-
摘要:
随着重金属污染的日益严重,固定化土壤中的重金属成为近年来学者们研究的热点,矿物材料在其中拥有不可替代的地位。本文针对目前现存的重金属土壤污染问题,概括蒙脱石、海泡石、沸石、高岭土、凹凸棒等黏土矿物及磷酸盐矿物、纳米矿物材料等几种矿物材料在重金属污染土壤稳定化修复领域的应用和反应机理。黏土矿物的稳定化能力与矿物结构有关,矿物结构决定其离子交换能力,离子交换能力强的矿物稳定化效果更为突出,同时黏土矿物亦能改变土壤的pH值等理化性质,使土壤内重金属活性降低。磷酸盐矿物的稳定化能力与其本身的溶解性呈正相关,反应机理主要为溶解-沉淀、表面吸附、离子交换、诱导吸附几种形式。纳米矿物材料在保留原材料性质的基础上,因其粒度为纳米级也展现出一些其他特性。今后可在材料回收循环利用、矿物改性方法优化、提高重金属稳定化效果和减少稳定化周期等方向进行深入研究,以期为稳定化修复土壤中重金属的研究工作提供参考意见。
Abstract:With the increasingly serious pollution of heavy metals, the heavy metals in immobilized soil have become the focus of research in recent years, and mineral materials play an irreplaceable role in it. In this paper, the application and reaction mechanism of montmorillonite, sepiolite, zeolite, kaolin, attapulgite and other clay minerals as well as phosphate minerals and nano-mineral materials in the stabilization and remediation of heavy metal contaminated soil are summarized. The stabilization ability of clay minerals is related to mineral structure, which determines its ion-exchange ability. The stabilization effect of minerals with strong ion-exchange ability is more prominent. At the same time, clay minerals can also change the physical and chemical properties of soil, such as pH value, and reduce the activity of heavy metals in soil.The stabilization ability of phosphate minerals is positively correlated with its solubility, and the reaction mechanisms are mainly solution-precipitation, surface adsorption, ion exchange and induced adsorption. On the basis of retaining the properties of raw materials, nano-mineral materials also show some other characteristics due to their nano-size. In the future, further research can be conducted in the direction of material recovery and recycling, optimization of mineral modification methods, improvement of the stabilization effect of heavy metals and reduction of the stabilization period, in order to provide references for the research work of stabilization and remediation of heavy metals in soil.
-
Key words:
- mineral materials /
- heavy metal pollution /
- clay minerals /
- phosphate mineral
-
-
表 1 重金属污染土壤修复常用硅酸盐黏土矿物特点
Table 1. Characteristics of silicate clay minerals commonly used in heavy metal contaminated soil remediation
名称 化学成分 结构特征 性质 化学式 蒙脱石 含Al3+、Mg2+、OH-、的
硅酸盐中间为铝氧八面体,上下为硅氧四面体的三层片状结构 高离子交换性、强吸附性、吸水膨胀性、多孔结构 (Na,Ca)0.33(Al,Mg)2[Si4O10](OH)2·nH2O 海泡石 富镁硅酸盐黏 三条条辉石式单链构成的2∶1 结构带和连续的硅氧四面体层 高离子交换性、强吸附性、分散性、多孔结构 (Si12)(Mg8)O30(OH)4(OH2)4·8H2O 沸石 碱金属及碱土金属铝硅酸盐 硅氧四面体、铝氧八面体骨架晶格结构 高离子交换性、表面电负性、催化性、 强吸附性 AmBpO2p·nH2O 高岭土 硅铝酸盐 1∶1型层状硅氧四面体和铝氢氧八面体 吸附性,可塑性,电绝缘性 2SiO2·Al2O3·2H2O 凹凸棒 含有不定量的Na+、Ca2+、Fe3+、Al3+含水富镁铝硅酸盐 具链层状结构
呈毛发状或纤维状的集合体高离子交换性、吸附性、吸水膨胀性、多孔结构 Mg5Si8O20(OH)2(OH2)4·4H2O 表 2 处理土壤中重金属的常见纳米材料
Table 2. Common nanomaterials for treating heavy metals in soil
材料名称 重金属 效果 纳米羟基磷灰石羟基磷灰石 Pb、Cu、Cd CaCl2提取态含量降低 生物炭负载纳米羟基磷灰石 Pb 芥兰中Pb含量降低87% 纳米沸石 Cd 比普通沸石吸附量提高12倍 介孔硅纳米材料 Cd Cd有效态最高降低93% 纳米TiO2 Cd、Pb 促进残渣态和可氧化态Cr以及可氧化态和酸可交换态Pb释放 纳米零价铁 As 减少植物对As的吸收 表 3 不同黏土矿物材料修复效果
Table 3. Repair effect of different clay mineral materials
材料种类 重金属种类 土壤pH值 施加量 修复效果 膨润土 膨润土[38] Cd;Pb 8.2 1%;3%;5% 可交换态Cd、Pb分别降低了11.1%~42.5%;20.3%~49.3% 有机膨润土[39] Cu;Zn - 4% TCLP提取态Cu、Zn降低了77%、99% 铝撑膨润土[40] Cu;Cd;Pb 8.32 2.5% DTPA提取态Cu、Zn降低了28.4%、18.1% 海泡石 海泡石[41] Cd 4.48;6.19;7.76 1%;2%;5% 盆栽试验TCLP-Cd降低0.6%~49.6%,野外实验降低4.0%~32.5% 海泡石-石灰石[42] Cd;Pb 5.39 2、4、6 g/kg 可交换态Cd、Pb降低了99.8%、98.9% 凹凸棒 凹凸棒[43] Cu;Pb;Zn 6.6 - 水提取态Cu、Pb、Zn降低17%、450%、45% 坡缕石[44] Cd;Pb;Cu;Zn 4.63;8.22 2%;5% 降低可交换态Pb>Cd> Cu > Zn 坡缕石-鸟粪石[45] Cd;Pb - 10% 弱酸提取态Cu、Cd降低了47.7%、25.5% 电器石[46] Cd 7.45 1%;2%;5% 显著降低了DTPA提取态Cd 沸石[47] Cd 5.4 15% 吸附Cd从5.2 mg/L下降到0.1mg/L -
[1] 吴瑞萍.多羟基磷酸铁的制备及其在铅镉污染土壤修复中的应用[D].长沙:中南大学,2014.WU R P. Preparation of polymecic hydroxyl ferric phosphate and application to the remediation of lead, cadmium contaminated soils[D].Changsha: Central South University, 2014.
WU R P. Preparation of polymecic hydroxyl ferric phosphate and application to the remediation of lead, cadmium contaminated soils[D].Changsha: Central South University, 2014.
[2] 梁艳, 卢燕南 ,唐艳葵, 等. 多组分重金属复合体系在高岭土中的吸附差异[J]. 广西大学学报(自然科学版), 2021, 46(1):173-181.LIANG Y, LU Y N, TANG Y K, et al. Adsorption of heavy metals in multi-metal systems on kaolinite clay[J]. Journal of Guangxi University ( Natural Science Edvition), 2021, 46(1):173-181.
LIANG Y, LU Y N, TANG Y K, et al. Adsorption of heavy metals in multi-metal systems on kaolinite clay[J]. Journal of Guangxi University ( Natural Science Edvition), 2021, 46(1):173-181.
[3] 王文成,吴德礼,马鲁铭. 天然铁基矿物修复土壤的机制[J]. 江苏环境科技, 2007(S2):127-130+133.WANG W C,WU D L,MA L M. Remediation mechanism of natural iron-bearing minerals on contaminated soils[J]. Jiangsu Environmental Science and Technology, 2007(S2):127-130+133.
WANG W C,WU D L,MA L M. Remediation mechanism of natural iron-bearing minerals on contaminated soils[J]. Jiangsu Environmental Science and Technology, 2007(S2):127-130+133.
[4] 江湛如,雷鸣,龙九妹,等.改性非金属矿物材料用于重金属污染处理的研究进展[J].材料导报,2017(S2 vo 31):210-213.JIANG Z R,LEI M,LONG J M,et al.Advances in applying modified nonmetallic mineral materials to heavy metal pollution control[J]. Materials Reports | Mater Rep,2017(S2 vo 31):210-213.
JIANG Z R,LEI M,LONG J M,et al.Advances in applying modified nonmetallic mineral materials to heavy metal pollution control[J]. Materials Reports | Mater Rep,2017(S2 vo 31):210-213.
[5] 叶志.纳米铁复合材料修复土壤铬污染及其迁移性研究[D].苏州: 苏州科技大学,2021.YE Z. Using green method to synthesis nzvi apply for chromium remediation and its transportability under environmental impact factors conditions[D].Suzhou:Suzhou University of Science and Technology,2021.
YE Z. Using green method to synthesis nzvi apply for chromium remediation and its transportability under environmental impact factors conditions[D].Suzhou:Suzhou University of Science and Technology,2021.
[6] Singh,Lee,BK. Influence of nano-TiO2 particles on the bioaccumulation of Cd in soybean plants (Glycine max):A possible mechanism for the removal of Cd from the contaminated soil[J]. J ENVIRON MANAGE, 2016, 2016,170:88-96.
[7] 杨珊珊.铁基蒙脱石复合材料的制备及其对双酚类污染物的催化降解研究[D].广州:华南理工大学,2020.YANG S S. Fabrication of iron-based montmorillonite composites and their application in catalytic degradation of emerging phenolic pollutants[D].Guangzhou: South China University of Technology,2020.
YANG S S. Fabrication of iron-based montmorillonite composites and their application in catalytic degradation of emerging phenolic pollutants[D].Guangzhou: South China University of Technology,2020.
[8] 聂发辉,吴钦,吴道,等. 改性蒙脱石在污水处理中的应用现状及进展[J]. 应用化工, 2021, 50(3):805-811.NIE F H,WU Q,WU D,et al. Application status and progress of modified montmorillonite in sewage treatment[J]. Applied Chemical Industry, 2021, 50(3):805-811. doi: 10.3969/j.issn.1671-3206.2021.03.050
NIE F H,WU Q,WU D,et al. Application status and progress of modified montmorillonite in sewage treatment[J]. Applied Chemical Industry, 2021, 50(3):805-811. doi: 10.3969/j.issn.1671-3206.2021.03.050
[9] Brown L, Seaton K, Mohseni R, et al. Immobilization of heavy metals on pillared montmorillonite with a grafted chelate ligand[J]. Journal of Hazardous Materials, 2013, 261:181-187. doi: 10.1016/j.jhazmat.2013.07.024
[10] 赵秋香,黄晓纯,李媛媛,等. 蒙脱石-OR-SH复合体修复剂对重金属污染土壤中Cd的钝化效果[J]. 环境化学, 2014, 33(11):1871-1877.ZHAO Q X,HUANG X C,LI Y Y,et al. A smectite-OR-SH compound for reducing cadmium uptake by pakchoi in contaminated soils[J]. Environmental Chemistry, 2014, 33(11):1871-1877. doi: 10.7524/j.issn.0254-6108.2014.11.011
ZHAO Q X,HUANG X C,LI Y Y,et al. A smectite-OR-SH compound for reducing cadmium uptake by pakchoi in contaminated soils[J]. Environmental Chemistry, 2014, 33(11):1871-1877. doi: 10.7524/j.issn.0254-6108.2014.11.011
[11] 朱凰榕,赵秋香,倪卫东,等. 巯基-蒙脱石复合材料对不同程度Cd污染农田土壤修复研究[J]. 生态环境学报, 2018, 27(1):174-181.ZHU H R, ZHAO Q X, NI W D, et al. Immobilization of cadmium by thiol-functionalized montmorillonite in soils contaminated by cadmium in various degrees[J]. Ecology and Environmental Sciences, 2018, 27(1):174-181.
ZHU H R, ZHAO Q X, NI W D, et al. Immobilization of cadmium by thiol-functionalized montmorillonite in soils contaminated by cadmium in various degrees[J]. Ecology and Environmental Sciences, 2018, 27(1):174-181.
[12] 谢厦.改性海泡石对Cd污染修复效应及机理研究[D].北京:中国农业科学院,2020.XIE X. Study on remediation effects and mechanisms of cadmium pollution using modified sepiolite[D].Beijing: Chinese Academy of Agricultural Sciences Thesis,2020.
XIE X. Study on remediation effects and mechanisms of cadmium pollution using modified sepiolite[D].Beijing: Chinese Academy of Agricultural Sciences Thesis,2020.
[13] XU Y,LIANG X,XU Y,et al. Remediation of heavy metal-polluted agricultural soils using clay minerals: A review[J]. Pedosphere, 2017, 27(2):193-204. doi: 10.1016/S1002-0160(17)60310-2
[14] 董欣欣,孙保亚,宋雪英,等. 不同钝化剂对潮棕壤镉污染的原位钝化效应研究[J]. 土壤与作物, 2021, 10(4):460-466.DONG X X,SUN B Y,SONG X Y,et al. In - situ remediation of cadmium - polluted aquic brown soil using different amendments[J]. Soils and Crops, 2021, 10(4):460-466. doi: 10.11689/j.issn.2095-2961.2021.04.011
DONG X X,SUN B Y,SONG X Y,et al. In - situ remediation of cadmium - polluted aquic brown soil using different amendments[J]. Soils and Crops, 2021, 10(4):460-466. doi: 10.11689/j.issn.2095-2961.2021.04.011
[15] 许璐,周春海,刘梅,等. 石灰海泡石钝化后两种轮作模式对重度镉污染农田土壤的利用及修复[J]. 环境科学, 2022(6):1-12.XU L,ZHOU C H,LIU M,et al. Utilization and remediation of heavily cadmium-contaminated agricultural soils by two crop rotation patterns after lime and sepiolite passivation[J]. Environmental Science, 2022(6):1-12.
XU L,ZHOU C H,LIU M,et al. Utilization and remediation of heavily cadmium-contaminated agricultural soils by two crop rotation patterns after lime and sepiolite passivation[J]. Environmental Science, 2022(6):1-12.
[16] 龙来寿,周悦,郭会时,等. 功能化磁性海泡石修复重金属污染土壤的研究[J]. 韶关学院学报, 2021, 42(3):48-52.LONG L S,ZHOU Y,GUO H S, et al. Study on remediation of heavy metals contaminated soil by using functional magnetic sepiolite[J]. Journal of Shaoguan University(Natural Science), 2021, 42(3):48-52. doi: 10.3969/j.issn.1007-5348.2021.03.010
LONG L S,ZHOU Y,GUO H S, et al. Study on remediation of heavy metals contaminated soil by using functional magnetic sepiolite[J]. Journal of Shaoguan University(Natural Science), 2021, 42(3):48-52. doi: 10.3969/j.issn.1007-5348.2021.03.010
[17] Figueiredo H,Quintelas C. Tailored zeolites for the removal of metal oxyanions:Overcoming intrinsic limitations of zeolites[J]. Journal of Hazardous Materials, 2014, 274:287-299. doi: 10.1016/j.jhazmat.2014.04.012
[18] 李章涛.纳米零价铁改性沸石对土壤镉铅砷复合污染的钝化效果及相关机制研究[D].杭州:浙江大学,2020.LI Z T. Simultaneous immobilization of cadmium lead and arsenic in soils by zeolite-supported nanoscale zero-valent iron and the associated mechanisms[D]. Hangzhou: Zhejiang University,2020.
LI Z T. Simultaneous immobilization of cadmium lead and arsenic in soils by zeolite-supported nanoscale zero-valent iron and the associated mechanisms[D]. Hangzhou: Zhejiang University,2020.
[19] 郭荣欣.废玻璃基沸石用于重金属污染土壤修复的研究[D].北京:北京化工大学,2021.GUO R X.Study on the use of waste class -based zeolite for remediation of heavy metal contaminated soil[D].Beijing: Beijing University of Chemical Technology,2021.
GUO R X.Study on the use of waste class -based zeolite for remediation of heavy metal contaminated soil[D].Beijing: Beijing University of Chemical Technology,2021.
[20] Boisson J,Mench M,Vangronsveld J,et al. Immbilization of trace metals and arsenic by different soil additives: Evaluation by means of chemical extractions[J]. Communications in Soil Science & Plant Analysis, 1999, 30(3-4):365-387.
[21] Basaldella E I,PG Vázquez,Iucolano F,et al. Chromium removal from water using LTA zeolites:effect of pH[J]. J Colloid Interface, 2007, 13(2):574-578.
[22] 郑小俊.沸石—生物炭配施对钨矿区重金属污染土壤修复研究[D].赣州:江西理工大学,2021.ZHENG X J. Assessment of the feasibility of combination of zeolite and biochar on remediating heavy metal contaminated soil from tungsten mining area[D]. Ganzhou:Jiangxi University of Science and Technolog,2021.
ZHENG X J. Assessment of the feasibility of combination of zeolite and biochar on remediating heavy metal contaminated soil from tungsten mining area[D]. Ganzhou:Jiangxi University of Science and Technolog,2021.
[23] 马妍,张大定,张帆,等. 壳聚糖改性沸石对多金属污染土壤稳定化处理效果及影响因素研究[J]. 环境工程, 2022, 40(1):94-101+116.MA Y,ZHANG D D,ZHANG F,et al. Influencing factors of chitosan modified zeolite and its stabilizing effect on multi metals-contaminated soil[J]. Environmental Engineering, 2022, 40(1):94-101+116.
MA Y,ZHANG D D,ZHANG F,et al. Influencing factors of chitosan modified zeolite and its stabilizing effect on multi metals-contaminated soil[J]. Environmental Engineering, 2022, 40(1):94-101+116.
[24] 邹紫今,周航,吴玉俊,等. 羟基磷灰石+沸石对稻田土壤中铅镉有效性及糙米中铅镉累积的影响[J]. 农业环境科学学报, 2016, 35(1):45-52.ZOU Z J,ZHOU H,WU Y J,et al. Effects of hydroxyapatite plus zeolite on bioavailability and rice bioaccumulation of Pb and Cd in soils[J]. Journal of Agro-Environment Science, 2016, 35(1):45-52. doi: 10.11654/jaes.2016.01.006
ZOU Z J,ZHOU H,WU Y J,et al. Effects of hydroxyapatite plus zeolite on bioavailability and rice bioaccumulation of Pb and Cd in soils[J]. Journal of Agro-Environment Science, 2016, 35(1):45-52. doi: 10.11654/jaes.2016.01.006
[25] 周敏.高岭土负载纳米零价铁的制备及对重金属离子的去除研究[D].温州:温州大学,2020.ZHOU M.Preparation of nanomaterials zero-valent iron supported by kaolin and removal of heavy metal ions[D].Wenzhou:Wenzhou University,2020.
ZHOU M.Preparation of nanomaterials zero-valent iron supported by kaolin and removal of heavy metal ions[D].Wenzhou:Wenzhou University,2020.
[26] 王万军.高岭石有机插层复合物的制备、表征及应用探讨[D].长沙:中南大学,2005.WANG W J. Preparation Characterizationand Applieationsof Kaolinite-Organies interealation Compounds[D]. Changsha: Central South University,2005.
WANG W J. Preparation Characterizationand Applieationsof Kaolinite-Organies interealation Compounds[D]. Changsha: Central South University,2005.
[27] Wada K. Lattice expansion of kaolin minerals by treatment with potassium acetate[J]. Am Miner, 1961, 46:78-91.
[28] 刘凯.磁性纳米煤系高岭土的制备及其对Cr(Ⅵ)和2,4-二氯苯酚的吸附特性[D].太原:太原理工大学,2020.LIU K. Preparation of mangnetic nano-coal kaolinite and its adsorption properties for Cr(VI) and 2,4-DCP[D]. Taiyuan:Taiyuan University of Technology,2020.
LIU K. Preparation of mangnetic nano-coal kaolinite and its adsorption properties for Cr(VI) and 2,4-DCP[D]. Taiyuan:Taiyuan University of Technology,2020.
[29] 王任远.高岭土的改性及其对Cd污染土壤的修复效果研究[D].杭州:浙江农林大学,2019.WANG R Y. Modification of kaolin and its effect of remediation Cd contaminated soil[D]. Hangzhou: Zhejiang A&F University,2019.
WANG R Y. Modification of kaolin and its effect of remediation Cd contaminated soil[D]. Hangzhou: Zhejiang A&F University,2019.
[30] 贾世波,张学霞,李媛媛. 碱激发水泥固化稳定重金属污染土的强度和浸出特性试验研究[J]. 工业建筑, 2019, 49(8):142-146.JIA S B, ZHANG X X, LI Y Y. Strength and leachability properties of heavy metals contaminated soil Stabilized by alkali-activated cement[J]. Industrial Constructio, 2019, 49(8):142-146.
JIA S B, ZHANG X X, LI Y Y. Strength and leachability properties of heavy metals contaminated soil Stabilized by alkali-activated cement[J]. Industrial Constructio, 2019, 49(8):142-146.
[31] 刘冠华.凹凸棒土修复水稻田镉污染技术应用及改进研究[D]. 北京:中国地质大学(北京), 2020.LIU G H.A Study on the application and improvement of the technology using attapulgite to remediating cadmium pollution in rice field[D]. Beijing: China University of Geosciences, 2020.
LIU G H.A Study on the application and improvement of the technology using attapulgite to remediating cadmium pollution in rice field[D]. Beijing: China University of Geosciences, 2020.
[32] 管天成.污泥-坡缕石共热解生物炭对土壤重金属污染的修复效果研究[D].兰州:兰州交通大学,2021.GUAN T C. Study on the remediation effect of sludge-palygorskite co-pyrolysis biochar on soil heavy metal pollution[D].Lanzhou:Lanzhou Jiaotong University,2021.
GUAN T C. Study on the remediation effect of sludge-palygorskite co-pyrolysis biochar on soil heavy metal pollution[D].Lanzhou:Lanzhou Jiaotong University,2021.
[33] Wang X,Zhong D,Hou H,et al. Catalytic degradation of PNP and stabilization/solidification of Cd simultaneously in soil using microwave-assisted Fe-bearing attapulgite[J]. Chemical Engineering Journal, 2016, 304:747-756. doi: 10.1016/j.cej.2016.06.106
[34] Dong L, Lin L, Li Q, et al. Enhanced nitrate-nitrogen removal by modified attapulgite-supported nanoscale zero-valent iron treating simulated groundwater[J]. Journal of Environmental Management, 2018, 213:151-158.
[35] 王嘉良.改性复配凹凸棒土对农地土壤镉的钝化效果研究[D].北京:中国地质大学(北京),2021.WANG J L.Passivation effect of modified attapulgite on cadmium in agricultural soil[D].Beijing:China University of Geosciences,2021.
WANG J L.Passivation effect of modified attapulgite on cadmium in agricultural soil[D].Beijing:China University of Geosciences,2021.
[36] 秦彤.磷酸盐—凹凸棒石组配材料对土壤重金属的钝化效果研究[D].兰州:兰州交通大学,2021.QIN T.Stabilization of heavy metal in soil using stabilizers prepared with attapulgite and phosphate[D].Lanzhou:Lanzhou Jiaotong University,2021.
QIN T.Stabilization of heavy metal in soil using stabilizers prepared with attapulgite and phosphate[D].Lanzhou:Lanzhou Jiaotong University,2021.
[37] 徐丽莎.羟基磷灰石/凹凸棒土复合材料制备及其对重金属污染土壤钝化性能研究[D].成都:成都理工大学,2019.XU L S.Preparation of hydroxyapatite/attapulgite composite and its passivation properties on heavy metal contaminated soil[D]. Chengdu: Chengdu University of Technology,2019.
XU L S.Preparation of hydroxyapatite/attapulgite composite and its passivation properties on heavy metal contaminated soil[D]. Chengdu: Chengdu University of Technology,2019.
[38] SUN Y, LI Y, XU Y, et al In situ stabilization remediation of cadmium (Cd) and lead (Pb) co-contaminated paddy soil using bentonite[J]. Applied Clay Science, 2015, 105–106; 200–206.
[39] YU K, XU J, JIANG X, et al. Stabilization of heavy metals in soil using two organo-bentonites[J]. Chemosphere, 2017, 184:884-891. doi: 10.1016/j.chemosphere.2017.06.040
[40] Kumararaja P, Manjaiah K M, Datta S C, et al. Remediation of metal contaminated soil by aluminium pillared bentonite: Synthesis, characterisation, equilibrium study and plant growth experiment[J]. Applied Clay Science, 2017, 137:115-122. doi: 10.1016/j.clay.2016.12.017
[41] SUN Y, XU Y, XU Y, et al. Reliability and stability of immobilization remediation of Cd polluted soils using sepiolite under pot and field trials[J]. Environmental Pollution, 2016, 208:739-746. doi: 10.1016/j.envpol.2015.10.054
[42] WU Y J, ZHOU H, ZOU Z J, et al. A three-year in-situ study on the persistence of a combined amendment (limestone+sepiolite) for remedying paddy soil polluted with heavy metals[J]. Ecotoxicology and Environmental Safety, 2016, 130:163-170. doi: 10.1016/j.ecoenv.2016.04.018
[43] Zotiadis V, Argyraki A, Theologou E. Pilot-Scale application of attapulgitic clay for stabilization of toxic elements in contaminated soil[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2012, 138(5):633-637. doi: 10.1061/(ASCE)GT.1943-5606.0000620
[44] ZHANG M, PU J. Mineral materials as feasible amendments to stabilize heavy metals in polluted urban soils[J]. Journal of Environmental Sciences, 2011, 23(4):607-615. doi: 10.1016/S1001-0742(10)60455-X
[45] WANG H, WANG X, LI J,et al. Comparison of palygorskite and struvite supported palygorskite derived from phosphate recovery in wastewater for in-situ immobilization of Cu, Pb and Cd in contaminated soil[J]. Journal of Hazardous Materials, 2018, 346:273-284. doi: 10.1016/j.jhazmat.2017.12.042
[46] Wang B, Wang C, Li J, et al. Remediation of alkaline soil with heavy metal contamination using tourmaline as a novel amendment[J]. Journal of Environmental Chemical Engineering, 2014, 2(3):1281-1286. doi: 10.1016/j.jece.2014.05.017
[47] Mahabadi A A, Hajabbasi M A, Khademi H, et al. Soil cadmium stabilization using an Iranian natural zeolite[J]. Geoderma, 2007, 137(3-4):388-393. doi: 10.1016/j.geoderma.2006.08.032
[48] 周世伟,徐明岗. 磷酸盐修复重金属污染土壤的研究进展[J]. 生态学报, 2007(7):3043-3050.ZHOU S W,XU M G. The progress in phosphate remediation of heavy metal contaminated soils[J]. Acta Ecologica Sinica, 2007(7):3043-3050. doi: 10.3321/j.issn:1000-0933.2007.07.046
ZHOU S W,XU M G. The progress in phosphate remediation of heavy metal contaminated soils[J]. Acta Ecologica Sinica, 2007(7):3043-3050. doi: 10.3321/j.issn:1000-0933.2007.07.046
[49] 李寅明,李春萍,战佳宇,等. 污染土壤重金属稳定化复配固化剂研发与验证[J]. 环境科学与技术, 2020, 43(6):1-15.LI Y M,LI C P,ZHAN J Y,et al. Development of compound curing agent for stabilization of heavy metals in contaminated soil and validation research[J]. Environmental Science & Technology, 2020, 43(6):1-15.
LI Y M,LI C P,ZHAN J Y,et al. Development of compound curing agent for stabilization of heavy metals in contaminated soil and validation research[J]. Environmental Science & Technology, 2020, 43(6):1-15.
[50] 刘昭.改性磷矿浮选尾矿对重金属吸附特性及土壤修复效应研究[D].泉州:华侨大学,2020.LIU Z. Adsorption characteristics of modified phosphate flotation tailing for heavy metals and its remediation effect on contaminated soils[D].Quanzhou: Huaqiao University,2020.
LIU Z. Adsorption characteristics of modified phosphate flotation tailing for heavy metals and its remediation effect on contaminated soils[D].Quanzhou: Huaqiao University,2020.
[51] 王碧玲.含磷物质修复铅锌矿污染土壤的机理和技术[D].杭州:浙江大学,2008.WANG B L.Mechanism and technology of Pb/Zn mining tailing contaminated soil remediation using phosphorus[D]. Hangzhou: Zhejiang University,2008.
WANG B L.Mechanism and technology of Pb/Zn mining tailing contaminated soil remediation using phosphorus[D]. Hangzhou: Zhejiang University,2008.
[52] 杨放,施泽明,孙璐,等. 羟基磷灰石对成都平原水稻土中重金属的钝化效果研究[J]. 地球与环境, 2020, 48(5):567-573.YANG F,SHI Z M,SUN L,et al. The remediation effect of hydroxyapatite on paddy soil heavy metals in Chengdu Plain[J]. Earth and Environment, 2020, 48(5):567-573.
YANG F,SHI Z M,SUN L,et al. The remediation effect of hydroxyapatite on paddy soil heavy metals in Chengdu Plain[J]. Earth and Environment, 2020, 48(5):567-573.
[53] 邢金峰,仓龙,葛礼强,等. 纳米羟基磷灰石钝化修复重金属污染土壤的稳定性研究[J]. 农业环境科学学报, 2016, 35(7):1271-1277.XING J F,CANG L,GE L Q,et al. Long-term stability of immobilizing remediation of a heavy metal contaminated soil with nano-hydroxyapatite[J]. Journal of Agro-Environment Science, 2016, 35(7):1271-1277. doi: 10.11654/jaes.2016.07.007
XING J F,CANG L,GE L Q,et al. Long-term stability of immobilizing remediation of a heavy metal contaminated soil with nano-hydroxyapatite[J]. Journal of Agro-Environment Science, 2016, 35(7):1271-1277. doi: 10.11654/jaes.2016.07.007
[54] 刘文庆.纳米羟基磷灰石对铅污染土壤钝化修复效应研究[D].太原:太原理工大学,2014.LIU W Q.The Effect of nano-scale Hydroxyapatite on Immobilization Remediation of Pb-contaminated Soil[D]. Taiyuan: Taiyuan University of Technology,2014.
LIU W Q.The Effect of nano-scale Hydroxyapatite on Immobilization Remediation of Pb-contaminated Soil[D]. Taiyuan: Taiyuan University of Technology,2014.
[55] Mukherjee R,Kumar R,Sinha A et al. A review on synthesis,characterization,and applications of nano zero valent iron (nZVI) for environmental remediation[J]. Critical Reviews in Environmental Science and Technology,Taylor & Francis, 2016, 46(5):443-466.
[56] WEI L,WANG S,ZUO Q, et al. Nano-hydroxyapatite alleviates the detrimental effects of heavy metals on plant growth and soil microbes in e-waste-contaminated soil[J]. Environ Sci Process Impacts, 2016(1):760-767.
[57] Jung H B,Xu H,Konishi H,et al. Role of nano-goethite in controlling U(VI) sorption-desorption in subsurface soil[J]. Journal of Geochemical Exploration, 2016, 169:80-88. doi: 10.1016/j.gexplo.2016.07.014
[58] Zou Y,Wang X,Khan A, et al. Environmental remediation and application of nanoscale zero-valent iron and its composites for the removal of heavy metal ions:a review[J]. Environmental Science & Technology,American Chemical Society, 2016, 50(14):7290-7304.
[59] FAN L,SONG J,BAI W, et al. Chelating capture and magnetic removal of non-magnetic heavy metal substances from soil[J]. Scientific Reports, 2016, 6:21027. doi: 10.1038/srep21027
[60] SU H,FANG Z,Tsang P E,et al. Stabilisation of nanoscale zero-valent iron with biochar for enhanced transport and in-situ remediation of hexavalent chromium in soil[J]. Environmental Pollution, 2016, 214:94-100. doi: 10.1016/j.envpol.2016.03.072
-