Fluoride Removal by Calcium-aluminum-cerium Ternary Composite: Adsorption Performances and Mechanism
-
摘要:
工业产出大量氟污染废水,对环境安全与人类的健康有着严重的威胁。本文以共沉淀法合成了钙-铝-铈三元复合物(CAC),用XRD、FT-IR、N2吸附、SEM等对其进行了表征,并系统探究了CAC对氟的吸附性能及机理。结果表明,在弱酸性环境(pH值 5.0)下CAC对氟离子的吸附性能较好;CAC对氟离子的吸附属于自发、吸热的过程,且符合Langmuir模型,通过模型拟合计算出对氟离子的最大吸附容量为56.28 mg/g;CAC对氟离子的吸附在12 h时平衡,符合拟二级动力学模型;溶液中共存的CO32-、HCO3-等对氟离子的吸附有较大影响。CAC吸附除氟的机理主要是静电吸引作用和离子交换。
Abstract:Fluoride-containing industrial wastewater poses great threat to environmental safety and human health. In this study, calcium-aluminum-cerium ternary composite (CAC) was synthesized by co-precipitation method, and characterized by XRD, FTIR, N2 adsorption, SEM, etc.. The performances and mechanisms of F- adsorption by CAC were thoroughly investigated. Experimental results showed that weakly acidic environment (pH 5.0) was favorable for F- removal by CAC adsorption. F- adsorption by CAC was a spontaneous and endothermic process, which could be well described by the Langmuir model. The maximum adsorption capacity was calculated to be 56.28 mg/g, while the adsorption equilibrium reached at about 12 h. The pseudo-second-order kinetic model fitted the adsorption kinetic well. F- adsorption was remarkably affected by the co-existing CO32- and HCO3-, while Cl-, Br-, SO42- influenced F- adsorption little. Electrostatic attraction and ion exchange were considered to be the main adsorption mechanisms.
-
Key words:
- ternary composite /
- rare earth /
- fluoride ion /
- adsorption /
- wastewater
-
-
表 1 CAC吸附氟离子的等温线参数
Table 1. Parameters of isotherm models of CAC
Isotherm 模型 在298 K, pH=5.0时的拟合参数 Langmuir KL=0.815 9 L/mg, qm=56.28 mg/g, R2=0.995 5 Freundlich KF=26.5015/g, n-1=0.212 0, R2=0.676 3 Temkin β=334.0486, AT=38.317 2 L m/g, R2=0.787 4 表 2 不同材料对氟离子的吸附能力比较
Table 2. Comparison of maximum adsorption capacity of fluoride by various samples
表 3 CAC吸附氟的热力学参数
Table 3. Thermodynamic parameters of fluoride adsorption by CAC
温度/ K ΔG0/ (kJ/mol) ΔH0/ (kJ/mol) ΔS0/ (J/(mol·K)) 288 -5.86 114.91 420.34 298 -10.89 308 -14.79 318 -18.51 表 4 CAC吸附氟的动力学参数
Table 4. Kinetic parameters of fluoride adsorption by CAC
动力模型 在298 K, pH = 5.0时的拟合参数 伪一阶 qe, cal =10.43 mg/g, K1 =0.0016 min/(g·min), R2=0.955 4 伪二阶 qe, cal =36.49 mg/g, K2 =0.0013 min/(g·min), R2=0.996 6 粒子内
扩散Ki1 =0.826 1 min/(g·min), R2=0.972 8
Ki2 =0.354 0 min/(g·min), R2=0.998 0
Ki3 =0.068 7 min/(g·min), R2=0.999 9 -
[1] 刘棋勇, 赖杨. 贵州务川双河重晶石-萤石矿成矿地质特征及成因分析[J]. 矿产综合利用, 2022(1):29-36.LIU Q Y, LAI Y. Discussion on metallogenic geological characteristics and genesis of Shuanghe barite-fluorite deposit in Wuchuan, Guizhou province[J]. Multipurpose Utilization of Mineral Resources, 2022(1):29-36. doi: 10.3969/j.issn.1000-6532.2022.01.004
LIU Q Y, LAI Y. Discussion on metallogenic geological characteristics and genesis of Shuanghe barite-fluorite deposit in Wuchuan, Guizhou province[J]. Multipurpose Utilization of Mineral Resources, 2022(1):29-36. doi: 10.3969/j.issn.1000-6532.2022.01.004
[2] 刘亮强, 冯永山. 含氟废水处理工艺综述[J]. 铜业工程, 2022(2):92-95+100.LIU L Q, FENG Y S. Overview of fluorine-containing wastewater treatment process[J]. Copper Engineering, 2022(2):92-95+100. doi: 10.3969/j.issn.1009-3842.2022.02.023
LIU L Q, FENG Y S. Overview of fluorine-containing wastewater treatment process[J]. Copper Engineering, 2022(2):92-95+100. doi: 10.3969/j.issn.1009-3842.2022.02.023
[3] 张钰卿, 刘佳, 许兵, 等. 含氟废水处理中的除氟吸附技术研究进展[J]. 净水技术, 2022, 41(5):23-29+61.ZHANG Y Q, LIU J, XU B, et al. Research progress of adsorption technology for deflurination in fluoride-containing wastewater treatment[J]. Water Purification Technology, 2022, 41(5):23-29+61.
ZHANG Y Q, LIU J, XU B, et al. Research progress of adsorption technology for deflurination in fluoride-containing wastewater treatment[J]. Water Purification Technology, 2022, 41(5):23-29+61.
[4] 董建威. 初沉-混凝沉淀-吸附工艺处理高浓度含氟废水工程实例[J]. 工业水处理, 2014, 34(8):82-84.DONG J W. Treatment of highly concentrated fluoride-containing wastewater by preliminary sedimentation-coagulation precipitation-adsorption process[J]. Industrial Water Treatment, 2014, 34(8):82-84.
DONG J W. Treatment of highly concentrated fluoride-containing wastewater by preliminary sedimentation-coagulation precipitation-adsorption process[J]. Industrial Water Treatment, 2014, 34(8):82-84.
[5] KIM G, PARK S. Chloride Removal of Calcium Aluminate-Layered Double Hydroxide Phases: A Review[J]. International Journal of Environmental Research and Public Health, 2021, 18(6):2797. doi: 10.3390/ijerph18062797
[6] STEPEC D, PONIKVAR-SVET M. Fluoride in human health and nutrition[J]. Acta Chimica Slovenica, 2019, 66(2):255-275. doi: 10.17344/acsi.2019.4932
[7] Qiying Zhang, Panpan Xu. Hydrogeochemistry and fluoride contamination in Jiaokou Irrigation District, Central China: Assessment based on multivariate statistical approach and human health risk[J]. Science of The Total Environment, 2020, 741:140460. doi: 10.1016/j.scitotenv.2020.140460
[8] JHA S K, MISHRA V K, et al. Fluoride in the environment and its metabolism in humans [M]. Reviews of Environmental Contamination and Toxicology, 2011, 711: 121-142.
[9] 田追, 张震, 卢嫚, 等. 新型除氟吸附材料的研究进展 [J]. 化工进展, 2022, 41(6): 3051-3062.TIAN Z, ZHANG Z, LU M, et al. New adsorption materials for removing fluoride from wastewater: A review [J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3051-3062.
TIAN Z, ZHANG Z, LU M, et al. New adsorption materials for removing fluoride from wastewater: A review [J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3051-3062.
[10] 邓书平, 牟淑杰. 改性膨润土吸附处理含氟废水实验研究[J]. 矿产综合利用, 2010(5):33-36.DENG S P, MU S J. Experimental research on treament of fluoride-containing wastewater by bentonite[J]. Multipurpose Utilization of Mineral Resources, 2010(5):33-36. doi: 10.3969/j.issn.1000-6532.2010.05.009
DENG S P, MU S J. Experimental research on treament of fluoride-containing wastewater by bentonite[J]. Multipurpose Utilization of Mineral Resources, 2010(5):33-36. doi: 10.3969/j.issn.1000-6532.2010.05.009
[11] 黎原小溪, 王银叶. 改性沸石对含氟地下水的除氟效果研究[J]. 矿产综合利用, 2008(5):19-22.LIYUAN X X, WANG Y Y. A study on removal of fluorides from groundwater by modified zeolite[J]. Multipurpose Utilization of Mineral Resources, 2008(5):19-22. doi: 10.3969/j.issn.1000-6532.2008.05.006
LIYUAN X X, WANG Y Y. A study on removal of fluorides from groundwater by modified zeolite[J]. Multipurpose Utilization of Mineral Resources, 2008(5):19-22. doi: 10.3969/j.issn.1000-6532.2008.05.006
[12] 王盼盼, 陈林, 杨晓军, 等. 四川典型轻稀土赋存状态[J]. 矿产综合利用, 2019(6):60-64.WANG P P, CHEN L, YANG X J, et al. Study on occurrence of rare earth in Dalucao, Dechang, Sichuan[J]. Multipurpose Utilization of Mineral Resources, 2019(6):60-64. doi: 10.3969/j.issn.1000-6532.2019.06.0013
WANG P P, CHEN L, YANG X J, et al. Study on occurrence of rare earth in Dalucao, Dechang, Sichuan[J]. Multipurpose Utilization of Mineral Resources, 2019(6):60-64. doi: 10.3969/j.issn.1000-6532.2019.06.0013
[13] KUNHIKRISHNAN A, RAHMAN M A, et al. Rare earth elements (REE) for the removal and recovery of phosphorus: A review[J]. Chemosphere, 2022, 286:131661. doi: 10.1016/j.chemosphere.2021.131661
[14] XU Y F, DING Y, et al. In-situ synthesis of calcium aluminum layered double hydroxides for advanced treatment of leachate biochemical tail water[J]. Science of the Total Environment, 2020, 701:134891. doi: 10.1016/j.scitotenv.2019.134891
[15] 文伟, 陈福林, 于新文, 等. 某含硫萤石重晶石共伴生氟碳铈稀土矿硫脱除必要性及回收试验[J]. 矿产综合利用, 2019(6):45-48.WEN W, CHEN F L, YU X W, et al. Experimental study on the necessity and recovery of sulfur removal from a fluorocarbon-cerium rare earth ore associated with fluorite barite[J]. Multipurpose Utilization of Mineral Resources, 2019(6):45-48.
WEN W, CHEN F L, YU X W, et al. Experimental study on the necessity and recovery of sulfur removal from a fluorocarbon-cerium rare earth ore associated with fluorite barite[J]. Multipurpose Utilization of Mineral Resources, 2019(6):45-48.
[16] 张笛. Al-Mn-La复合金属氧化物的制备及其对水中氟和磷的去除 [D]. 扬州: 扬州大学, 2019.ZHANG D. Preparation of Al-Mn-La composite metal oxides and their removal of fluoride and phosphate from water [D]. Yangzhou: Yangzhou University, 2019.
ZHANG D. Preparation of Al-Mn-La composite metal oxides and their removal of fluoride and phosphate from water [D]. Yangzhou: Yangzhou University, 2019.
[17] SING K S W, EVERETT D H, et al. Reporting physisorption data for gas/solid systems[J]. Pure and Applied Chemistry, 1982, 54(11):2201-2218. doi: 10.1351/pac198254112201
[18] 王曼曼, 石林, 张洋洋, 等. 伊利石合成沸石相吸附材料及对水中 Ni2+ 的吸附[J]. 矿产综合利用, 2021(2):192-198.WANG M M, SHI L, ZHANG Y Y, et al. Adsorption of Ni2+ from aqueous solutions by zeolite phase adsorption materials synthesized from illite[J]. Multipurpose Utilization of Mineral Resources, 2021(2):192-198.
WANG M M, SHI L, ZHANG Y Y, et al. Adsorption of Ni2+ from aqueous solutions by zeolite phase adsorption materials synthesized from illite[J]. Multipurpose Utilization of Mineral Resources, 2021(2):192-198.
[19] KU Y, CHIOU H M. The adsorption of fluoride ion from aqueous solution by activated alumina[J]. Water, Air, and Soil Pollution, 2002, 133(1-4):349-361.
[20] CHEN L, WU H-X, et al. Granulation of Fe–Al–Ce nano-adsorbent for fluoride removal from drinking water by spray coating on sand in a fluidized bed[J]. Powder Technology, 2009, 193(1):59-64. doi: 10.1016/j.powtec.2009.02.007
[21] GHOSH A, CHAKRABARTI S, et al. Agglomerated nanoparticles of hydrous Ce(IV)+Zr(IV) mixed oxide: Preparation, characterization and physicochemical aspects on fluoride adsorption[J]. Applied Surface Science, 2014, 307:665-676. doi: 10.1016/j.apsusc.2014.04.095
[22] WANG J, WU L, et al. Simultaneous and efficient removal of fluoride and phosphate by Fe-La composite: Adsorption kinetics and mechanism[J]. Journal of Alloys and Compounds, 2018, 753:422-432. doi: 10.1016/j.jallcom.2018.04.177
[23] LIU H, LI Z, et al. Preparation of Al-Ce hybrid adsorbent and its application for defluoridation of drinking water[J]. Journal of Hazardous Materials, 2010, 179(1-3):424-430. doi: 10.1016/j.jhazmat.2010.03.021
[24] XIANG W, ZHANG G, et al. Synthesis and characterization of cotton-like Ca–Al–La composite as an adsorbent for fluoride removal[J]. Chemical Engineering Journal, 2014, 250:423-430. doi: 10.1016/j.cej.2014.03.118
[25] TANG D, ZHANG G. Efficient removal of fluoride by hierarchical Ce–Fe bimetal oxides adsorbent: Thermodynamics, kinetics and mechanism[J]. Chemical Engineering Journal, 2016, 283:721-729. doi: 10.1016/j.cej.2015.08.019
[26] ZHOU J, ZHU W, et al. Highly selective and efficient removal of fluoride from ground water by layered Al-Zr-La Tri-metal hydroxide[J]. Applied Surface Science, 2018, 435:920-927. doi: 10.1016/j.apsusc.2017.11.108
[27] 汪鑫, 邓寅祥, 许继芳, 等. 铁酸锌配碳选择性还原的热力学分析和实验研究[J]. 矿产综合利用, 2020(2):167-171.WANG X, DENG Y X, XU J F, et al. Thermodynamic analysis and experimental study on selective reduction of zinc ferrite with carbon[J]. Multipurpose Utilization of Mineral Resources, 2020(2):167-171.
WANG X, DENG Y X, XU J F, et al. Thermodynamic analysis and experimental study on selective reduction of zinc ferrite with carbon[J]. Multipurpose Utilization of Mineral Resources, 2020(2):167-171.
[28] 蒲星宏, 杜新和, 王国传, 等. 工业偏钛酸为原料制备H2TiO3锂离子筛及其吸附性能研究[J]. 矿产综合利用, 2021(4):176-181.PU X H, DU X H, WANG G C, et al. Preparation and adsorption performance study of H2TiO3 lithium ion sieve with industrial metantitanic acid as raw material[J]. Multipurpose Utilization of Mineral Resources, 2021(4):176-181.
PU X H, DU X H, WANG G C, et al. Preparation and adsorption performance study of H2TiO3 lithium ion sieve with industrial metantitanic acid as raw material[J]. Multipurpose Utilization of Mineral Resources, 2021(4):176-181.
[29] PREETHI J, KARTHIKEYAN P, et al. Facile synthesis of Zr4+ incorporated chitosan/gelatin composite for the sequestration of Chromium(VI) and fluoride from water[J]. Chemosphere, 2021, 262:128317. doi: 10.1016/j.chemosphere.2020.128317
[30] WANG L, XIE Y, et al. Insight into mechanisms of fluoride removal from contaminated groundwater using lanthanum-modified bone waste[J]. Rsc Advances, 2017, 7(85):54291-54305. doi: 10.1039/C7RA10713G
-