铜铅硫化矿浮选分离研究现状及展望

王瑞康, 蓝卓越, 杨迪, 童雄. 铜铅硫化矿浮选分离研究现状及展望[J]. 矿产综合利用, 2025, 46(4): 32-40. doi: 10.12476/kczhly.202207070422
引用本文: 王瑞康, 蓝卓越, 杨迪, 童雄. 铜铅硫化矿浮选分离研究现状及展望[J]. 矿产综合利用, 2025, 46(4): 32-40. doi: 10.12476/kczhly.202207070422
WANG Ruikang, LAN Zhuoyue, YANG Di, TONG Xiong. Research Status and Prospect of Flotation Separation of a Copper-lead Sulfide Ore[J]. Multipurpose Utilization of Mineral Resources, 2025, 46(4): 32-40. doi: 10.12476/kczhly.202207070422
Citation: WANG Ruikang, LAN Zhuoyue, YANG Di, TONG Xiong. Research Status and Prospect of Flotation Separation of a Copper-lead Sulfide Ore[J]. Multipurpose Utilization of Mineral Resources, 2025, 46(4): 32-40. doi: 10.12476/kczhly.202207070422

铜铅硫化矿浮选分离研究现状及展望

  • 基金项目: 国家自然科学基金(5196040249)
详细信息
    作者简介: 王瑞康(1996-),男,硕士研究生,主要从事资源综合利用、浮选理论与工艺等方面工作
    通讯作者: 蓝卓越(1976-),男,博士,副教授,主要从事资源综合利用、浮选理论与工艺等方面工作
  • 中图分类号: TD952

Research Status and Prospect of Flotation Separation of a Copper-lead Sulfide Ore

More Information
  • 铜铅分离是复杂硫化矿选矿技术难题之一。在分析铜铅硫化矿资源概况及矿物组成特点的基础上,综合评述了现阶段铜铅硫化矿浮选分离的主要工艺流程,总结了铜铅浮选分离的药剂制度及机理研究,并指出绿色环保的新型靶向浮选药剂的研发、生物浸出技术和电位调控浮选技术的应用,是未来提高铜铅分离效率和资源综合利用水平的主要发展方向。

  • 加载中
  • 表 1  常用的硫化铜矿浮选捕收剂

    Table 1.  Common collectors for the copper sulfide ore flotation

    药剂名称 结构式或化学名称 备注
    烷基二硫代碳酸盐(黄药) ROCSS-M+ R=C2~C6
    烷基或芳基二硫代磷酸盐(黑药) (RO)2PSS-M+ R=C2~C6
    二硫代氨基甲酸盐(硫氮) (R)2NCSS-M+ R=C1~C3
    一硫代氨基甲酸酯(硫氨酯) R1OC(=S)N(R2)2 R=H,C1~C6
    硫代均二苯脲(白药) (C6H5NH)2C(=S)
    烷基双黄原酸酯 (ROCS)2S R=C2~C6
    黄原酸酯 ROCSSR’ R=C2~C6
    R′有多种选择
    巯基苯并噻唑 C6H4(-N=)(-S-)C-SH
    烷基或芳基二硫代膦酸盐 (R)2PSS-M+ R=C2~C6
    烷基硫醇 RSH R=C10~C12
    二烷基二硫化物 RSSR R=C4~C8
    烷基三硫代碳酸盐 RSCSSM+ R=C2~C6
    下载: 导出CSV

    表 2  硫化铜矿浮选的新型捕收剂

    Table 2.  New type collectors for the copper sulfide ore flotation

    药剂名称 结构式或化学名称 备注
    烷基或芳基一硫代磷酸烷基或芳基亚磷酸盐 (RO)2PSO-M+
    (R)2 PSO-M+
    R=C2~C6
    N-烯丙基一硫代氨基甲酸盐 ROC(=S)NHCH2CH=CH2 R=C2~C6
    烷氧羰基烷基一硫代氨基甲酸酯 R1OC(=S)NHC(=O)OR2 R=C2~C5
    烷氧羰基烷基硫脲 R1NHC(=S)NHC(=O)OR2 R=C2~C6
    二烷基硫化物 RSR R=C2~C6
    烷基硫代胺 RSR′NH2 R=C2~C10
    二硫代氨基甲酸-α-羰基酯 RC(=O)SC(=S)NH2 R=C4~C8
    R′=C2~C3
    MIG-4E捕收剂 HC≡CH-CH=CH-O-C4H9
    HATT 捕收剂[21] 3-己基-4-氨基-1,2,4-三唑-5-硫酮
    MBT 捕收剂[22] (2-巯基苯并噻唑)
    DTPINa捕收剂[23] (二异丁基二硫代次磷酸钠)
    下载: 导出CSV
  • [1]

    冯博, 朱贤文, 彭金秀, 等. 有色金属硫化矿中伴生金银资源回收研究进展[J]. 贵金属., 2016(2):70-76.FENG B, ZHU X W, PENG J X, et al. The research progress of the recycling of gold and silver resources in the non-colored metal sulfur ore[J]. Precious Metals, 2016(2):70-76.

    FENG B, ZHU X W, PENG J X, et al. The research progress of the recycling of gold and silver resources in the non-colored metal sulfur ore[J]. Precious Metals, 2016(2):70-76.

    [2]

    李磊, 魏旭, 阳珊, 等. 安徽省金寨县迎风崖铅锌铜多金属矿床物质组分及赋存状态研究[J]. 矿产综合利用, 2022(3):198-201.LI L, WEI X, YANG S, et al. Study on the material composition and occurrence state of yingfengya lead zinc copper polymetallic deposit, Jinzhai County, Anhui Province[J]. Multipurpose Utilization of Mineral Resources, 2022(3):198-201. doi: 10.3969/j.issn.1000-6532.2022.03.035

    LI L, WEI X, YANG S, et al. Study on the material composition and occurrence state of yingfengya lead zinc copper polymetallic deposit, Jinzhai County, Anhui Province[J]. Multipurpose Utilization of Mineral Resources, 2022(3):198-201. doi: 10.3969/j.issn.1000-6532.2022.03.035

    [3]

    顾佳妮, 张新元, 韩九曦, 等. 全球铅矿资源形势及中国铅资源发展[J]. 中国矿业, 2017, 26(2):16-20.GU J N, ZHANG X Y, HAN J X, et al. Global lead mines and the development of Chinese lead resources[J]. China Mining Magazine, 2017, 26(2):16-20. doi: 10.3969/j.issn.1004-4051.2017.02.004

    GU J N, ZHANG X Y, HAN J X, et al. Global lead mines and the development of Chinese lead resources[J]. China Mining Magazine, 2017, 26(2):16-20. doi: 10.3969/j.issn.1004-4051.2017.02.004

    [4]

    康博文, 谢贤, 陈国举, 等. 铜铅硫化矿物分离过程铅抑制剂的研究现状与进展[J]. 金属矿山, 2018(10):104-109.KANG B W, XIE X, CHEN G J, et al. Research status and progress of the leading inhibitors of lead in inhibitors of copper leading minerals[J]. Metal Mine, 2018(10):104-109.

    KANG B W, XIE X, CHEN G J, et al. Research status and progress of the leading inhibitors of lead in inhibitors of copper leading minerals[J]. Metal Mine, 2018(10):104-109.

    [5]

    冉银华, 杨茂椿, 肖东升, 等. 云南某复杂混合型铜矿的试验研究[J]. 矿产综合利用, 2019(3):52-55.RAN Y H, YANG M C, XIAO D S, et al. Experimental study on a complex mixed copper ore in Yunnan[J]. Multipurpose Utilization of Mineral Resources, 2019(3):52-55. doi: 10.3969/j.issn.1000-6532.2019.03.012

    RAN Y H, YANG M C, XIAO D S, et al. Experimental study on a complex mixed copper ore in Yunnan[J]. Multipurpose Utilization of Mineral Resources, 2019(3):52-55. doi: 10.3969/j.issn.1000-6532.2019.03.012

    [6]

    陈海亮,崔毅琦,童雄. 硫化铜铅矿物浮选分离的研究现状及进展[J]. 矿冶, 2016, 25(1):13-16.CHEN H L,CUI Y Q,TONG X. Research status and progress of the flotation of copper-vulcanized lead minerals[J]. Mining and Metallurgy, 2016, 25(1):13-16. doi: 10.3969/j.issn.1005-7854.2016.01.004

    CHEN H L,CUI Y Q,TONG X. Research status and progress of the flotation of copper-vulcanized lead minerals[J]. Mining and Metallurgy, 2016, 25(1):13-16. doi: 10.3969/j.issn.1005-7854.2016.01.004

    [7]

    孙若凡,刘丹,杜钰,等. 黄铜矿、方铅矿分离研究现状及进展[J]. 矿产综合利用, 2021(4):80-86.SUN R F, LIU D, DU Y, et al. Research status and development of separation of chalcopyrite and galena[J]. Multipurpose Utilization of Mineral Resources, 2021(4):80-86. doi: 10.3969/j.issn.1000-6532.2021.04.012

    SUN R F, LIU D, DU Y, et al. Research status and development of separation of chalcopyrite and galena[J]. Multipurpose Utilization of Mineral Resources, 2021(4):80-86. doi: 10.3969/j.issn.1000-6532.2021.04.012

    [8]

    Zhao K , Ma C , Gu G , et al. Selective separation of chalcopyrite from galena using a green reagent scheme[J]. Minerals, 2021, 11(8):796. doi: 10.3390/min11080796

    [9]

    李俊旺,张红华,洪建华. 铜精矿提质降杂试验研究[J]. 矿产综合利用, 2017(3):55-57+61.LI J W, ZHANG H H, HONG J H. Research on copper essence mineral quality and miscellaneous miscellaneous test[J]. Multipurpose Utilization of Mineral Resources, 2017(3):55-57+61. doi: 10.3969/j.issn.1000-6532.2017.03.009

    LI J W, ZHANG H H, HONG J H. Research on copper essence mineral quality and miscellaneous miscellaneous test[J]. Multipurpose Utilization of Mineral Resources, 2017(3):55-57+61. doi: 10.3969/j.issn.1000-6532.2017.03.009

    [10]

    Jiao F , Cui Y , Wang D , et al. Research of the replacement of dichromate with depressants mixture in the separation of copper-lead sulfides by flotation[J]. Separation and Purification Technology, 2022, 278:119330.

    [11]

    田树国,崔立凤,王军荣,等. 国外某铜铅锌多金属矿工艺矿物学特性及影响浮选的因素[J]. 矿产综合利用, 2019(1):78-82.TIAN S G,CUI L F,WANG J R,et al. Process mineralogy and factors affecting mineral processing for a foreign copper-lead-zinc polymetallic ore[J]. Multipurpose Utilization of Mineral Resources, 2019(1):78-82. doi: 10.3969/j.issn.1000-6532.2019.01.017

    TIAN S G,CUI L F,WANG J R,et al. Process mineralogy and factors affecting mineral processing for a foreign copper-lead-zinc polymetallic ore[J]. Multipurpose Utilization of Mineral Resources, 2019(1):78-82. doi: 10.3969/j.issn.1000-6532.2019.01.017

    [12]

    肖庆飞,郭运鑫,黄胤淇,等. 提高冬瓜山铜矿粗磨磨矿效率的对比试验研究[J]. 矿产综合利用, 2020(3):100-104.XIAO Q F, GUO Y X, HUANG Y Q, et al. Comparative experimental study on improving the grinding efficiency of the Dongguashan copper mine[J]. Multipurpose Utilization of Mineral Resources, 2020(3):100-104. doi: 10.3969/j.issn.1000-6532.2020.03.016

    XIAO Q F, GUO Y X, HUANG Y Q, et al. Comparative experimental study on improving the grinding efficiency of the Dongguashan copper mine[J]. Multipurpose Utilization of Mineral Resources, 2020(3):100-104. doi: 10.3969/j.issn.1000-6532.2020.03.016

    [13]

    王刚, 于云龙, 马波, 等. 内蒙古某复杂多金属铅铜锌硫化矿选矿工艺研究[J]. 矿产综合利用, 2022(3):172-180.WANG G,YU Y L, MA B, et al. Study on mineral processing technology of complex polymetallic lead-copper-zinc sulfide ores from Inner Mongolia[J]. Multipurpose Utilization of Mineral Resources, 2022(3):172-180. doi: 10.3969/j.issn.1000-6532.2022.03.031

    WANG G,YU Y L, MA B, et al. Study on mineral processing technology of complex polymetallic lead-copper-zinc sulfide ores from Inner Mongolia[J]. Multipurpose Utilization of Mineral Resources, 2022(3):172-180. doi: 10.3969/j.issn.1000-6532.2022.03.031

    [14]

    肖炜,田小松. 云南迪庆铜铅锌硫化矿浮选分离研究[J]. 矿产综合利用, 2020(1):65-70.XIAO W, TIAN X S. Study on flotation separation of copper-lead-zinc sulfide ore in Diqing Yunnan[J]. Multipurpose Utilization of Mineral Resources, 2020(1):65-70. doi: 10.3969/j.issn.1000-6532.2020.01.014

    XIAO W, TIAN X S. Study on flotation separation of copper-lead-zinc sulfide ore in Diqing Yunnan[J]. Multipurpose Utilization of Mineral Resources, 2020(1):65-70. doi: 10.3969/j.issn.1000-6532.2020.01.014

    [15]

    黄雄. 内蒙古某含铜铅精矿抑铅浮铜试验[J]. 矿产综合利用, 2020(4):116-120.HUANG X. Experiment on preferential separation of copper by depressing lead from a copper-containing lead concentrate[J]. Multipurpose Utilization of Mineral Resources, 2020(4):116-120. doi: 10.3969/j.issn.1000-6532.2020.04.019

    HUANG X. Experiment on preferential separation of copper by depressing lead from a copper-containing lead concentrate[J]. Multipurpose Utilization of Mineral Resources, 2020(4):116-120. doi: 10.3969/j.issn.1000-6532.2020.04.019

    [16]

    谢海云, 柳彦昊, 纪翠翠, 等. 铜铅锌混合精矿的矿物学特征分析及分离效率探究[J]. 岩矿测试, 2021, 40(4):542-549.XIE H Y, LIU Y H, JI C C, et al. Analysis and separation efficiency of copper -lead zinc hybrid ore mineral characteristics[J]. Rock and Mineral Analysis, 2021, 40(4):542-549.

    XIE H Y, LIU Y H, JI C C, et al. Analysis and separation efficiency of copper -lead zinc hybrid ore mineral characteristics[J]. Rock and Mineral Analysis, 2021, 40(4):542-549.

    [17]

    温凯,陈建华. 某含银复杂铜铅锌多金属硫化矿浮选试验[J]. 矿产综合利用, 2019(6):28-32.WEN K, CHEN J H. Experimental study on flotation of copper, lead and zinc polymetallic sulfide ore containing silver[J]. Multipurpose Utilization of Mineral Resources, 2019(6):28-32. doi: 10.3969/j.issn.1000-6532.2019.06.006

    WEN K, CHEN J H. Experimental study on flotation of copper, lead and zinc polymetallic sulfide ore containing silver[J]. Multipurpose Utilization of Mineral Resources, 2019(6):28-32. doi: 10.3969/j.issn.1000-6532.2019.06.006

    [18]

    陈章鸿,刘四清,陈思雨,等. 基于硫酸调浆的铜铅锌多金属矿浮选分离工艺研究[J]. 矿产综合利用, 2022(2):79-85.CHEN Z H, LIU S Q, CHEN S Y, et al. Flotation separation of Cu-Pb-Zn polymetallic ore based on sulfuric acid as regulator[J]. Multipurpose Utilization of Mineral Resources, 2022(2):79-85. doi: 10.3969/j.issn.1000-6532.2022.02.015

    CHEN Z H, LIU S Q, CHEN S Y, et al. Flotation separation of Cu-Pb-Zn polymetallic ore based on sulfuric acid as regulator[J]. Multipurpose Utilization of Mineral Resources, 2022(2):79-85. doi: 10.3969/j.issn.1000-6532.2022.02.015

    [19]

    冯晓燕,姜涛,赵志强,等. 某铜铅锌多金属硫化矿选矿试验研究[J]. 矿冶工程, 2020, 40(5):53-57.FENG X Y, JIANG T, ZHAO Z Q, et al. Research on a copper lead -zinc ductive metal vulcanization mineral selection test[J]. Mining and Metallurgical Engineering, 2020, 40(5):53-57. doi: 10.3969/j.issn.0253-6099.2020.05.013

    FENG X Y, JIANG T, ZHAO Z Q, et al. Research on a copper lead -zinc ductive metal vulcanization mineral selection test[J]. Mining and Metallurgical Engineering, 2020, 40(5):53-57. doi: 10.3969/j.issn.0253-6099.2020.05.013

    [20]

    R·R·克里姆帕尔. 硫化矿物浮选捕收剂实践评述[J]. 国外金属矿选矿, 2001, 38(9):6.R R Krimpal. Evaluation of vulcanized mineral flotation recovery agent[J]. Magazine Introduction, 2001, 38(9):6.

    R R Krimpal. Evaluation of vulcanized mineral flotation recovery agent[J]. Magazine Introduction, 2001, 38(9):6.

    [21]

    曲肖彦, 刘广义, 刘胜,等. 3-己基-4-氨基-1,2,4-三唑-5-硫酮在黄铜矿表面的吸附动力学与热力学[J]. 中国有色金属学报, 2015, 25(7):9.QU X Y, LIU G Y, LIU S, et al. 3-self-4-amino-1,2,4-triazol-5-sulfone on the surface of the brass ore is adsorbed dynamics and thermodynamics[J]. The Chinses Journal of Nonferrous Metals, 2015, 25(7):9.

    QU X Y, LIU G Y, LIU S, et al. 3-self-4-amino-1,2,4-triazol-5-sulfone on the surface of the brass ore is adsorbed dynamics and thermodynamics[J]. The Chinses Journal of Nonferrous Metals, 2015, 25(7):9.

    [22]

    Buckley, Alan, N, et al. Mercaptobenzothiazole collector adsorption on Cu sulfide ore minerals[J]. International Journal of Mineral Processing, 2016.

    [23]

    Zhong H , Huang Z , Zhao G , et al. The collecting performance and interaction mechanism of sodium diisobutyl dithiophosphinate in sulfide minerals flotation[J]. Journal of Materials Research & Technology, 2015, 4(2):151-161.

    [24]

    Wang C T, Liu R Q, Khoso S A, et al. Combined inhibitory effect of calcium hypochlorite and dextrin on flotation behavior of pyrite and galena sulphides[J]. Minerals Engineering, 2020, 150:106274. doi: 10.1016/j.mineng.2020.106274

    [25]

    Wang D Z, Jiao F, Qin W Q, et al. Effect of surface oxidation on the flotation separation of chalcopyrite and galena using sodium humate as depressant[J]. Separation Science & Technology, 2017(11):1-12.

    [26]

    Sarquis P E, Menendez-Aguado J M, Mahamud M M, et al. Tannins: the organic depressants alternative in selective flotation of sulfides[J]. Journal of Cleaner Production, 2014, 84(dec.1):723-726.

    [27]

    Okada S, Majima H. Depressive action of chromate and dichromate salt song alena[J]. Canadian Metallurgical Quarterly, 2014, 10(3):189-195.

    [28]

    黄海露,马晶,郭月琴. 铜铅混合精矿高效分离试验研究[J]. 中国钼业, 2014, 38(3):13-17.HUANG H L, MA J, GUO Y Q. Research on the efficient separation test of copper lead hybrid ore[J]. China Molybdenum Industry, 2014, 38(3):13-17.

    HUANG H L, MA J, GUO Y Q. Research on the efficient separation test of copper lead hybrid ore[J]. China Molybdenum Industry, 2014, 38(3):13-17.

    [29]

    Zhang Y, Liu R Q, Sun W, et al. Electrochemical mechanism and flotation of chalcopyrite and galena in the presence of sodium silicate and sodium sulfite[J]. Transactions of Nonferrous Metals Society of China, 2020, 30(4):1091-1101. doi: 10.1016/S1003-6326(20)65280-3

    [30]

    刘润清, 郭衍哲, 江峰. 亚硫酸在黄铜矿和方铅矿浮选分离中的作用研究[J]. 矿冶工程, 2014, 34(s):104-107.LIU R Q, GUO Y Z, JIANG F. Study on the role of sulfuric acid in the floating separation of brass ore and square lead ore[J]. Mining and Metallurgical Engineering, 2014, 34(s):104-107. doi: 10.3969/j.issn.0253-6099.2014.z1.026

    LIU R Q, GUO Y Z, JIANG F. Study on the role of sulfuric acid in the floating separation of brass ore and square lead ore[J]. Mining and Metallurgical Engineering, 2014, 34(s):104-107. doi: 10.3969/j.issn.0253-6099.2014.z1.026

    [31]

    Liu M ,Zhang C ,Hu B,et al. Enhancing flotation separation of chalcopyrite and galena by the surface synergism between sodium sulfite and sodium lignosulfonate[J]. Applied Surface Science, 2020, 507:145042. doi: 10.1016/j.apsusc.2019.145042

    [32]

    Xue M Q, Hong Y Y, Guo B C, et al. Inhibited mechanism of carboxymethylcellulose as a galena depressant in chalcopyrite and galena separation flotation[J]. Minerals Engineering, 2020, 150:106273. doi: 10.1016/j.mineng.2020.106273

    [33]

    Yu L, Liu Q J, Li S M, et al. The synergetic depression effect of KMnO4 and CMC on the depression of galena flotation[J]. Chemical Engineering Communications, 2018, 206:1-11.

    [34]

    聂琪,戈保梁,陈正云,等. 某氧硫混合多金属矿铜铅分离研究[J]. 矿产综合利用, 2021(1):92-98.NIE Q, GE B L, CHEN Z Y, et al. Research on separation of copper and lead of an oxygen-sulfur polymetallic ore[J]. Multipurpose Utilization of Mineral Resources, 2021(1):92-98. doi: 10.3969/j.issn.1000-6532.2021.01.015

    NIE Q, GE B L, CHEN Z Y, et al. Research on separation of copper and lead of an oxygen-sulfur polymetallic ore[J]. Multipurpose Utilization of Mineral Resources, 2021(1):92-98. doi: 10.3969/j.issn.1000-6532.2021.01.015

    [35]

    Wang X J, Qin W Q, Jiao F, etal. Inhibition of galena flotation by humic acid: Identification of the adsorption site for humic acid on moderate lyoxidized galena surface[J]. Minerals Engineering, 2019, 137:102-107. doi: 10.1016/j.mineng.2019.03.029

    [36]

    Liu R Z, Qin W Q, Fen J, et al. Flotation separation of chalcopyrite from galena by sodium humate and ammonium persulfate[J]. Transactions of Nonferrous Metals Society of China, 2016, 26(1):265-271. doi: 10.1016/S1003-6326(16)64113-4

    [37]

    Piao Z J,Wei D Z,Liu Z L. Effects of small molecule organic de-pressants on the flotation behavior of chalcopyrite and galena[J]. Journal of Northeastern University, 2013, 34(6):884-888.

    [38]

    Zhang X R ,Zhu Y G,Zheng G B,et al. An investigation into the selective separation and adsorption mechanism of a macromolecular depressant in the galena-chalcopyrite system[J]. Minerals Engineering, 2019, 134:291-299. doi: 10.1016/j.mineng.2019.02.004

    [39]

    Zhang X. R., Qian Z.B., Zheng G.B., et al. The design of a macromolecular depressant for galena based on DFT studies and its application[J]. Miner. Eng., 2017, 112:50-56. doi: 10.1016/j.mineng.2017.07.007

    [40]

    魏明安,孙传尧. 硫化铜、铅矿物浮选分离研究现状及发展趋势[J]. 矿冶, 2008(2):6-16+33.WEI M A,SUN C Y. The current status and development trend of copper sulfide and lead mineral flotation[J]. Mining and Metallurgy, 2008(2):6-16+33. doi: 10.3969/j.issn.1005-7854.2008.02.002

    WEI M A,SUN C Y. The current status and development trend of copper sulfide and lead mineral flotation[J]. Mining and Metallurgy, 2008(2):6-16+33. doi: 10.3969/j.issn.1005-7854.2008.02.002

    [41]

    晋艳玲,谢海云,张培,等. 硫酸作用下方铅矿表面钝化特性和机理研究[J]. 矿物学报, 2022, 42(3):343-350.JIN Y L, XIE H Y, ZHANG P, et al. Study on the surface passivation characteristics and mechanism of the leading surface of the lead ore under the action of sulfuric acid[J]. Acta Mineralogica Sinica | Acta Mineral Sin, 2022, 42(3):343-350.

    JIN Y L, XIE H Y, ZHANG P, et al. Study on the surface passivation characteristics and mechanism of the leading surface of the lead ore under the action of sulfuric acid[J]. Acta Mineralogica Sinica | Acta Mineral Sin, 2022, 42(3):343-350.

    [42]

    范道焱,伍赠玲,谢洪珍,等. 低品位含铜废石生物浸出实验研究[J]. 矿产综合利用, 2019(2):115-119.FAN D Y, WU Z L, XIE H Z , et al. Study on the low-grade copper waste ore with biological leaching process[J]. Multipurpose Utilization of Mineral Resources, 2019(2):115-119. doi: 10.3969/j.issn.1000-6532.2019.02.024

    FAN D Y, WU Z L, XIE H Z , et al. Study on the low-grade copper waste ore with biological leaching process[J]. Multipurpose Utilization of Mineral Resources, 2019(2):115-119. doi: 10.3969/j.issn.1000-6532.2019.02.024

    [43]

    张兴勋. 某低品位次生硫化铜矿生物柱浸实验[J]. 矿产综合利用, 2020(3):111-116.ZHANG X X. Experiment of biological column leaching of a low-grade secondary copper sulfide ore[J]. Multipurpose Utilization of Mineral Resources, 2020(3):111-116. doi: 10.3969/j.issn.1000-6532.2020.03.018

    ZHANG X X. Experiment of biological column leaching of a low-grade secondary copper sulfide ore[J]. Multipurpose Utilization of Mineral Resources, 2020(3):111-116. doi: 10.3969/j.issn.1000-6532.2020.03.018

    [44]

    张水龙,刘金艳,杨林恒,等. 吉林铜钴镍多金属硫化矿的生物浸出实验研究[J]. 矿产综合利用, 2020(1):50-53.ZHANG S L, LIU J Y, YANG L H, et al. Bioleaching of copper-cobalt-nickel polymetallic sulfide ores in Jilin[J]. Multipurpose Utilization of Mineral Resources, 2020(1):50-53. doi: 10.3969/j.issn.1000-6532.2020.01.010

    ZHANG S L, LIU J Y, YANG L H, et al. Bioleaching of copper-cobalt-nickel polymetallic sulfide ores in Jilin[J]. Multipurpose Utilization of Mineral Resources, 2020(1):50-53. doi: 10.3969/j.issn.1000-6532.2020.01.010

    [45]

    宋坤,宋永胜,张其东,等. 外控电位法浮选分离黄铜矿和辉钼矿[J]. 工程科学学报, 2019(7):3.SONG K, SONG Y S, ZHANG Q D, et al. The external control potential method is separated from brass ore and Huibeng molybdenum ore[J]. Chinese Journal of Engineering, 2019(7):3.

    SONG K, SONG Y S, ZHANG Q D, et al. The external control potential method is separated from brass ore and Huibeng molybdenum ore[J]. Chinese Journal of Engineering, 2019(7):3.

    [46]

    苏超,刘殿文,申培伦,等. 铜矿和方铅矿的电化学特性及浮选行为研究进展[J]. 有色金属工程, 2020, 10(9):79-87SU C, LIU D W, SHEN P L, et al. The research progress of the electrochemical characteristics and flotation behavior of copper ore and square lead ore[J]. Nonferrous Metals, 2020, 10(9):79-87 doi: 10.3969/j.issn.2095-1744.2020.09.013

    SU C, LIU D W, SHEN P L, et al. The research progress of the electrochemical characteristics and flotation behavior of copper ore and square lead ore[J]. Nonferrous Metals, 2020, 10(9):79-87 doi: 10.3969/j.issn.2095-1744.2020.09.013

    [47]

    覃文庆,姚国成,顾帼华,等. 硫化矿物的浮选电化学与浮选行为[J]. 中国有色金属学报, 2016, 21(10):2669-2667.QIN W Q, YAO G C, GU G H, et al. Floating electrochemical and floating behavior of sulfur minerals[J]. The Chinese Journal of Nonferrous Metals, 2016, 21(10):2669-2667.

    QIN W Q, YAO G C, GU G H, et al. Floating electrochemical and floating behavior of sulfur minerals[J]. The Chinese Journal of Nonferrous Metals, 2016, 21(10):2669-2667.

    [48]

    罗仙平, 王淀佐, 孙体昌, 等. 某铜铅锌多金属硫化矿电位调控浮选实验研究[J]. 金属矿山, 2006(6):30-34.LUO X P, WANG D Z, SUN T C, et al. Research on the flotation test of a copper lead -zinc polygon metal vulcanized mineral potential regulation[J]. Metal Mine, 2006(6):30-34. doi: 10.3321/j.issn:1001-1250.2006.06.009

    LUO X P, WANG D Z, SUN T C, et al. Research on the flotation test of a copper lead -zinc polygon metal vulcanized mineral potential regulation[J]. Metal Mine, 2006(6):30-34. doi: 10.3321/j.issn:1001-1250.2006.06.009

    [49]

    程琍琍,罗仙平,孙体昌,等. 某铜铅锌硫化矿电位调控优先浮选研究[J]. 中国矿业, 2011, 20(6):88-92+100.CHENG L L , LUO X P, SUN T C, et al. Research on priority of a copper lead zinc vulcanized mineral potential regulation[J]. China Mining Magazine, 2011, 20(6):88-92+100. doi: 10.3969/j.issn.1004-4051.2011.06.024

    CHENG L L , LUO X P, SUN T C, et al. Research on priority of a copper lead zinc vulcanized mineral potential regulation[J]. China Mining Magazine, 2011, 20(6):88-92+100. doi: 10.3969/j.issn.1004-4051.2011.06.024

  • 加载中

(2)

计量
  • 文章访问数:  24
  • PDF下载数:  22
  • 施引文献:  0
出版历程
收稿日期:  2022-07-07
刊出日期:  2025-08-25

目录