineral Resources, 2020(4):116-120. doi: 10.3969/j.issn.1000-6532.2020.04.019
[16] 谢海云, 柳彦昊, 纪翠翠, 等. 铜铅锌混合精矿的矿物学特征分析及分离效率探究[J]. 岩矿测试, 2021, 40(4):542-549.XIE H Y, LIU Y H, JI C C, et al. Analysis and separation efficiency of copper -lead zinc hybrid ore mineral characteristics[J]. Rock and Mineral Analysis, 2021, 40(4):542-549.
XIE H Y, LIU Y H, JI C C, et al. Analysis and separation efficiency of copper -lead zinc hybrid ore mineral characteristics[J]. Rock and Mineral Analysis, 2021, 40(4):542-549.
[17] 温凯,陈建华. 某含银复杂铜铅锌多金属硫化矿浮选试验[J]. 矿产综合利用, 2019(6):28-32.WEN K, CHEN J H. Experimental study on flotation of copper, lead and zinc polymetallic sulfide ore containing silver[J]. Multipurpose Utilization of Mineral Resources, 2019(6):28-32. doi: 10.3969/j.issn.1000-6532.2019.06.006
WEN K, CHEN J H. Experimental study on flotation of copper, lead and zinc polymetallic sulfide ore containing silver[J]. Multipurpose Utilization of Mineral Resources, 2019(6):28-32. doi: 10.3969/j.issn.1000-6532.2019.06.006
[18] 陈章鸿,刘四清,陈思雨,等. 基于硫酸调浆的铜铅锌多金属矿浮选分离工艺研究[J]. 矿产综合利用, 2022(2):79-85.CHEN Z H, LIU S Q, CHEN S Y, et al. Flotation separation of Cu-Pb-Zn polymetallic ore based on sulfuric acid as regulator[J]. Multipurpose Utilization of Mineral Resources, 2022(2):79-85. doi: 10.3969/j.issn.1000-6532.2022.02.015
CHEN Z H, LIU S Q, CHEN S Y, et al. Flotation separation of Cu-Pb-Zn polymetallic ore based on sulfuric acid as regulator[J]. Multipurpose Utilization of Mineral Resources, 2022(2):79-85. doi: 10.3969/j.issn.1000-6532.2022.02.015
[19] 冯晓燕,姜涛,赵志强,等. 某铜铅锌多金属硫化矿选矿试验研究[J]. 矿冶工程, 2020, 40(5):53-57.FENG X Y, JIANG T, ZHAO Z Q, et al. Research on a copper lead -zinc ductive metal vulcanization mineral selection test[J]. Mining and Metallurgical Engineering, 2020, 40(5):53-57. doi: 10.3969/j.issn.0253-6099.2020.05.013
FENG X Y, JIANG T, ZHAO Z Q, et al. Research on a copper lead -zinc ductive metal vulcanization mineral selection test[J]. Mining and Metallurgical Engineering, 2020, 40(5):53-57. doi: 10.3969/j.issn.0253-6099.2020.05.013
[20] R·R·克里姆帕尔. 硫化矿物浮选捕收剂实践评述[J]. 国外金属矿选矿, 2001, 38(9):6.R R Krimpal. Evaluation of vulcanized mineral flotation recovery agent[J]. Magazine Introduction, 2001, 38(9):6.
R R Krimpal. Evaluation of vulcanized mineral flotation recovery agent[J]. Magazine Introduction, 2001, 38(9):6.
[21] 曲肖彦, 刘广义, 刘胜,等. 3-己基-4-氨基-1,2,4-三唑-5-硫酮在黄铜矿表面的吸附动力学与热力学[J]. 中国有色金属学报, 2015, 25(7):9.QU X Y, LIU G Y, LIU S, et al. 3-self-4-amino-1,2,4-triazol-5-sulfone on the surface of the brass ore is adsorbed dynamics and thermodynamics[J]. The Chinses Journal of Nonferrous Metals, 2015, 25(7):9.
QU X Y, LIU G Y, LIU S, et al. 3-self-4-amino-1,2,4-triazol-5-sulfone on the surface of the brass ore is adsorbed dynamics and thermodynamics[J]. The Chinses Journal of Nonferrous Metals, 2015, 25(7):9.
[22] Buckley, Alan, N, et al. Mercaptobenzothiazole collector adsorption on Cu sulfide ore minerals[J]. International Journal of Mineral Processing, 2016.
[23] Zhong H , Huang Z , Zhao G , et al. The collecting performance and interaction mechanism of sodium diisobutyl dithiophosphinate in sulfide minerals flotation[J]. Journal of Materials Research & Technology, 2015, 4(2):151-161.
[24] Wang C T, Liu R Q, Khoso S A, et al. Combined inhibitory effect of calcium hypochlorite and dextrin on flotation behavior of pyrite and galena sulphides[J]. Minerals Engineering, 2020, 150:106274. doi: 10.1016/j.mineng.2020.106274
[25] Wang D Z, Jiao F, Qin W Q, et al. Effect of surface oxidation on the flotation separation of chalcopyrite and galena using sodium humate as depressant[J]. Separation Science & Technology, 2017(11):1-12.
[26] Sarquis P E, Menendez-Aguado J M, Mahamud M M, et al. Tannins: the organic depressants alternative in selective flotation of sulfides[J]. Journal of Cleaner Production, 2014, 84(dec.1):723-726.
[27] Okada S, Majima H. Depressive action of chromate and dichromate salt song alena[J]. Canadian Metallurgical Quarterly, 2014, 10(3):189-195.
[28] 黄海露,马晶,郭月琴. 铜铅混合精矿高效分离试验研究[J]. 中国钼业, 2014, 38(3):13-17.HUANG H L, MA J, GUO Y Q. Research on the efficient separation test of copper lead hybrid ore[J]. China Molybdenum Industry, 2014, 38(3):13-17.
HUANG H L, MA J, GUO Y Q. Research on the efficient separation test of copper lead hybrid ore[J]. China Molybdenum Industry, 2014, 38(3):13-17.
[29] Zhang Y, Liu R Q, Sun W, et al. Electrochemical mechanism and flotation of chalcopyrite and galena in the presence of sodium silicate and sodium sulfite[J]. Transactions of Nonferrous Metals Society of China, 2020, 30(4):1091-1101. doi: 10.1016/S1003-6326(20)65280-3
[30] 刘润清, 郭衍哲, 江峰. 亚硫酸在黄铜矿和方铅矿浮选分离中的作用研究[J]. 矿冶工程, 2014, 34(s):104-107.LIU R Q, GUO Y Z, JIANG F. Study on the role of sulfuric acid in the floating separation of brass ore and square lead ore[J]. Mining and Metallurgical Engineering, 2014, 34(s):104-107. doi: 10.3969/j.issn.0253-6099.2014.z1.026
LIU R Q, GUO Y Z, JIANG F. Study on the role of sulfuric acid in the floating separation of brass ore and square lead ore[J]. Mining and Metallurgical Engineering, 2014, 34(s):104-107. doi: 10.3969/j.issn.0253-6099.2014.z1.026
[31] Liu M ,Zhang C ,Hu B,et al. Enhancing flotation separation of chalcopyrite and galena by the surface synergism between sodium sulfite and sodium lignosulfonate[J]. Applied Surface Science, 2020, 507:145042. doi: 10.1016/j.apsusc.2019.145042
[32] Xue M Q, Hong Y Y, Guo B C, et al. Inhibited mechanism of carboxymethylcellulose as a galena depressant in chalcopyrite and galena separation flotation[J]. Minerals Engineering, 2020, 150:106273. doi: 10.1016/j.mineng.2020.106273
[33] Yu L, Liu Q J, Li S M, et al. The synergetic depression effect of KMnO4 and CMC on the depression of galena flotation[J]. Chemical Engineering Communications, 2018, 206:1-11.
[34] 聂琪,戈保梁,陈正云,等. 某氧硫混合多金属矿铜铅分离研究[J]. 矿产综合利用, 2021(1):92-98.NIE Q, GE B L, CHEN Z Y, et al. Research on separation of copper and lead of an oxygen-sulfur polymetallic ore[J]. Multipurpose Utilization of Mineral Resources, 2021(1):92-98. doi: 10.3969/j.issn.1000-6532.2021.01.015
NIE Q, GE B L, CHEN Z Y, et al. Research on separation of copper and lead of an oxygen-sulfur polymetallic ore[J]. Multipurpose Utilization of Mineral Resources, 2021(1):92-98. doi: 10.3969/j.issn.1000-6532.2021.01.015
[35] Wang X J, Qin W Q, Jiao F, etal. Inhibition of galena flotation by humic acid: Identification of the adsorption site for humic acid on moderate lyoxidized galena surface[J]. Minerals Engineering, 2019, 137:102-107. doi: 10.1016/j.mineng.2019.03.029
[36] Liu R Z, Qin W Q, Fen J, et al. Flotation separation of chalcopyrite from galena by sodium humate and ammonium persulfate[J]. Transactions of Nonferrous Metals Society of China, 2016, 26(1):265-271. doi: 10.1016/S1003-6326(16)64113-4
[37] Piao Z J,Wei D Z,Liu Z L. Effects of small molecule organic de-pressants on the flotation behavior of chalcopyrite and galena[J]. Journal of Northeastern University, 2013, 34(6):884-888.
[38] Zhang X R ,Zhu Y G,Zheng G B,et al. An investigation into the selective separation and adsorption mechanism of a macromolecular depressant in the galena-chalcopyrite system[J]. Minerals Engineering, 2019, 134:291-299. doi: 10.1016/j.mineng.2019.02.004
[39] Zhang X. R., Qian Z.B., Zheng G.B., et al. The design of a macromolecular depressant for galena based on DFT studies and its application[J]. Miner. Eng., 2017, 112:50-56. doi: 10.1016/j.mineng.2017.07.007
[40] 魏明安,孙传尧. 硫化铜、铅矿物浮选分离研究现状及发展趋势[J]. 矿冶, 2008(2):6-16+33.WEI M A,SUN C Y. The current status and development trend of copper sulfide and lead mineral flotation[J]. Mining and Metallurgy, 2008(2):6-16+33. doi: 10.3969/j.issn.1005-7854.2008.02.002
WEI M A,SUN C Y. The current status and development trend of copper sulfide and lead mineral flotation[J]. Mining and Metallurgy, 2008(2):6-16+33. doi: 10.3969/j.issn.1005-7854.2008.02.002
[41] 晋艳玲,谢海云,张培,等. 硫酸作用下方铅矿表面钝化特性和机理研究[J]. 矿物学报, 2022, 42(3):343-350.JIN Y L, XIE H Y, ZHANG P, et al. Study on the surface passivation characteristics and mechanism of the leading surface of the lead ore under the action of sulfuric acid[J]. Acta Mineralogica Sinica | Acta Mineral Sin, 2022, 42(3):343-350.
JIN Y L, XIE H Y, ZHANG P, et al. Study on the surface passivation characteristics and mechanism of the leading surface of the lead ore under the action of sulfuric acid[J]. Acta Mineralogica Sinica | Acta Mineral Sin, 2022, 42(3):343-350.
[42] 范道焱,伍赠玲,谢洪珍,等. 低品位含铜废石生物浸出实验研究[J]. 矿产综合利用, 2019(2):115-119.FAN D Y, WU Z L, XIE H Z , et al. Study on the low-grade copper waste ore with biological leaching process[J]. Multipurpose Utilization of Mineral Resources, 2019(2):115-119. doi: 10.3969/j.issn.1000-6532.2019.02.024
FAN D Y, WU Z L, XIE H Z , et al. Study on the low-grade copper waste ore with biological leaching process[J]. Multipurpose Utilization of Mineral Resources, 2019(2):115-119. doi: 10.3969/j.issn.1000-6532.2019.02.024
[43] 张兴勋. 某低品位次生硫化铜矿生物柱浸实验[J]. 矿产综合利用, 2020(3):111-116.ZHANG X X. Experiment of biological column leaching of a low-grade secondary copper sulfide ore[J]. Multipurpose Utilization of Mineral Resources, 2020(3):111-116. doi: 10.3969/j.issn.1000-6532.2020.03.018
ZHANG X X. Experiment of biological column leaching of a low-grade secondary copper sulfide ore[J]. Multipurpose Utilization of Mineral Resources, 2020(3):111-116. doi: 10.3969/j.issn.1000-6532.2020.03.018
[44] 张水龙,刘金艳,杨林恒,等. 吉林铜钴镍多金属硫化矿的生物浸出实验研究[J]. 矿产综合利用, 2020(1):50-53.ZHANG S L, LIU J Y, YANG L H, et al. Bioleaching of copper-cobalt-nickel polymetallic sulfide ores in Jilin[J]. Multipurpose Utilization of Mineral Resources, 2020(1):50-53. doi: 10.3969/j.issn.1000-6532.2020.01.010
ZHANG S L, LIU J Y, YANG L H, et al. Bioleaching of copper-cobalt-nickel polymetallic sulfide ores in Jilin[J]. Multipurpose Utilization of Mineral Resources, 2020(1):50-53. doi: 10.3969/j.issn.1000-6532.2020.01.010
[45] 宋坤,宋永胜,张其东,等. 外控电位法浮选分离黄铜矿和辉钼矿[J]. 工程科学学报, 2019(7):3.SONG K, SONG Y S, ZHANG Q D, et al. The external control potential method is separated from brass ore and Huibeng molybdenum ore[J]. Chinese Journal of Engineering, 2019(7):3.
SONG K, SONG Y S, ZHANG Q D, et al. The external control potential method is separated from brass ore and Huibeng molybdenum ore[J]. Chinese Journal of Engineering, 2019(7):3.
[46] 苏超,刘殿文,申培伦,等. 铜矿和方铅矿的电化学特性及浮选行为研究进展[J]. 有色金属工程, 2020, 10(9):79-87SU C, LIU D W, SHEN P L, et al. The research progress of the electrochemical characteristics and flotation behavior of copper ore and square lead ore[J]. Nonferrous Metals, 2020, 10(9):79-87 doi: 10.3969/j.issn.2095-1744.2020.09.013
SU C, LIU D W, SHEN P L, et al. The research progress of the electrochemical characteristics and flotation behavior of copper ore and square lead ore[J]. Nonferrous Metals, 2020, 10(9):79-87 doi: 10.3969/j.issn.2095-1744.2020.09.013
[47] 覃文庆,姚国成,顾帼华,等. 硫化矿物的浮选电化学与浮选行为[J]. 中国有色金属学报, 2016, 21(10):2669-2667.QIN W Q, YAO G C, GU G H, et al. Floating electrochemical and floating behavior of sulfur minerals[J]. The Chinese Journal of Nonferrous Metals, 2016, 21(10):2669-2667.
QIN W Q, YAO G C, GU G H, et al. Floating electrochemical and floating behavior of sulfur minerals[J]. The Chinese Journal of Nonferrous Metals, 2016, 21(10):2669-2667.
[48] 罗仙平, 王淀佐, 孙体昌, 等. 某铜铅锌多金属硫化矿电位调控浮选实验研究[J]. 金属矿山, 2006(6):30-34.LUO X P, WANG D Z, SUN T C, et al. Research on the flotation test of a copper lead -zinc polygon metal vulcanized mineral potential regulation[J]. Metal Mine, 2006(6):30-34. doi: 10.3321/j.issn:1001-1250.2006.06.009
LUO X P, WANG D Z, SUN T C, et al. Research on the flotation test of a copper lead -zinc polygon metal vulcanized mineral potential regulation[J]. Metal Mine, 2006(6):30-34. doi: 10.3321/j.issn:1001-1250.2006.06.009
[49] 程琍琍,罗仙平,孙体昌,等. 某铜铅锌硫化矿电位调控优先浮选研究[J]. 中国矿业, 2011, 20(6):88-92+100.CHENG L L , LUO X P, SUN T C, et al. Research on priority of a copper lead zinc vulcanized mineral potential regulation[J]. China Mining Magazine, 2011, 20(6):88-92+100. doi: 10.3969/j.issn.1004-4051.2011.06.024
CHENG L L , LUO X P, SUN T C, et al. Research on priority of a copper lead zinc vulcanized mineral potential regulation[J]. China Mining Magazine, 2011, 20(6):88-92+100. doi: 10.3969/j.issn.1004-4051.2011.06.024
-