Mineralogical Characteristics and Beneficiation Experimental Study on Polytype Pyrrhotite in Kafang Deposit, Yunnan Province
-
摘要:
随着云南卡房铜钨矿磁黄铁矿含量的不断增加,如何减少磁黄铁矿对铜、钨选别过程的影响成为难题。查明了卡房矿床中磁黄铁矿的主要类型,既有易浮的单斜晶系磁黄铁矿,又有因铁含量高而具有磁性的六方晶系磁黄铁矿。选矿小型实验采用浮选和磁选的联合工艺流程,获得了硫品位大于32%、以单斜磁黄铁矿为主的硫精矿,脱除了产率23%左右、以六方磁黄铁矿和钙铁辉石为主的磁性脉石矿物,减少了磁黄铁矿对铜、钨浮选过程的干扰,相关方法可为国内外同类矿山企业提供借鉴。
Abstract:With the increase of pyrrhotite content in Kafang copper-tungsten deposit, how to reduce the effects of pyrrhotite on the beneficiation process of copper and tungsten has become a difficult problem. The main types of pyrrhotite in Kafang deposit are identified, including monoclinic pyrrhotite, which is easy to magnetize and float, and hexagonal pyrrhotite, which has great magnetic changes due to the fluctuation of iron content. Beneficiation experiments show that using combined technological process of flotation and magnetic separation, a sulfur concentrate assaying over 32% of sulfur content, mainly recovering monoclinic pyrrhotite pyrrhotite, was obtained, and magnetic gangue minerals with a yield of about 23%, mainly included by hexagonal pyrrhotite and hedenbergite, were discarded to tailings. The interference of pyrrhotite to the flotation process of copper and tungsten is reduced, and the related methods can provide references for similar mining enterprises at home and abroad.
-
Key words:
- process mineralogy /
- pyrrhotite /
- flotation /
- magnetic separation
-
-
表 1 主要元素分析结果/%
Table 1. Main element analysis results
Cu WO3 S SiO2 CaCO3 MgO Al2O3 Fe 3.03 0.20 9.48 26.51 5.67 1.57 5.79 17.50 表 2 铜钨物相分析结果
Table 2. Results of phase analysis of copper and tungsten
铜物相 钨物相 名称 自由氧化铜 结合氧化铜 次生硫化铜 原生硫化铜 总铜 钨华 白钨矿 黑钨矿 总钨 含量/% 0.01 0.02 0.05 2.85 3.03 0.007 0.167 0.022 0.20 占有率/% 0.34 0.67 1.67 97.32 100.00 3.58 85.20 11.22 100.00 表 3 主要矿物组成测定结果
Table 3. Determination results of main mineral composition
矿物 含量/% 矿物 含量/% 矿物 含量/% 黄铜矿 9.410 钙铁辉石 5.425 方柱石 0.905 白钨矿 0.217 钙铁榴石 0.365 方解石 6.834 黄铁矿 0.096 钙铝榴石 0.302 褐铁矿 0.100 磁黄铁矿 18.447 绿帘石 0.132 赤铁矿 0.038 石英 30.169 黑云母 6.390 褐帘石 0.114 长石 14.513 绿泥石 1.793 菱铁矿 0.266 表 4 主要矿物的嵌布粒度特性
Table 4. Disseminated grain size characteristics of main minerals
矿物名称 微粒
<0.01 mm细粒
0.01~0.08 mm中粒
0.08~0.32 mm粗粒
>0.32 mm黄铜矿 1.34 47.83 44.05 6.78 白钨矿 0.15 31.52 57.59 10.75 磁黄铁矿 0.03 17.49 56.67 25.81 表 7 全工艺流程综合实验指标
Table 7. Comprehensive test indexes of the whole process
产品名称 产率/% 品位/% 回收率/% Cu S WO3 Cu S WO3 铜精矿 12.30 23.92 31.05 0.04 97.10 40.29 2.28 硫精矿 15.18 0.40 33.96 0.03 2.00 54.38 1.97 磁性脉石矿物 23.68 0.03 2.01 0.15 0.24 5.02 17.81 硫化矿尾矿
(给入钨浮选作业)48.84 0.04 0.06 0.30 0.66 0.31 77.94 原矿 100.00 3.03 9.48 0.20 100.00 100.00 100.00 表 5 原矿磁选实验结果
Table 5. Magnetic separation test results of the raw ore
产品名称 产率/% 品位/% 回收率/% Cu S WO3 Cu S WO3 磁选产品1 3.52 1.13 33.27 0.04 1.34 11.79 0.74 磁选产品2 1.71 3.12 28.91 0.05 1.80 4.97 0.45 磁选产品3 16.16 2.60 23.04 0.21 14.15 37.48 17.33 磁选产品4 15.38 5.45 15.38 0.17 28.23 23.81 13.35 磁选产品5 6.34 10.35 12.75 0.22 22.10 8.14 7.12 非磁产品 56.89 1.69 2.41 0.21 32.38 13.80 61.01 给矿 100.00 2.97 9.93 0.20 100.00 100.00 100.00 表 6 硫化矿浮选尾矿磁选实验结果
Table 6. Magnetic separation test results of sulfide ore flotation tailings
产品名称 作业产率/% 品位/% 作业回收率/% WO3 S WO3 S 磁选产品1 9.22 0.03 1.25 1.11 16.46 磁选产品2 10.03 0.20 2.01 8.02 28.80 磁选产品3 8.31 0.15 2.80 4.99 33.24 磁选产品4 5.09 0.22 2.16 4.48 15.72 非磁产品 67.35 0.30 0.06 81.40 5.77 给矿 100.00 0.25 0.70 100.00 100.00 -
[1] 陈明波, 宋宝旭, 赵荣, 等. 新型捕收剂浮选云南个旧矽卡岩型白钨矿实验研究[J]. 矿产保护与利用, 2022, 42(2):8-13.CHEN M B, SONG B X, ZHAO R, et al. A whole process experimental research on improving the flotation index of Gejiu skarn scheelite in Yunnan province by new collector[J]. Conservation and Utilization of Mineral Resources, 2022, 42(2):8-13.
CHEN M B, SONG B X, ZHAO R, et al. A whole process experimental research on improving the flotation index of Gejiu skarn scheelite in Yunnan province by new collector[J]. Conservation and Utilization of Mineral Resources, 2022, 42(2):8-13.
[2] 万丽, 孙志健, 王立刚, 等. 新疆某浮锌尾矿回收磁铁矿选矿实验研究[J]. 矿产综合利用, 2021(6):138-143.WAN L, SUN Z J, WANG L G, et al. Beneficiation research on magnetite recovery of a zinc flotation tailing from Xinjiang[J]. Multipurpose Utilization of Mineral Resources, 2021(6):138-143. doi: 10.3969/j.issn.1000-6532.2021.06.023
WAN L, SUN Z J, WANG L G, et al. Beneficiation research on magnetite recovery of a zinc flotation tailing from Xinjiang[J]. Multipurpose Utilization of Mineral Resources, 2021(6):138-143. doi: 10.3969/j.issn.1000-6532.2021.06.023
[3] 王双玉, 袁致涛, 刘磊, 等. 磁黄铁矿型铜铁多金属矿选矿研究进展[J]. 矿产综合利用, 2018(5):13-20.WANG S Y, YUAN Z T, LIU L, et al. Research progress ion beneficiation of pyrrhotite type copper-iron polymetallic ore[J]. Multipurpose Utilization of Mineral Resources, 2018(5):13-20.
WANG S Y, YUAN Z T, LIU L, et al. Research progress ion beneficiation of pyrrhotite type copper-iron polymetallic ore[J]. Multipurpose Utilization of Mineral Resources, 2018(5):13-20.
[4] 周晓彤, 邓丽红, 关通, 等. 铜硫钨多金属矿浮选尾矿水回用新技术研究[J]. 材料研究与应用, 2016, 10(3):219-2.ZHOU X T, DENG L H, GUAN T, et al. Research on the recycling technology of flotation tailing water of copper-sulfur-tungsten polymetallic ore[J]. Materials Research and Application, 2016, 10(3):219-2. doi: 10.3969/j.issn.1673-9981.2016.03.014
ZHOU X T, DENG L H, GUAN T, et al. Research on the recycling technology of flotation tailing water of copper-sulfur-tungsten polymetallic ore[J]. Materials Research and Application, 2016, 10(3):219-2. doi: 10.3969/j.issn.1673-9981.2016.03.014
[5] 洪秋阳. 磁黄铁矿晶体化学和可浮性研究[D]. 长沙: 中南大学, 2011.HONG Q Y. Crystal chemistry and floatability of pyrrhotite[D]. Changsha: Central South University, 2011.
HONG Q Y. Crystal chemistry and floatability of pyrrhotite[D]. Changsha: Central South University, 2011.
[6] 薛忠言, 曾令熙, 刘应冬. 太和钒钛磁铁矿中硫化物的工艺矿物学研究[J]. 矿产综合利用, 2019(3):78-81.XUE Z Y, ZENG L X, LIU Y D. Process mineralogy of the sulfide in the Taihe vanadium titanomagnetite[J]. Multipurpose Utilization of Mineral Resources, 2019(3):78-81.
XUE Z Y, ZENG L X, LIU Y D. Process mineralogy of the sulfide in the Taihe vanadium titanomagnetite[J]. Multipurpose Utilization of Mineral Resources, 2019(3):78-81.
[7] 马英强. 基于晶体化学的硫化铁矿物浮选特性研究[D]. 沈阳: 东北大学, 2013.MA Y Q. Reaserchon flotation properties of iron sulfide minerals based on crystal chemistry[D]. Shenyang: Northeastern University, 2013.
MA Y Q. Reaserchon flotation properties of iron sulfide minerals based on crystal chemistry[D]. Shenyang: Northeastern University, 2013.
[8] 张小普. 不同晶系磁黄铁矿的矿物学特征和可浮性研究[D]. 赣州: 江西理工大学, 2021.ZHANG X P. Study on the mineralogical properties and floatability of different crystal systems of pyrrhotite[D]. Ganzhou: Jiangxi University of Science and Technology, 2021.
ZHANG X P. Study on the mineralogical properties and floatability of different crystal systems of pyrrhotite[D]. Ganzhou: Jiangxi University of Science and Technology, 2021.
[9] 曾维能, 任浏祎, 曹雨琪, 等. 黄铜矿与磁黄铁矿浮选分离行为及机理研究[J]. 有色金属(选矿部分), 2020(6):30-35.ZENG W N, REN L Y, CAO Y Q, et al. Study on mechanism of action of xanthate in flotation separation of chalcopyrite and pyrrhotite[J]. Nonferrous Metals(Mineral Processing Section), 2020(6):30-35.
ZENG W N, REN L Y, CAO Y Q, et al. Study on mechanism of action of xanthate in flotation separation of chalcopyrite and pyrrhotite[J]. Nonferrous Metals(Mineral Processing Section), 2020(6):30-35.
[10] 袁致涛, 王俊祥, 孟庆有, 等. 酸预处理对六方晶系磁黄铁矿浮选行为的影响及作用机理[J]. 矿冶工程, 2021, 41(6):1-5.YUAN Z T, WANG J X, MENG Q Y, et al. Effect of acid pretreatment on flotation behavior of hexagonal pyrrhotite and interaction mechanism therein[J]. Mining and Metallurgical Engineering, 2021, 41(6):1-5.
YUAN Z T, WANG J X, MENG Q Y, et al. Effect of acid pretreatment on flotation behavior of hexagonal pyrrhotite and interaction mechanism therein[J]. Mining and Metallurgical Engineering, 2021, 41(6):1-5.
[11] 李沛原, 杨凌凌, 伍红强, 等. 冬瓜山铜矿含铜磁黄铁矿石选矿试验研究[J]. 现代矿业, 2021, 37(10):124-126+129.LI P Y, YANG L L, WU H Q. Experimental research on mineral processing of copper-bearing pyrrhotite in Dongguashan copper mine[J]. Modern Mining, 2021, 37(10):124-126+129. doi: 10.3969/j.issn.1674-6082.2021.10.033
LI P Y, YANG L L, WU H Q. Experimental research on mineral processing of copper-bearing pyrrhotite in Dongguashan copper mine[J]. Modern Mining, 2021, 37(10):124-126+129. doi: 10.3969/j.issn.1674-6082.2021.10.033
[12] 董浩. 磁黄铁矿与黄铜矿的交互作用对其浮选行为的影响规律研究[D]. 赣州: 江西理工大学, 2021.DONG H. Study on the effect of interaction between pyrrhotite and chalcopyrite on their flotation behavior[D]. Ganzhou: Jiangxi University of Science and Technology, 2021.
DONG H. Study on the effect of interaction between pyrrhotite and chalcopyrite on their flotation behavior[D]. Ganzhou: Jiangxi University of Science and Technology, 2021.
[13] 逄军武, 张玲, 达娃卓玛, 等. 某选矿厂处理角岩型铜硫矿选铜浮选实验[J]. 矿产综合利用, 2021(4):139-143.PANG J W, ZHANG L, DAWA Z M, et al. Treatment of breccia in a concentrator copper sulphur ore flotation test of copper separation[J]. Multipurpose Utilization of Mineral Resources, 2021(4):139-143.
PANG J W, ZHANG L, DAWA Z M, et al. Treatment of breccia in a concentrator copper sulphur ore flotation test of copper separation[J]. Multipurpose Utilization of Mineral Resources, 2021(4):139-143.
[14] 付广钦, 周晓彤, 邓丽红, 等. 某含磁黄铁矿铜硫矿的磁选试验研究[J]. 材料研究与应用, 2017, 11(4):278-282.FU G Q, ZHOU X T, DENG L H, et al. Magnetic separation research on copper sulfur ore containing high-content of pyrrhotine[J]. Materials Research and Application, 2017, 11(4):278-282.
FU G Q, ZHOU X T, DENG L H, et al. Magnetic separation research on copper sulfur ore containing high-content of pyrrhotine[J]. Materials Research and Application, 2017, 11(4):278-282.
[15] 吕超. 某锡石多金属硫化矿锌高效回收工艺研究[J]. 矿产综合利用, 2021(1):77-82.LYU C. Study on efficient recovery process of zinc from cassiterite polymetallic sulfide ore[J]. Multipurpose Utilization of Mineral Resources, 2021(1):77-82. doi: 10.3969/j.issn.1000-6532.2021.01.012
LYU C. Study on efficient recovery process of zinc from cassiterite polymetallic sulfide ore[J]. Multipurpose Utilization of Mineral Resources, 2021(1):77-82. doi: 10.3969/j.issn.1000-6532.2021.01.012
-