钙-铝-铈三元复合物吸附脱除氟离子的性能及机理

刘雨秋, 高子航, 周慧, 张永奎, 王雅博. 钙-铝-铈三元复合物吸附脱除氟离子的性能及机理[J]. 矿产综合利用, 2025, 46(3): 1-9, 32. doi: 10.12476/kczhly.202208250537
引用本文: 刘雨秋, 高子航, 周慧, 张永奎, 王雅博. 钙-铝-铈三元复合物吸附脱除氟离子的性能及机理[J]. 矿产综合利用, 2025, 46(3): 1-9, 32. doi: 10.12476/kczhly.202208250537
LIU Yuqiu, GAO Zihang, ZHOU Hui, ZHANG Yongkui, WANG Yabo. Fluoride Removal by Calcium-aluminum-cerium Ternary Composite: Adsorption Performances and Mechanism[J]. Multipurpose Utilization of Mineral Resources, 2025, 46(3): 1-9, 32. doi: 10.12476/kczhly.202208250537
Citation: LIU Yuqiu, GAO Zihang, ZHOU Hui, ZHANG Yongkui, WANG Yabo. Fluoride Removal by Calcium-aluminum-cerium Ternary Composite: Adsorption Performances and Mechanism[J]. Multipurpose Utilization of Mineral Resources, 2025, 46(3): 1-9, 32. doi: 10.12476/kczhly.202208250537

钙-铝-铈三元复合物吸附脱除氟离子的性能及机理

  • 基金项目: 四川大学“化工之星”优秀青年人才培养计划(2021)
详细信息
    作者简介: 刘雨秋(1997-),男,硕士研究生,研究方向为水体中氟污染物去除
    通讯作者: 王雅博(1985-),男,博士,副教授,研究方向为先进功能材料合成及水体污染物去除。
  • 中图分类号: TD985

Fluoride Removal by Calcium-aluminum-cerium Ternary Composite: Adsorption Performances and Mechanism

More Information
  • 工业产出大量氟污染废水,对环境安全与人类的健康有着严重的威胁。本文以共沉淀法合成了钙-铝-铈三元复合物(CAC),用XRD、FT-IR、N2吸附、SEM等对其进行了表征,并系统探究了CAC对氟的吸附性能及机理。结果表明,在弱酸性环境(pH值 5.0)下CAC对氟离子的吸附性能较好;CAC对氟离子的吸附属于自发、吸热的过程,且符合Langmuir模型,通过模型拟合计算出对氟离子的最大吸附容量为56.28 mg/g;CAC对氟离子的吸附在12 h时平衡,符合拟二级动力学模型;溶液中共存的CO32-、HCO3-等对氟离子的吸附有较大影响。CAC吸附除氟的机理主要是静电吸引作用和离子交换。

  • 加载中
  • 图 1  CAC的X射线衍射图谱(a)、红外表征图谱(b)和零点电荷的测定(c)

    Figure 1. 

    图 2  CAC的FESEM

    Figure 2. 

    图 3  CAC的氮气吸附脱附曲线(a)和孔径分布(b)

    Figure 3. 

    图 4  溶液初始pH值对氟离子去除效率的影响

    Figure 4. 

    图 5  CAC吸附氟离子的吸附等温线(a),Langmuir线性拟合(b),Freundlich线性拟合(c)和Temkin线性拟合(d)

    Figure 5. 

    图 6  反应温度对氟离子吸附的影响(a)和范德霍夫曲线(b)

    Figure 6. 

    图 7  CAC吸附氟离子的吸附动力学曲线(a), 拟一阶动力学模型拟合(b),拟二阶动力学模型拟合(c)和颗粒内扩散模型拟合(d)

    Figure 7. 

    图 8  共存阴离子对CAC吸附除氟的影响

    Figure 8. 

    图 9  CAC吸附氟前后的XPS(a),F 1s(b),O 1s(c)和Ce 3d(d)的高分辨率XPS

    Figure 9. 

    表 1  CAC吸附氟离子的等温线参数

    Table 1.  Parameters of isotherm models of CAC

    Isotherm 模型在298 K, pH=5.0时的拟合参数
    LangmuirKL=0.815 9 L/mg, qm=56.28 mg/g, R2=0.995 5
    FreundlichKF=26.5015/g, n-1=0.212 0, R2=0.676 3
    Temkinβ=334.0486, AT=38.317 2 L m/g, R2=0.787 4
    下载: 导出CSV

    表 2  不同材料对氟离子的吸附能力比较

    Table 2.  Comparison of maximum adsorption capacity of fluoride by various samples

    吸附剂pH值反应时间/hqm/(mg/g)
    活性氧化铝[19]7.016 0.96
    Fe-Al-Ce复合材料[20]7.036 2.22
    Ce(Ⅳ)+Zr(Ⅴ) 混合氧化物[21]6.02 19.50
    Fe-La 复合材料[22]6.0--27.42
    Al-Ce 氧化物[23]6.02427.50
    棉状 Ca-Al-La 复合材料[24]7.0329.30
    Ca-Al-Ce 三元复合材料5.01256.28
    分层钙铁 Ca-Fe 双金属氧化物[25]5.00.6760.97
    层状 Al-Zr-La 三金属氢氧化物[26]3.02490.68
    下载: 导出CSV

    表 3  CAC吸附氟的热力学参数

    Table 3.  Thermodynamic parameters of fluoride adsorption by CAC

    温度/ K ΔG0/ (kJ/mol) ΔH0/ (kJ/mol) ΔS0/ (J/(mol·K))
    288 -5.86 114.91 420.34
    298 -10.89
    308 -14.79
    318 -18.51
    下载: 导出CSV

    表 4  CAC吸附氟的动力学参数

    Table 4.  Kinetic parameters of fluoride adsorption by CAC

    动力模型 在298 K, pH = 5.0时的拟合参数
    伪一阶 qe, cal =10.43 mg/g, K1 =0.0016 min/(g·min), R2=0.955 4
    伪二阶 qe, cal =36.49 mg/g, K2 =0.0013 min/(g·min), R2=0.996 6
    粒子内
    扩散
    Ki1 =0.826 1 min/(g·min), R2=0.972 8
    Ki2 =0.354 0 min/(g·min), R2=0.998 0
    Ki3 =0.068 7 min/(g·min), R2=0.999 9
    下载: 导出CSV
  • [1]

    刘棋勇, 赖杨. 贵州务川双河重晶石-萤石矿成矿地质特征及成因分析[J]. 矿产综合利用, 2022(1):29-36.LIU Q Y, LAI Y. Discussion on metallogenic geological characteristics and genesis of Shuanghe barite-fluorite deposit in Wuchuan, Guizhou province[J]. Multipurpose Utilization of Mineral Resources, 2022(1):29-36. doi: 10.3969/j.issn.1000-6532.2022.01.004

    LIU Q Y, LAI Y. Discussion on metallogenic geological characteristics and genesis of Shuanghe barite-fluorite deposit in Wuchuan, Guizhou province[J]. Multipurpose Utilization of Mineral Resources, 2022(1):29-36. doi: 10.3969/j.issn.1000-6532.2022.01.004

    [2]

    刘亮强, 冯永山. 含氟废水处理工艺综述[J]. 铜业工程, 2022(2):92-95+100.LIU L Q, FENG Y S. Overview of fluorine-containing wastewater treatment process[J]. Copper Engineering, 2022(2):92-95+100. doi: 10.3969/j.issn.1009-3842.2022.02.023

    LIU L Q, FENG Y S. Overview of fluorine-containing wastewater treatment process[J]. Copper Engineering, 2022(2):92-95+100. doi: 10.3969/j.issn.1009-3842.2022.02.023

    [3]

    张钰卿, 刘佳, 许兵, 等. 含氟废水处理中的除氟吸附技术研究进展[J]. 净水技术, 2022, 41(5):23-29+61.ZHANG Y Q, LIU J, XU B, et al. Research progress of adsorption technology for deflurination in fluoride-containing wastewater treatment[J]. Water Purification Technology, 2022, 41(5):23-29+61.

    ZHANG Y Q, LIU J, XU B, et al. Research progress of adsorption technology for deflurination in fluoride-containing wastewater treatment[J]. Water Purification Technology, 2022, 41(5):23-29+61.

    [4]

    董建威. 初沉-混凝沉淀-吸附工艺处理高浓度含氟废水工程实例[J]. 工业水处理, 2014, 34(8):82-84.DONG J W. Treatment of highly concentrated fluoride-containing wastewater by preliminary sedimentation-coagulation precipitation-adsorption process[J]. Industrial Water Treatment, 2014, 34(8):82-84.

    DONG J W. Treatment of highly concentrated fluoride-containing wastewater by preliminary sedimentation-coagulation precipitation-adsorption process[J]. Industrial Water Treatment, 2014, 34(8):82-84.

    [5]

    KIM G, PARK S. Chloride Removal of Calcium Aluminate-Layered Double Hydroxide Phases: A Review[J]. International Journal of Environmental Research and Public Health, 2021, 18(6):2797. doi: 10.3390/ijerph18062797

    [6]

    STEPEC D, PONIKVAR-SVET M. Fluoride in human health and nutrition[J]. Acta Chimica Slovenica, 2019, 66(2):255-275. doi: 10.17344/acsi.2019.4932

    [7]

    Qiying Zhang, Panpan Xu. Hydrogeochemistry and fluoride contamination in Jiaokou Irrigation District, Central China: Assessment based on multivariate statistical approach and human health risk[J]. Science of The Total Environment, 2020, 741:140460. doi: 10.1016/j.scitotenv.2020.140460

    [8]

    JHA S K, MISHRA V K, et al. Fluoride in the environment and its metabolism in humans [M]. Reviews of Environmental Contamination and Toxicology, 2011, 711: 121-142.

    [9]

    田追, 张震, 卢嫚, 等. 新型除氟吸附材料的研究进展 [J]. 化工进展, 2022, 41(6): 3051-3062.TIAN Z, ZHANG Z, LU M, et al. New adsorption materials for removing fluoride from wastewater: A review [J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3051-3062.

    TIAN Z, ZHANG Z, LU M, et al. New adsorption materials for removing fluoride from wastewater: A review [J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3051-3062.

    [10]

    邓书平, 牟淑杰. 改性膨润土吸附处理含氟废水实验研究[J]. 矿产综合利用, 2010(5):33-36.DENG S P, MU S J. Experimental research on treament of fluoride-containing wastewater by bentonite[J]. Multipurpose Utilization of Mineral Resources, 2010(5):33-36. doi: 10.3969/j.issn.1000-6532.2010.05.009

    DENG S P, MU S J. Experimental research on treament of fluoride-containing wastewater by bentonite[J]. Multipurpose Utilization of Mineral Resources, 2010(5):33-36. doi: 10.3969/j.issn.1000-6532.2010.05.009

    [11]

    黎原小溪, 王银叶. 改性沸石对含氟地下水的除氟效果研究[J]. 矿产综合利用, 2008(5):19-22.LIYUAN X X, WANG Y Y. A study on removal of fluorides from groundwater by modified zeolite[J]. Multipurpose Utilization of Mineral Resources, 2008(5):19-22. doi: 10.3969/j.issn.1000-6532.2008.05.006

    LIYUAN X X, WANG Y Y. A study on removal of fluorides from groundwater by modified zeolite[J]. Multipurpose Utilization of Mineral Resources, 2008(5):19-22. doi: 10.3969/j.issn.1000-6532.2008.05.006

    [12]

    王盼盼, 陈林, 杨晓军, 等. 四川典型轻稀土赋存状态[J]. 矿产综合利用, 2019(6):60-64.WANG P P, CHEN L, YANG X J, et al. Study on occurrence of rare earth in Dalucao, Dechang, Sichuan[J]. Multipurpose Utilization of Mineral Resources, 2019(6):60-64. doi: 10.3969/j.issn.1000-6532.2019.06.0013

    WANG P P, CHEN L, YANG X J, et al. Study on occurrence of rare earth in Dalucao, Dechang, Sichuan[J]. Multipurpose Utilization of Mineral Resources, 2019(6):60-64. doi: 10.3969/j.issn.1000-6532.2019.06.0013

    [13]

    KUNHIKRISHNAN A, RAHMAN M A, et al. Rare earth elements (REE) for the removal and recovery of phosphorus: A review[J]. Chemosphere, 2022, 286:131661. doi: 10.1016/j.chemosphere.2021.131661

    [14]

    XU Y F, DING Y, et al. In-situ synthesis of calcium aluminum layered double hydroxides for advanced treatment of leachate biochemical tail water[J]. Science of the Total Environment, 2020, 701:134891. doi: 10.1016/j.scitotenv.2019.134891

    [15]

    文伟, 陈福林, 于新文, 等. 某含硫萤石重晶石共伴生氟碳铈稀土矿硫脱除必要性及回收试验[J]. 矿产综合利用, 2019(6):45-48.WEN W, CHEN F L, YU X W, et al. Experimental study on the necessity and recovery of sulfur removal from a fluorocarbon-cerium rare earth ore associated with fluorite barite[J]. Multipurpose Utilization of Mineral Resources, 2019(6):45-48.

    WEN W, CHEN F L, YU X W, et al. Experimental study on the necessity and recovery of sulfur removal from a fluorocarbon-cerium rare earth ore associated with fluorite barite[J]. Multipurpose Utilization of Mineral Resources, 2019(6):45-48.

    [16]

    张笛. Al-Mn-La复合金属氧化物的制备及其对水中氟和磷的去除 [D]. 扬州: 扬州大学, 2019.ZHANG D. Preparation of Al-Mn-La composite metal oxides and their removal of fluoride and phosphate from water [D]. Yangzhou: Yangzhou University, 2019.

    ZHANG D. Preparation of Al-Mn-La composite metal oxides and their removal of fluoride and phosphate from water [D]. Yangzhou: Yangzhou University, 2019.

    [17]

    SING K S W, EVERETT D H, et al. Reporting physisorption data for gas/solid systems[J]. Pure and Applied Chemistry, 1982, 54(11):2201-2218. doi: 10.1351/pac198254112201

    [18]

    王曼曼, 石林, 张洋洋, 等. 伊利石合成沸石相吸附材料及对水中 Ni2+ 的吸附[J]. 矿产综合利用, 2021(2):192-198.WANG M M, SHI L, ZHANG Y Y, et al. Adsorption of Ni2+ from aqueous solutions by zeolite phase adsorption materials synthesized from illite[J]. Multipurpose Utilization of Mineral Resources, 2021(2):192-198.

    WANG M M, SHI L, ZHANG Y Y, et al. Adsorption of Ni2+ from aqueous solutions by zeolite phase adsorption materials synthesized from illite[J]. Multipurpose Utilization of Mineral Resources, 2021(2):192-198.

    [19]

    KU Y, CHIOU H M. The adsorption of fluoride ion from aqueous solution by activated alumina[J]. Water, Air, and Soil Pollution, 2002, 133(1-4):349-361.

    [20]

    CHEN L, WU H-X, et al. Granulation of Fe–Al–Ce nano-adsorbent for fluoride removal from drinking water by spray coating on sand in a fluidized bed[J]. Powder Technology, 2009, 193(1):59-64. doi: 10.1016/j.powtec.2009.02.007

    [21]

    GHOSH A, CHAKRABARTI S, et al. Agglomerated nanoparticles of hydrous Ce(IV)+Zr(IV) mixed oxide: Preparation, characterization and physicochemical aspects on fluoride adsorption[J]. Applied Surface Science, 2014, 307:665-676. doi: 10.1016/j.apsusc.2014.04.095

    [22]

    WANG J, WU L, et al. Simultaneous and efficient removal of fluoride and phosphate by Fe-La composite: Adsorption kinetics and mechanism[J]. Journal of Alloys and Compounds, 2018, 753:422-432. doi: 10.1016/j.jallcom.2018.04.177

    [23]

    LIU H, LI Z, et al. Preparation of Al-Ce hybrid adsorbent and its application for defluoridation of drinking water[J]. Journal of Hazardous Materials, 2010, 179(1-3):424-430. doi: 10.1016/j.jhazmat.2010.03.021

    [24]

    XIANG W, ZHANG G, et al. Synthesis and characterization of cotton-like Ca–Al–La composite as an adsorbent for fluoride removal[J]. Chemical Engineering Journal, 2014, 250:423-430. doi: 10.1016/j.cej.2014.03.118

    [25]

    TANG D, ZHANG G. Efficient removal of fluoride by hierarchical Ce–Fe bimetal oxides adsorbent: Thermodynamics, kinetics and mechanism[J]. Chemical Engineering Journal, 2016, 283:721-729. doi: 10.1016/j.cej.2015.08.019

    [26]

    ZHOU J, ZHU W, et al. Highly selective and efficient removal of fluoride from ground water by layered Al-Zr-La Tri-metal hydroxide[J]. Applied Surface Science, 2018, 435:920-927. doi: 10.1016/j.apsusc.2017.11.108

    [27]

    汪鑫, 邓寅祥, 许继芳, 等. 铁酸锌配碳选择性还原的热力学分析和实验研究[J]. 矿产综合利用, 2020(2):167-171.WANG X, DENG Y X, XU J F, et al. Thermodynamic analysis and experimental study on selective reduction of zinc ferrite with carbon[J]. Multipurpose Utilization of Mineral Resources, 2020(2):167-171.

    WANG X, DENG Y X, XU J F, et al. Thermodynamic analysis and experimental study on selective reduction of zinc ferrite with carbon[J]. Multipurpose Utilization of Mineral Resources, 2020(2):167-171.

    [28]

    蒲星宏, 杜新和, 王国传, 等. 工业偏钛酸为原料制备H2TiO3锂离子筛及其吸附性能研究[J]. 矿产综合利用, 2021(4):176-181.PU X H, DU X H, WANG G C, et al. Preparation and adsorption performance study of H2TiO3 lithium ion sieve with industrial metantitanic acid as raw material[J]. Multipurpose Utilization of Mineral Resources, 2021(4):176-181.

    PU X H, DU X H, WANG G C, et al. Preparation and adsorption performance study of H2TiO3 lithium ion sieve with industrial metantitanic acid as raw material[J]. Multipurpose Utilization of Mineral Resources, 2021(4):176-181.

    [29]

    PREETHI J, KARTHIKEYAN P, et al. Facile synthesis of Zr4+ incorporated chitosan/gelatin composite for the sequestration of Chromium(VI) and fluoride from water[J]. Chemosphere, 2021, 262:128317. doi: 10.1016/j.chemosphere.2020.128317

    [30]

    WANG L, XIE Y, et al. Insight into mechanisms of fluoride removal from contaminated groundwater using lanthanum-modified bone waste[J]. Rsc Advances, 2017, 7(85):54291-54305. doi: 10.1039/C7RA10713G

  • 加载中

(9)

(4)

计量
  • 文章访问数:  70
  • PDF下载数:  5
  • 施引文献:  0
出版历程
收稿日期:  2022-08-25
刊出日期:  2025-06-25

目录