Current Application Status of Photoelectric Pre-discarded Technology in Waste Rock Recovery Process
-
摘要:
中国矿产资源储量丰富,但整体上呈现品位低、嵌布粒度细、成分复杂等特点。随着矿产资源消耗量的增加,产生的废石量也不断增加,大量堆积的废石不仅占用了宝贵的土地资源,还对环境造成了污染。因此,废石的回收利用是提高资源利用率、节约矿产资源、保护生态环境的有效途径。其中,提取废石中的有用组分是实现其最大化利用的关键,而预先抛废则是高效利用废石的重要基础。详细介绍了光电选矿技术在废石预先抛废中的应用,对比分析了X射线透射、图像色选、X射线表面辐射等不同光电预选技术的优缺点,展望了光电选矿技术在预先抛废领域的未来发展。
Abstract:Our country boasts abundant mineral resources, but they are of a low grade, with a fine distribution and complex composition. With the increase of the consumption of mineral resources, the amount of waste rock generated is also increasing. The large accumulation of waste rock not only occupies valuable land resources but also causes environmental pollution. Therefore, the recycling and utilization of waste rock is an effective way to improve resource efficiency, conserve mineral resources, and protect the ecological environment. Extracting valuable components from waste rock is key to maximizing its utilization, and pre-discarded is an important basis for the efficient utilization of waste rocks. This paper introduces the application of photoelectric beneficiation technology in pre-discarded of waste rock, compares and analyzes the advantages and disadvantages of different photoelectric beneficiation technologies such as XRT, image color separation, and XRF, and looks forward to the future development of photoelectric beneficiation technology in the field of pre-disposal.
-
Key words:
- waste rock /
- comprehensive utilization /
- pre-discarded /
- photoelectric beneficiation
-
-
表 1 预选抛废技术特性[15]
Table 1. Characteristics of preconcentration waste disposal technology
预选抛废技术名称 原理 优缺点 适用范围 手工拣选预选 通过工人目视和手工操作,将矿石中的废石或低品位矿石挑选出 直观性强,但分选效率低、人工成本高、工人劳动强度大 矿石外观特征明显、矿石品位差异较大、生产规模较小的矿山 光电预选 利用光电传感器检测矿石的颜色、反射率和透明度等光学特性,再通过图像处理和模式识别技术实现有用矿物与废石的分离 精度高、节能环保、自动化程度高,但设备成本高、技术复杂、对矿石表面要求高 矿石外观特征明显、矿石品位差异较大、生产规模较大的矿山,特别是有色金属、贵金属和部分非金属矿石,能够处理细粒级的矿石 跳汰预选 垂直交变介质中物料按密度差异进行分离 处理量大、操作简单、成本低,但分选精度低,只适用于粗、中粒矿石 密度差异较大的矿石 螺旋溜槽预选 利用水流在螺旋溜槽中的离心力和重力作用,使矿石按密度差异进行分离 处理量大、操作简单、成本低,但分选精度低,只适用于细粒级矿石 适用于密度差异较大且有用矿物单体解离度高的矿石 磁力预选 利用矿物的磁性差异将磁性矿物与非磁性矿物分离 效率高、自动化程度高、成本低,但矿种的局限性非常强 适用于磁性矿物以及部分有色金属矿石 -
[1] 任世赢. 中国矿产资源综合利用现状、问题及对策分析[J]. 中国资源综合利用, 2017, 35(12):78-80.REN S Y. The current situation, problems and countermeasures of comprehensive utilization of mineral resources in China[J]. China Resources Comprehensive Utilization, 2017, 35(12):78-80. doi: 10.3969/j.issn.1008-9500.2017.12.029
REN S Y. The current situation, problems and countermeasures of comprehensive utilization of mineral resources in China[J]. China Resources Comprehensive Utilization, 2017, 35(12):78-80. doi: 10.3969/j.issn.1008-9500.2017.12.029
[2] 张广田, 崔彦发, 刘东基, 等. 废石资源化利用发展现状[C]// 中国砂石协会. 第八届中国国际砂石骨料大会论文集. 上海: 2023: 1-9.ZHANG G T, CUI Y F, LIU D J, et al. Review on resource utilization of waste rock[C]. 2023: 1-9.
ZHANG G T, CUI Y F, LIU D J, et al. Review on resource utilization of waste rock[C]. 2023: 1-9.
[3] 姚华辉, 蔡练兵, 刘维, 等. 中国金属矿山废石资源化综合利用现状与发展[J]. 中国有色金属学报, 2021, 31(6):1649-1660.YAO H H, CAI L B, LIU W, et al. Current status and development of comprehensive utilization of waste rock in metal mines in China[J]. The Chinese Journal of Nonferrous Metals, 2021, 31(6):1649-1660. doi: 10.11817/j.ysxb.1004.0609.2021-35986
YAO H H, CAI L B, LIU W, et al. Current status and development of comprehensive utilization of waste rock in metal mines in China[J]. The Chinese Journal of Nonferrous Metals, 2021, 31(6):1649-1660. doi: 10.11817/j.ysxb.1004.0609.2021-35986
[4] 鞠建华, 韩见, 冯聪. 中国矿产资源综合利用现状评估与发展路径[J]. 中国矿业, 2024, 33(6):14-25.JU J H, HAN J, FENG C. Evaluation and development path of comprehensive utilization of mineral resources in China[J]. China Mining Magazine, 2024, 33(6):14-25. doi: 10.12075/j.issn.1004-4051.20240754
JU J H, HAN J, FENG C. Evaluation and development path of comprehensive utilization of mineral resources in China[J]. China Mining Magazine, 2024, 33(6):14-25. doi: 10.12075/j.issn.1004-4051.20240754
[5] 曹耀华, 张永康, 刘红召, 等. 铅锌矿废石产酸潜力及模拟强酸雨环境下重金属淋溶规律分析[J]. 矿产 综合利用, 2024, 45(5):204-210.CAO Y H, ZHANG Y K, LIU H Z, et al. Acid production potential of lead-zinc waste rocks and analysis of heavy metal eluviating at simulated strong acid rain environment[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(5):204-210.
CAO Y H, ZHANG Y K, LIU H Z, et al. Acid production potential of lead-zinc waste rocks and analysis of heavy metal eluviating at simulated strong acid rain environment[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(5):204-210.
[6] 姜楠. 金属矿山固体废弃物危害及资源再利用[J]. 现代矿业, 2020(3):117-118.JIANG N. Hazards and resource reuse of solid wastes in metal mines[J]. Mordern Mining, 2020(3):117-118. doi: 10.3969/j.issn.1674-6082.2020.03.034
JIANG N. Hazards and resource reuse of solid wastes in metal mines[J]. Mordern Mining, 2020(3):117-118. doi: 10.3969/j.issn.1674-6082.2020.03.034
[7] 张利珍, 赵恒勤, 马化龙, 等. 中国矿山固体废物的资源化利用及处置[J]. 现代矿业, 2012(10):1-5.ZHANG L Z, ZHAO H Q, MA H L, et al. Resource utilization and disposal of mine solid waste in China[J]. Modern Mining, 2012(10):1-5. doi: 10.3969/j.issn.1674-6082.2012.10.001
ZHANG L Z, ZHAO H Q, MA H L, et al. Resource utilization and disposal of mine solid waste in China[J]. Modern Mining, 2012(10):1-5. doi: 10.3969/j.issn.1674-6082.2012.10.001
[8] 宋彬. 新时代中国矿业高质量发展研究[J]. 河南科技, 2019(19):88-90.SONG B. Research on the high quality development of China's mining industry[J]. Henan Science and Technology, 2019(19):88-90. doi: 10.3969/j.issn.1003-5168.2019.19.034
SONG B. Research on the high quality development of China's mining industry[J]. Henan Science and Technology, 2019(19):88-90. doi: 10.3969/j.issn.1003-5168.2019.19.034
[9] 龚树峰, 史学伟. 铁矿废石及尾矿的综合利用技术[J]. 金属材料与冶金工程, 2014, 42(3):49-53.GONG S F, SHI X W. Comprehensive utilization of waste rocksand tailings of iron ore[J]. Metal Materials and Metallurgy Engineering, 2014, 42(3):49-53.
GONG S F, SHI X W. Comprehensive utilization of waste rocksand tailings of iron ore[J]. Metal Materials and Metallurgy Engineering, 2014, 42(3):49-53.
[10] 刘文宝, 张昊, 刘文刚, 等. 铁矿废石综合利用研究进展[J]. 矿产保护与利用, 2021, 41(3):118-125.LIU W B, ZHANG H, LIU W G, et al. Research progress on comprehensive utilization of iron ore barren rock[J]. Conservation and Utilization of Mineral Resources, 2021, 41(3):118-125.
LIU W B, ZHANG H, LIU W G, et al. Research progress on comprehensive utilization of iron ore barren rock[J]. Conservation and Utilization of Mineral Resources, 2021, 41(3):118-125.
[11] 刘淑鹏, 张小伟, 魏芳. 金属矿山固体废弃物危害及资源再利用[J]. 现代矿业, 2017, 33(2):122-125.LIU S P, ZHANG X W, WEI F. Hazards and resource reuse of solid wastes in metal mines[J]. Mordern Mining, 2017, 33(2):122-125. doi: 10.3969/j.issn.1674-6082.2017.02.033
LIU S P, ZHANG X W, WEI F. Hazards and resource reuse of solid wastes in metal mines[J]. Mordern Mining, 2017, 33(2):122-125. doi: 10.3969/j.issn.1674-6082.2017.02.033
[12] 张岩, 李艳, 赵东芳, 等. 光电-浮选联合处理某堆存低品位萤石矿[J]. 化工矿产地质, 2023, 45(3):278-282.ZHANG Y, LI Y, ZHAO D F, et al. A stacked low-grade fluorite mine is processed by photoelectricity-flotation combined method[J]. Geology of Chemical Minerals, 2023, 45(3):278-282. doi: 10.3969/j.issn.1006-5296.2023.03.013
ZHANG Y, LI Y, ZHAO D F, et al. A stacked low-grade fluorite mine is processed by photoelectricity-flotation combined method[J]. Geology of Chemical Minerals, 2023, 45(3):278-282. doi: 10.3969/j.issn.1006-5296.2023.03.013
[13] 敖顺福, 朱家锐, 徐峰, 等. 预选抛尾技术应用进展[J]. 矿产保护与利用, 2021, 41(4):157-163.AO S F, ZHU J R, XU F, et al. Application progress of preconcentration and discarding technology[J]. Conservation and Utilization of Mineral Resources, 2021, 41(4):157-163.
AO S F, ZHU J R, XU F, et al. Application progress of preconcentration and discarding technology[J]. Conservation and Utilization of Mineral Resources, 2021, 41(4):157-163.
[14] 张磊, 吕向东, 展仁礼, 等. 基于实验研究分析金属矿山矿石构造对智能光电预选技术分选效果的影响[J]. 矿产综合利用, 2024, 45(6):131-134.ZHANG L, LYU X D, ZHAN R L, et al. Based on experimental research and theoretical analysis of the effect of ore structure of metal mine on intelligent photoelectric pre-separation[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(6):131-134. doi: 10.3969/j.issn.1000-6532.2024.06.020
ZHANG L, LYU X D, ZHAN R L, et al. Based on experimental research and theoretical analysis of the effect of ore structure of metal mine on intelligent photoelectric pre-separation[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(6):131-134. doi: 10.3969/j.issn.1000-6532.2024.06.020
[15] 罗主平. 中国块状合格精矿直接提取工艺研究与实践[J]. 现代矿业, 2024, 40(8):238-242.LUO Z P. Research and practice on direct extraction process of block qualified concentrate in China[J]. Modern Mining, 2024, 40(8):238-242. doi: 10.3969/j.issn.1674-6082.2024.08.054
LUO Z P. Research and practice on direct extraction process of block qualified concentrate in China[J]. Modern Mining, 2024, 40(8):238-242. doi: 10.3969/j.issn.1674-6082.2024.08.054
[16] 吴志虎. 矿石预选抛废技术与智能光电选矿设备选型要点[J]. 世界有色金属, 2020(16):202-205.WU Z H. Ore pre concentration and discarding waste technology and selection of intelligent photoelectric beneficiation equipment[J]. World Nonferrous Metals, 2020(16):202-205. doi: 10.3969/j.issn.1002-5065.2020.16.096
WU Z H. Ore pre concentration and discarding waste technology and selection of intelligent photoelectric beneficiation equipment[J]. World Nonferrous Metals, 2020(16):202-205. doi: 10.3969/j.issn.1002-5065.2020.16.096
[17] 张龙宇, 吴中贤, 申有悦, 等. 铁尾矿中磷灰石旋转摩擦静电分选提纯[J]. 矿产综合利用, 2024, 45(2):157-164.ZHANG L Y, WU Z X, SHEN Y Y, et al. Apatite enrichment from iron ore tailings by rotary triboelectrostatic separator[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(2):157-164. doi: 10.3969/j.issn.1000-6532.2024.02.026
ZHANG L Y, WU Z X, SHEN Y Y, et al. Apatite enrichment from iron ore tailings by rotary triboelectrostatic separator[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(2):157-164. doi: 10.3969/j.issn.1000-6532.2024.02.026
[18] 王乾帅, 陶东平, 赵通林, 等. 辉钼矿干法旋转摩擦电选预抛尾研究[J]. 矿产综合利用, 2021(6):179-184.WANG Q S, TAO D P, ZHAO T L, et al. Study of molybdenite pre-concentration by dry rotary triboelectrostatic separation[J]. Multipurpose Utilization of Mineral Resources, 2021(6):179-184. doi: 10.3969/j.issn.1000-6532.2021.06.031
WANG Q S, TAO D P, ZHAO T L, et al. Study of molybdenite pre-concentration by dry rotary triboelectrostatic separation[J]. Multipurpose Utilization of Mineral Resources, 2021(6):179-184. doi: 10.3969/j.issn.1000-6532.2021.06.031
[19] 王龙, 林兴浩, 王彬. 智能拣选装备在矿物加工中的应用现状与发展趋势[J]. 金属矿山, 2022(10):113-121.WANG L, LIN X H, WANG B. Application status and development trend of intelligent sorting equipment in the field of mineral processing[J]. Metal Mine, 2022(10):113-121.
WANG L, LIN X H, WANG B. Application status and development trend of intelligent sorting equipment in the field of mineral processing[J]. Metal Mine, 2022(10):113-121.
[20] 魏立军, 夏敬源, 刘鑫, 等. 光电选矿技术在中低品位胶磷矿选别中的应用研究[J]. 矿业研究与开发, 2023, 43(7):217-222.WEI L J, XIA J Y, LIU X, et al. Research on the application of optoelectronic beneficiation technology in beneficiation of medium and low grade phosphate ores[J]. Mining Research and Development, 2023, 43(7):217-222.
WEI L J, XIA J Y, LIU X, et al. Research on the application of optoelectronic beneficiation technology in beneficiation of medium and low grade phosphate ores[J]. Mining Research and Development, 2023, 43(7):217-222.
[21] 王俊杰, 陈艳波, 梁魏峰, 等. 低品位金矿石预选抛尾工艺研究进展与应用探讨[J]. 山东化工, 2023, 52(11):110-112,116.WANG J J, CHEN Y B, LIANG W F, et al. Research progress and application discusses of low grade gold ore preconcentration discarding tailings technology[J]. Shandong Chemical Industry, 2023, 52(11):110-112,116. doi: 10.3969/j.issn.1008-021X.2023.11.030
WANG J J, CHEN Y B, LIANG W F, et al. Research progress and application discusses of low grade gold ore preconcentration discarding tailings technology[J]. Shandong Chemical Industry, 2023, 52(11):110-112,116. doi: 10.3969/j.issn.1008-021X.2023.11.030
[22] 王泽雷. 光电拣选设备研究与应用进展[J]. 化工矿物与加工, 2023, 52(5):51-57,65.WANG Z L. Research and application progress of photoelectric sorting equipment[J]. Industrial Minerals & Processing, 2023, 52(5):51-57,65.
WANG Z L. Research and application progress of photoelectric sorting equipment[J]. Industrial Minerals & Processing, 2023, 52(5):51-57,65.
[23] 李艳, 余媛元, 童晓蕾, 等. X射线分选技术在磷矿选矿中的应用研究[J]. 矿产综合利用, 2023(2):100-105.LI Y, YU Y Y, TONG X L, et al. Study on the application of X-ray separation technology in phosphate mine dressing[J]. Multipurpose Utilization of Mineral Resources, 2023(2):100-105. doi: 10.3969/j.issn.1000-6532.2023.02.018
LI Y, YU Y Y, TONG X L, et al. Study on the application of X-ray separation technology in phosphate mine dressing[J]. Multipurpose Utilization of Mineral Resources, 2023(2):100-105. doi: 10.3969/j.issn.1000-6532.2023.02.018
[24] 第旺平, 吴志虎. 智能光电选矿预选抛废技术研究及应用[J]. 有色金属(选矿部分), 2021(1):117-121.DI W P, WU Z H. Preconcentration and discarding technology of intelligent photoelectric dressing equipment[J]. Nonferrous Metals Mieral Processing Section, 2021(1):117-121.
DI W P, WU Z H. Preconcentration and discarding technology of intelligent photoelectric dressing equipment[J]. Nonferrous Metals Mieral Processing Section, 2021(1):117-121.
[25] 鲁恒润, 杨义红, 李翔. 基于X射线透射技术的某锡多金属矿预选抛废试验研究[J]. 有色金属工程, 2024, 14(10):101-106.LU H R, YANG Y H, LI X. Experimental study on the pre-separation and disposal of a certain tin polymetallic ore based on X-Ray transmission technology[J]. Nonferrous Metals Engineering, 2024, 14(10):101-106. doi: 10.3969/j.issn.2095-1744.2024.10.013
LU H R, YANG Y H, LI X. Experimental study on the pre-separation and disposal of a certain tin polymetallic ore based on X-Ray transmission technology[J]. Nonferrous Metals Engineering, 2024, 14(10):101-106. doi: 10.3969/j.issn.2095-1744.2024.10.013
[26] 张建强, 赵德志. 云南某钨矿光电预先抛废选矿工业试验研究[J]. 云南冶金, 2022, 51(4):60-66.ZHANG J Q, ZHAO D Z. Industrial experiment study on photoelectric pre-dumping beneficiation of one tungsten deposit in Yunnan[J]. Yunnan Metallurgy, 2022, 51(4):60-66. doi: 10.3969/j.issn.1006-0308.2022.04.011
ZHANG J Q, ZHAO D Z. Industrial experiment study on photoelectric pre-dumping beneficiation of one tungsten deposit in Yunnan[J]. Yunnan Metallurgy, 2022, 51(4):60-66. doi: 10.3969/j.issn.1006-0308.2022.04.011
[27] 陈明文, 郭珍旭, 宋革, 等. 应用在钾长石智能拣选系统的LED光源技术分析[J]. 照明工程学报, 2016, 27(3):109-115.CHEN M W, GUO Z X, SONG G, et al. Technical analysis of LED light source applied in the feldspar photoelectric configured picker[J]. China Illuminating Engineering Journal, 2016, 27(3):109-115. doi: 10.3969/j.issn.1004-440X.2016.03.023
CHEN M W, GUO Z X, SONG G, et al. Technical analysis of LED light source applied in the feldspar photoelectric configured picker[J]. China Illuminating Engineering Journal, 2016, 27(3):109-115. doi: 10.3969/j.issn.1004-440X.2016.03.023
[28] 叶鑫, 叶芩沁. 色选机选矿在萤石矿的应用[J]. 内燃机与配件, 2018(8):237-238.YE X, YE Q Q. Application of color separator in fluorite ore[J]. Internal Combustion Engine & Parts, 2018(8):237-238. doi: 10.3969/j.issn.1674-957X.2018.08.136
YE X, YE Q Q. Application of color separator in fluorite ore[J]. Internal Combustion Engine & Parts, 2018(8):237-238. doi: 10.3969/j.issn.1674-957X.2018.08.136
[29] 顾兆云, 陈经华, 魏盛耀. 基于光电技术的国外某红土型低品位锰矿选别试验研究[J]. 现代矿业, 2022, 38(3):129-132.GU Z Y, CHEN J H, WEI S Y. Experimental study on separation of a Lateritic low-grade manganese ore abroad based on photoelectric technology[J]. Modern Mining, 2022, 38(3):129-132. doi: 10.3969/j.issn.1674-6082.2022.03.032
GU Z Y, CHEN J H, WEI S Y. Experimental study on separation of a Lateritic low-grade manganese ore abroad based on photoelectric technology[J]. Modern Mining, 2022, 38(3):129-132. doi: 10.3969/j.issn.1674-6082.2022.03.032
[30] 冯伯翰, 周泽湘, 武秀琪. 基于色选法的钨矿石分选技术[J]. 机电工程技术, 2023, 52(3):138-140.FENG B H, ZHOU Z X, WU X Q. Tungsten ore sorting technology based on color separation[J]. Mechanical & Electrical Engineering Technology, 2023, 52(3):138-140. doi: 10.3969/j.issn.1009-9492.2023.03.028
FENG B H, ZHOU Z X, WU X Q. Tungsten ore sorting technology based on color separation[J]. Mechanical & Electrical Engineering Technology, 2023, 52(3):138-140. doi: 10.3969/j.issn.1009-9492.2023.03.028
[31] 印万忠, 吴尧, 韩跃新, 等. X射线辐射分选原理及应用[J]. 中国矿业, 2011, 20(12):88-92.YIN W Z, WU Y, HAN Y X, et al. The theory and application of X-ray separation technology[J]. China Mining Magazine, 2011, 20(12):88-92. doi: 10.3969/j.issn.1004-4051.2011.12.023
YIN W Z, WU Y, HAN Y X, et al. The theory and application of X-ray separation technology[J]. China Mining Magazine, 2011, 20(12):88-92. doi: 10.3969/j.issn.1004-4051.2011.12.023
[32] 王泽红, 陈晓龙, 韩跃新, 等. 用X射线辐射分选机预选某金铜共生矿石[J]. 金属矿山, 2013(7):75-78.WANG Z H, CHEN X L, HAN Y X, et al. Pre-concentration of a Au-Cu associated ore with X-ray radiation separator[J]. Metal Mine, 2013(7):75-78. doi: 10.3969/j.issn.1001-1250.2013.07.020
WANG Z H, CHEN X L, HAN Y X, et al. Pre-concentration of a Au-Cu associated ore with X-ray radiation separator[J]. Metal Mine, 2013(7):75-78. doi: 10.3969/j.issn.1001-1250.2013.07.020
[33] 张莉. 甘肃某多金属硫化矿废石高效选矿技术研究[J]. 矿产综合利用, 2021(6):173-178.ZHANG L. Efficient beneficiation technique for a polymetallic sulfide ore in Gansu province[J]. Multipurpose Utilization of Mineral Resources, 2021(6):173-178. doi: 10.3969/j.issn.1000-6532.2021.06.030
ZHANG L. Efficient beneficiation technique for a polymetallic sulfide ore in Gansu province[J]. Multipurpose Utilization of Mineral Resources, 2021(6):173-178. doi: 10.3969/j.issn.1000-6532.2021.06.030
[34] 李建政, 肖健锋, 王军强, 等. X射线荧光分选机及其应用[J]. 黄金, 2022, 43(2):81-84.LI J Z, XIAO J F, WANG J Q, et al. X-ray fluorescence separator and its application[J]. Gold, 2022, 43(2):81-84. doi: 10.11792/hj20220214
LI J Z, XIAO J F, WANG J Q, et al. X-ray fluorescence separator and its application[J]. Gold, 2022, 43(2):81-84. doi: 10.11792/hj20220214
[35] 刘明宝, 耿西侠, 王哲文. 钼矿废石中硫化钼的高效回收技术研究[J]. 商洛学院学报, 2022, 36(4):49-54,82.LIU M B, GENG X X, WANG Z W. High-efficient recovery technique for MoS from the waste rock of a molybdenum mine[J]. Journal of Shangluo University, 2022, 36(4):49-54,82.
LIU M B, GENG X X, WANG Z W. High-efficient recovery technique for MoS from the waste rock of a molybdenum mine[J]. Journal of Shangluo University, 2022, 36(4):49-54,82.
[36] 成磊, 尚红亮, 朱道遥. 基于传感器的矿石拣选技术研究现状与发展趋势[J]. 有色金属(选矿部分), 2017(z1):160-163.CHENG L, SHANG H L, ZHU D Y. Current research and development tendency of ore sorting technology based on sensor[J]. Nonferrous Metals Mieral Processing Section, 2017(z1):160-163.
CHENG L, SHANG H L, ZHU D Y. Current research and development tendency of ore sorting technology based on sensor[J]. Nonferrous Metals Mieral Processing Section, 2017(z1):160-163.
[37] 刘志超, 马嘉, 李春风, 等. 铀矿石预先抛尾-两段放射性分选试验研究[J]. 湿法冶金, 2021, 40(4):267-271.LIU Z C, MA J, LI C F, et al. Separation of uranium ore by elective tailing discarding-two-stage radiometric sorting[J]. Hydrometallurgy of China, 2021, 40(4):267-271.
LIU Z C, MA J, LI C F, et al. Separation of uranium ore by elective tailing discarding-two-stage radiometric sorting[J]. Hydrometallurgy of China, 2021, 40(4):267-271.
[38] 张晨, 候鲜名, 侯江. 矿石形状对放射性分选探测效率的影响[J]. 铀矿冶, 2025.ZHANG C, HOU X M, HOU J. Influence of ore shape on the efficiency of radioactive sorting and detection[J]. Uranium Mining and Metallurgy, 2025.
ZHANG C, HOU X M, HOU J. Influence of ore shape on the efficiency of radioactive sorting and detection[J]. Uranium Mining and Metallurgy, 2025.
[39] 徐国印. 微波辅助技术改善矿物分选理论及应用研究[J]. 现代矿业, 2014(6):166-168.XU G Y. Theory and application of microwave-assisted technology to improve mineral sorting[J]. Modern Mining, 2014(6):166-168. doi: 10.3969/j.issn.1674-6082.2014.06.068
XU G Y. Theory and application of microwave-assisted technology to improve mineral sorting[J]. Modern Mining, 2014(6):166-168. doi: 10.3969/j.issn.1674-6082.2014.06.068
[40] DUAN B, BOBICKI E R, HUM S V. Application of microwave imaging in sensor-based ore sorting[J]. Minerals Engineering, 2023, 202:108303. doi: 10.1016/j.mineng.2023.108303
[41] 莫峰, 曹阳, 蓝卓越, 等. 都龙采场剥离废石中锡石高效预富集新技术[J]. 有色金属工程, 2022, 12(9):92-100.MO F, CAO Y, LAN Z Y, et al. New technology for efficient pre-concentration of cassiterite in waste rock of mining stripping in Yunnan Dulong[J]. Nonferrous Metals Engineering, 2022, 12(9):92-100. doi: 10.3969/j.issn.2095-1744.2022.09.013
MO F, CAO Y, LAN Z Y, et al. New technology for efficient pre-concentration of cassiterite in waste rock of mining stripping in Yunnan Dulong[J]. Nonferrous Metals Engineering, 2022, 12(9):92-100. doi: 10.3969/j.issn.2095-1744.2022.09.013
-