-
摘要:
土壤重金属污染问题越来越突出,长期累积改变土壤生态环境质量,影响作物生长并威胁人类健康,因此亟须修复。污染土壤修复前,首先要了解重金属的来源与分布特点,尤其是赋存形态。重金属具有不同形态,每种形态对应相应的提取步骤。五步提取法、BCR等都是常见的重金属提取方法。土壤重金属测定方法包括原子荧光光谱法、原子吸收光谱法、电感耦合等离子体发射光谱法等。为了更好地了解和预测土壤中重金属的形态分布特征,需要合理应用土壤重金属的化学形态分析模型,包括经验模型、机理模型和多表面形态模型,这些模型分析可以更有效地模拟土壤中的重金属形态分布及变化趋势,为重金属污染土壤修复提供重要依据。
Abstract:The problem of heavy metals contaminated soil is becoming more and more prominent. Long-term accumulation of heavy metals changed the quality of soil ecological environment, and then influenced crop growth and human health. Therefore, it is urgently necessary to restore heavy metal polluted soil. Before remediating of contaminated soil, we must understand clearlythe source and distribution of heavy metals, especially the heavy metal speciation. Heavy metals in soil have different forms, and each form has a corresponding extraction procedure. Five-step extraction method, BCR, etc. are common heavy metal extraction methods. Conventional methods for the determination of heavy metal ions in soil generally include atomic fluorescence spectrometry, atomic absorption spectrometry, inductively coupled plasma emission spectrometry, etc.. In order to better understand and predict the morphological distribution characteristics of heavy metals in soil, it is rationally necessary to use chemical speciation analysis models of heavy metals in soil, including empirical models, mechanism models and multi-surface morphological models, which can efficiently simulate the morphological distribution and changing trend of heavy metals in soil. It provides an important basis for the remediation of heavy metal-contaminated soils.
-
Key words:
- polluted soil /
- heavy metal extraction /
- morphological analysis /
- model prediction
-
-
表 1 五步连续提取法
Table 1. Five-step continuous extraction method
形态 步骤 可置换态 ① 取1.00 g样品置于8 mL MgCl2溶液中(1 mol/L,pH=7),18 ℃环境下振荡1 h(200 r/min),然后离心
30 min(4 000 r/min),倒出上清液,备用测样,保留沉淀。碳酸盐结合态 ② 取①中的沉淀置于8 mL NaAc溶液中(1.0 mol/L,pH=5),20 ℃环境下振荡1.5 h(200 r/min),然后以
100 r/min速度振荡16 h,离心0.5 h(4 000 r/min),倒出上清液,备用测样,保留沉淀。铁-锰氧化物结合态 ③ 取②中的沉淀置于20 mL NH2·HAc溶液中,96 ℃环境下保持3 h(每10 min搅拌),离心0.5 h
(4 000 r/min),倒出上清液,备用测样,保留沉淀。有机物结合态 ④ 取③中的沉淀置于3 mL HNO3溶液中(0.02 mol/L),然后加5 mL H2O2(30%),83 ℃环境下保持
1.5 h(每10 min搅拌),之后追加3 mL H2O2(30%),继续83 ℃环境下保持1.1 h(每10 min搅拌);然后冷却,加5 mL NH4Ac溶液,20 ℃环境下静置10 h,倒出上清液,备用测样,保留沉淀。残渣态 ⑤ 将④沉淀置于聚乙烯坩埚中,混酸消解。 表 2 BCR三步连续提取法
Table 2. BCR three-step continuous extraction method
形态 步骤 水溶态 ① 取1.00 g样品置于25 mL 蒸馏水中,22 ℃环境下振荡2 h,然后离心20 min(3 000 r/min),倒出上清液,备用测样,保留沉淀。 弱酸提取态 ② 取1.00 g样品置于40 mL MHOAc溶液中,22 ℃环境下振荡16 h,然后离心20 min(3 000 r/min),倒出上清液,备用测样,保留沉淀。 可还原态 ③ 取②中的沉淀置于 40 mL HOAc·HCl溶液中(0.5 mol/L,pH=2),22 ℃环境下振荡16 h,然后离心20 min
(3 000 r/min),倒出上清液,备用测样,保留沉淀。可氧化态 ④ 取③中的沉淀置于10 mL H2O2(30%)中,常温下静置1 h后,放入水浴锅加热至85 ℃,水浴1 h后,加
50 mLNH4Ac溶液,22 ℃环境下振荡16 h,离心20 min(3 000 r/min),倒出上清液,备用测样,保留沉淀。残渣态 ⑤ 将④沉淀置于聚乙烯坩埚中,混酸消解。 表 3 重金属砷(As)的提取方法步骤
Table 3. Extraction method steps of heavy metal arsenic (As)
形态 步骤 交换态砷 ①取1.00 g样品置于25 mL NH4Cl溶液(1 mol/L)中,2 ℃环境下振荡0.h(150 r/min)后,离心3 min (4 000 r/min),取上清液过滤,上机测样,沉淀置于25 mL NaCl溶液中,常温振荡20 min,离心,倒出上清液,保留沉淀。 铝型砷(Al-As) ②取①中处理后的沉淀置于25 mL NH溶液(0.5 mol/L)中,25 ℃环境下振荡1 h(150 r/min)后,离心3 min
(4 000 r/min),取上清液过滤,上机测样,沉淀置于25 mL NaCl溶液中,常温振荡20 min,离心,
倒出上清液,保留沉淀。铁型砷(Fe-As) ③ 取②中处理后的沉淀置于25 mL NaOH溶液(0.1 mol/L)中,常温振荡2 h(150 r/min)后,静置16 h,然后继续常温振荡2 h(150 r/min)然后以硝酸调节至中性,离心10 min后(4 000 r/min),取上清液过滤,上机测样,沉淀置于25 mL NaCl溶液中,常温振荡20 min,离心,倒出上清液,保留沉淀。 钙型砷(Ca-As) ④ 取③中处理后的沉淀置于25 mL H2SO4溶液(0.25 mol/L)中, 25 ℃环境下振荡1 h(150 r/min)后,离心5 min
(4 000 r/min),取上清液过滤,上机测样,沉淀置于25 mL NaCl溶液中,常温振荡20 min,离心,
倒出上清液,保留沉淀。残渣态砷(Res-As) ⑤ 取④中处理后的沉淀置于8 mL现配王水中(25 mL比色管),然后水浴消解2 h(95 ℃),冷却至室温后,
定容至25 mL,摇匀;然后取其8 mL,加2 mL VC-硫脲溶液摇匀,静置15 min。表 4 重金属常用的测定方法原理及优缺点
Table 4. Principles and advantages and disadvantages of commonly used determination methods for heavy metals
方法 仪器 原理 优缺点 原子荧光法 原子荧光光谱仪
(AFS)利用原子在辐射能的作用下,从而放射出的荧光,根据其强度来对土壤中重金属作定量分析 可以设计多通道结构,从而实现同时测定多个元素。 原子吸收法 原子吸收光谱仪
(AAS)利用特殊的光源发出具有原子可吸收的特征谱线的光,根据光的衰减程度对检测到的重金属进行定量分析 1、精确度高。高浓度元素检测中使用火焰法的标准偏差系数<1%。采用石墨炉法精确度一般可达95%~97%。
2、可以测定非金属元素和有机质。电感耦合等离子体发射法 发射光谱仪
(ICP)使用电感耦合等离子体炬作为光源,根据激发态原子回到基态时所发射出的特征光谱来定量分析重金属元素 1、简单高效,测定的元素较广。
2、精度高,检出限低,
3、可智能调整空气流速,减少积碳危害。激光诱导击
穿法激光诱导击穿光谱仪
(LIBS)利用激光,在样品表面形成激光等离子体,从而样品发光,根据其光谱进行定量分析 1、能分析多种元素基本形态多样性。
2、简化了样品制备过程,能够直接迅速对样品分析,并且可测定的元素多。X射线荧光法 X射线荧光摄谱仪
(XRF)根据辐射所能激发的基态分子所发出的荧光强度变化的来进行定量分析 分辨率高,适应性广。 -
[1] 卢君勇, 吴浪, 阳开龙, 等. 四川省马边老河坝磷矿重金属污染分析[J].矿产综合利用, 2022(1):187-193.LU J Y, WU L, YANG K L, et al. Analysis of heavy metal pollution in the environment of Laoheba phosphate mine in Mabian region, Sichuan province[J].2022(1):187-193.
LU J Y, WU L, YANG K L, et al. Analysis of heavy metal pollution in the environment of Laoheba phosphate mine in Mabian region, Sichuan province[J].2022(1):187-193.
[2] 贾钰蓉. 土壤重金属污染危害分析及修复方法探讨[J]. 节能与环保, 2020(6):66-67.JIA Y R. Hazard analysis and remediation of heavy metal pollution in soil[J]. Energy Conservation & Environmental Protection, 2020(6):66-67.
JIA Y R. Hazard analysis and remediation of heavy metal pollution in soil[J]. Energy Conservation & Environmental Protection, 2020(6):66-67.
[3] 韩张雄, 王龙山, 郭巨权, 等. 土壤修复过程中重金属形态的研究综述[J]. 岩石矿物学杂志, 2012, 31(2):187-193.HAN Z X, WANG L S, GUO J Q, et al. Heavy metal forms in the process of soil remediation[J]. Acta Petrologica et Mineralogica, 2012, 31(2):187-193.
HAN Z X, WANG L S, GUO J Q, et al. Heavy metal forms in the process of soil remediation[J]. Acta Petrologica et Mineralogica, 2012, 31(2):187-193.
[4] 赵转军, 南忠仁, 王兆炜, 等. Cd、Zn复合污染菜地土壤中重金属形态分布与植物有效性[J]. 兰州大学学报(自然科学版), 2010, 46(2):1-5+10.ZHAO C J, NAN Z R, WANG Z W, et al. Form distribution and phytoavailability of heavy metals (Cd, Zn) in vegetable soil[J]. Journal of Lanzhou University(Natural Sciences), 2010, 46(2):1-5+10.
ZHAO C J, NAN Z R, WANG Z W, et al. Form distribution and phytoavailability of heavy metals (Cd, Zn) in vegetable soil[J]. Journal of Lanzhou University(Natural Sciences), 2010, 46(2):1-5+10.
[5] 李燕, 卢楠, 李刚. 土壤重金属赋存形态研究进展[J]. 绿色科技, 2018(22):66-68+71.LI Y, LU N, LI G. Research development of the chemical speciation of heavy metal in soils[J]. Journal of Green Science and Technology, 2018(22):66-68+71.
LI Y, LU N, LI G. Research development of the chemical speciation of heavy metal in soils[J]. Journal of Green Science and Technology, 2018(22):66-68+71.
[6] Tessier A, Campbell P G C, Bisson M. Sequential extraction procedure for the speciation of particulate trace metals[J]. Aanlytical Chemistry, 1979, 51(7):841-851.
[7] 刘雨昕, 路星雯, 宁寻安, 等. 浸提法去除铁尾矿中重金属 Pb、Zn、Cu、Cr 和 Ni 的研究[J]. 矿产综合利用, 2022(4):30-40.LIU Y X, LU X W, NING X A, et al. Removal of Pb Zn, Cu, Cr and Ni in iron tailings by leaching[J]. Multipurpose Utilization of Mineral Resources, 2022(4):30-40.
LIU Y X, LU X W, NING X A, et al. Removal of Pb Zn, Cu, Cr and Ni in iron tailings by leaching[J]. Multipurpose Utilization of Mineral Resources, 2022(4):30-40.
[8] 刘应冬, 代力, 张卫华, 等. 青海某金矿矿集区土壤重金属污染评价及综合利用讨论[J].矿产综合利用, 2018(5):97-100.LIU Y D, DAI L, ZHANG W H, et al. Assessment of soil heavy metals pollution and comprehensive utilization in a gold mine area in Qinghai[J], 2018(5):97-100.
LIU Y D, DAI L, ZHANG W H, et al. Assessment of soil heavy metals pollution and comprehensive utilization in a gold mine area in Qinghai[J], 2018(5):97-100.
[9] 王圳, 张均, 陈芳, 等. 贵州省磷矿固体废弃物治理现状与建议[J]. 矿产综合利用, 2019(1):11-15.WANG Z, ZHANG J, CHEN F, et al. Present situation and suggestion of management of phosphate rock solid waste[J]. Multipurpose Utilization of Mineral Resources, 2019(1):11-15. doi: 10.3969/j.issn.1000-6532.2019.01.003
WANG Z, ZHANG J, CHEN F, et al. Present situation and suggestion of management of phosphate rock solid waste[J]. Multipurpose Utilization of Mineral Resources, 2019(1):11-15. doi: 10.3969/j.issn.1000-6532.2019.01.003
[10] Bolan Nanthi S, Adriano Domy C, Naidu Ravi. Role of phosphorus in (Im) mobilization and bioavailability of heavy metals in the soil-plant system [J]. Reviews of Environmental Contamination and Toxicology, 2003, 177.
[11] 环境保护部, 国土资源部.全国土壤污染状况调查公报[R].中国环保产业, 2014, 36(5):10-11.Ministry of Environmental Protection, Ministry of Land and Resources.Bulletin of National Soil Pollution Survey[R].China Environmental Protection Industry, 2014, 36(5):10-11.
Ministry of Environmental Protection, Ministry of Land and Resources.Bulletin of National Soil Pollution Survey[R].China Environmental Protection Industry, 2014, 36(5):10-11.
[12] 刘佳麟, 张家铜. 土壤重金属污染的现状及其治理[J]. 山东工业技术, 2019(7):229.LIU J L, ZHANG J T. Status quo of heavy metal pollution in soil and its control[J]. Shandong Industrial Technology, 2019(7):229.
LIU J L, ZHANG J T. Status quo of heavy metal pollution in soil and its control[J]. Shandong Industrial Technology, 2019(7):229.
[13] 韩张雄, 万的军, 胡建平, 等. 土壤中重金属元素的迁移转化规律及其影响因素[J]. 矿产综合利用, 2017(6):5-9.HAN Z X, WAN D J, HU J P, et al. Migration and transformation of heavy metals in soil and its influencing factors[J]. Multipurpose Utilization of Mineral Resources, 2017(6):5-9. doi: 10.3969/j.issn.1000-6532.2017.06.002
HAN Z X, WAN D J, HU J P, et al. Migration and transformation of heavy metals in soil and its influencing factors[J]. Multipurpose Utilization of Mineral Resources, 2017(6):5-9. doi: 10.3969/j.issn.1000-6532.2017.06.002
[14] 邓宗义, 朱立新, 孙体昌, 等. 三种典型工业固废钝化重金属污染土壤的研究进展[J/OL].矿产综合利用:1-13[2022-11-08].http://kns.cnki.net/kcms/detail/51.1251.TD.20221014.1700.002.html.DENG Z Y, ZHU L X, SUN T C, et al. Research Progress of Three Typical Industrial Solid Wastes Passivated Heavy Metal Contaminated Soils[J/OL]. Multipurpose Utilization of Mineral Resources:1-13[2022-11-08]. http://kns.cnki.net/kcms/detail/51.1251.TD.20221014.1700.002.html.
DENG Z Y, ZHU L X, SUN T C, et al. Research Progress of Three Typical Industrial Solid Wastes Passivated Heavy Metal Contaminated Soils[J/OL]. Multipurpose Utilization of Mineral Resources:1-13[2022-11-08]. http://kns.cnki.net/kcms/detail/51.1251.TD.20221014.1700.002.html.
[15] 向杰, 王馨语.某尾矿库重金属迁移规律及水资源优化配置研究[J].矿产综合利用, 2022(5):51-57.XIANG J, WANG X Y. Study on heavy metal migration and optimal allocation of water resources in tailing pond[J], 2022(5):51-57.
XIANG J, WANG X Y. Study on heavy metal migration and optimal allocation of water resources in tailing pond[J], 2022(5):51-57.
[16] Schramel O, Michalke B, Kettrup A. Study of the copper distribution in contaminated soils of hop fields by single and sequential extraction procedures[J]. The Science of the Total Environment, 2000, 263(1-3):11-22. doi: 10.1016/S0048-9697(00)00606-9
[17] Luz M R, Villamisar W, Casales M, et al. Computational simulations of the molecular structure and corrosion properties of amidoethyl, aminoethyl and hydroxyethyl imidazolines inhibitors[J]. Corrosion Science, 2006(48):4053-4064.
[18] Morera M T, Echeverria J C, Mazkiaran C, et al. Isotherms and sequential extraction procedures for evaluating sorption and distribution of heavy metals in soils[J]. Environmental Pollution, 2001, 113(2):135-144. doi: 10.1016/S0269-7491(00)00169-X
[19] 孙继敏, 文启忠. 黄土与古土壤中重金属的存在状态及风化成土作用对其影响[J]. 土壤学报, 1994, 31(3):305-311.SUN J M, WEN Q Z. Distribution and fraction of heavy metals in loess and paleosol and the influence of weathering[J]. Acta Pedologica Sinica, 1994, 31(3):305-311. doi: 10.3321/j.issn:0564-3929.1994.03.007
SUN J M, WEN Q Z. Distribution and fraction of heavy metals in loess and paleosol and the influence of weathering[J]. Acta Pedologica Sinica, 1994, 31(3):305-311. doi: 10.3321/j.issn:0564-3929.1994.03.007
[20] 高彦征, 贺纪正, 凌婉婷. 湖北省几种土壤的重金属镉、铜形态[J]. 华中农业大学学报, 2001, 20(2):143-147.GAO Y Z, HE J Z, LING W T. Fractionation of heavy meatal cadmium and copper in some soils in Hubei province[J]. Journal of Huazhong Agricultural University, 2001, 20(2):143-147. doi: 10.3321/j.issn:1000-2421.2001.02.011
GAO Y Z, HE J Z, LING W T. Fractionation of heavy meatal cadmium and copper in some soils in Hubei province[J]. Journal of Huazhong Agricultural University, 2001, 20(2):143-147. doi: 10.3321/j.issn:1000-2421.2001.02.011
[21] Pueyo M, Mateu J, Rigol A, et al. Use of the modified BCR three-step sequential extraction procedure for the study of trace element dynamics in contaminated soils[J]. Environmental Pollution, 2008, 152(2):330-341. doi: 10.1016/j.envpol.2007.06.020
[22] Forstner U. Metal Pollution in Aquatic Environment (Second Edition) [M].Berlin: Springer-Verlag, 1981.
[23] SHUMAN L M. Fractionation Method for Soil Microelements[J]. Soil Sci, 1985(140):11-22.
[24] CAMBRELL R P. Trace and Toxic Metals in Wetland:A Review[J]. J Environ Qual, 1994(23):883-719.
[25] 邵涛, 刘真, 黄开明, 等. 油污染土壤重金属赋存形态和生物有效性研究[J]. 中国环境科学, 2000(1):57-60.SHAO T, LIU Z, HUANG K M, et al. Study on the speices and the bioavailabilities of heayy metals inoi-polluted soil[J]. China Environmental Science, 2000(1):57-60. doi: 10.3321/j.issn:1000-6923.2000.01.014
SHAO T, LIU Z, HUANG K M, et al. Study on the speices and the bioavailabilities of heayy metals inoi-polluted soil[J]. China Environmental Science, 2000(1):57-60. doi: 10.3321/j.issn:1000-6923.2000.01.014
[26] 周永兴, 曹建, 田宗平, 等. 砷污染土壤治理工艺进展[J]. 矿产综合利用, 2017(6):13-17+26.ZHOU Y X, CAO J, TIAN Z P, et al. Current situation of comprehensive utilization of fly ash and analysis of existing problems[J]. Multipurpose Utilization of Mineral Resources, 2017(6):13-17+26. doi: 10.3969/j.issn.1000-6532.2017.06.004
ZHOU Y X, CAO J, TIAN Z P, et al. Current situation of comprehensive utilization of fly ash and analysis of existing problems[J]. Multipurpose Utilization of Mineral Resources, 2017(6):13-17+26. doi: 10.3969/j.issn.1000-6532.2017.06.004
[27] 刘冠男, 陈明, 李悟庆, 等. 土壤中砷的形态及其连续提取方法研究进展[J]. 农业环境科学学报, 2018, 37(12):2629-2638.LIU G N, CHEN M, LI W Q, et al. A critical review on the speciation and development of sequential extraction procedures for arsenic in soils[J]. Journal of Agro-Environment Science, 2018, 37(12):2629-2638. doi: 10.11654/jaes.2018-0544
LIU G N, CHEN M, LI W Q, et al. A critical review on the speciation and development of sequential extraction procedures for arsenic in soils[J]. Journal of Agro-Environment Science, 2018, 37(12):2629-2638. doi: 10.11654/jaes.2018-0544
[28] 杨雁南. 两种消解方法测定土壤中的汞[J]. 黑龙江环境通报, 2017, 41(4):49-51.YANG Y N. Determination of mercury in soil by two digestion methods[J]. Heilongjiang Environmental Journal, 2017, 41(4):49-51. doi: 10.3969/j.issn.1674-263X.2017.04.015
YANG Y N. Determination of mercury in soil by two digestion methods[J]. Heilongjiang Environmental Journal, 2017, 41(4):49-51. doi: 10.3969/j.issn.1674-263X.2017.04.015
[29] 陈娥, 陈永波, 李卫东, 等. 土壤有效硒测定方法的研究[J]. 湖北农业科学, 2018, 57(21):22-26+30.CHEN E, CHEN Y B, LI W D, et al. Study on the method for determination of dvailable selenium in soil[J]. Hubei Agricultural Sciences, 2018, 57(21):22-26+30.
CHEN E, CHEN Y B, LI W D, et al. Study on the method for determination of dvailable selenium in soil[J]. Hubei Agricultural Sciences, 2018, 57(21):22-26+30.
[30] 环境保护部.土壤和沉积物汞、砷、硒、铋、锑的测定微波消解/原子荧光法[S].中华人民共和国国家环境保护标准, HJ 680-2013.Ministry of Environmental Protection. Soil and sedimen-determination of mercury arsenic selenium bismuth, antimony -microwave dissolution/atomic fluorescence Spectrometry[S].National Environmental Protection Standards of the People's Republic of China, HJ 680-2013.
Ministry of Environmental Protection. Soil and sedimen-determination of mercury arsenic selenium bismuth, antimony -microwave dissolution/atomic fluorescence Spectrometry[S].National Environmental Protection Standards of the People's Republic of China, HJ 680-2013.
[31] 钟陶陶. 自动石墨消解-原子荧光法同时测定土壤中砷、汞、硒[J]. 化学工程师, 2019, 33(7):29-31.ZHONG T T. Simultaneous determination of arsenic, mercury and selenium in soil by automatic graphite digestion-atomic fluorescence spectrometry[J]. Chemical Engineer, 2019, 33(7):29-31.
ZHONG T T. Simultaneous determination of arsenic, mercury and selenium in soil by automatic graphite digestion-atomic fluorescence spectrometry[J]. Chemical Engineer, 2019, 33(7):29-31.
[32] 钱进, 王子健, 单孝全, 等. 土壤中微量金属元素的植物可给性研究进展[J]. 环境科学, 1995, 16(6):73-75.QIAN J, WANG Z J, SHAN X Q, et al. Progress in the investigation on plant availability of soil Trace Metals[J]. Environmental Science, 1995, 16(6):73-75. doi: 10.3321/j.issn:0250-3301.1995.06.016
QIAN J, WANG Z J, SHAN X Q, et al. Progress in the investigation on plant availability of soil Trace Metals[J]. Environmental Science, 1995, 16(6):73-75. doi: 10.3321/j.issn:0250-3301.1995.06.016
[33] 李晓艳, 张青伟, 洪松涛, 等.铅锌尾矿氧化过程中重金属释放迁移动态[J].矿产综合利用, 2022(4):6-11LI X Y, ZHANG Q W, HONG S T, et al.Dynamic study on the release and migration of heavy metals during the oxidation of lead-zinc tailings[J].Multipurpose Utilization of Mineral Resources, 2022(4):6-11.
LI X Y, ZHANG Q W, HONG S T, et al.Dynamic study on the release and migration of heavy metals during the oxidation of lead-zinc tailings[J].Multipurpose Utilization of Mineral Resources, 2022(4):6-11.
[34] 罗小三, 周东美, 李连祯, 等. 水、沉积物和土壤中重金属生物有效性/毒性的生物配体模型研究进展[J]. 土壤学报, 2008(3):535-543.LUO X S, ZHOU D M, LI L Z, et al. Prediction of bioavaalability and toxicity of heavy metals in water, sedimelt and soil environments using biotic ligand model[J]. Acta Pedologica Sinica, 2008(3):535-543. doi: 10.3321/j.issn:0564-3929.2008.03.021
LUO X S, ZHOU D M, LI L Z, et al. Prediction of bioavaalability and toxicity of heavy metals in water, sedimelt and soil environments using biotic ligand model[J]. Acta Pedologica Sinica, 2008(3):535-543. doi: 10.3321/j.issn:0564-3929.2008.03.021
[35] 王淑雨.外源铜和铅在我国四种土壤中的形态转化分析[D].郑州:河南大学, 2010.WANG S Y. Analysis of form transformation of copper and lead added to the four soil of China [D].Zhengzhou: Henan University, 2010.
WANG S Y. Analysis of form transformation of copper and lead added to the four soil of China [D].Zhengzhou: Henan University, 2010.
[36] 邓迎璇, 李永涛, 翁莉萍, 等. 土壤样品中重金属化学形态模型的发展与应用[J]. 农业环境科学学报, 2018, 37(7):1350-1361.DENG Y X, LI Y T, WANG L P, et al. Development and application of chemical speciation models for heavy metals in environmental soil samples[J]. Journal of Agro-Environment Science, 2018, 37(7):1350-1361. doi: 10.11654/jaes.2018-0606
DENG Y X, LI Y T, WANG L P, et al. Development and application of chemical speciation models for heavy metals in environmental soil samples[J]. Journal of Agro-Environment Science, 2018, 37(7):1350-1361. doi: 10.11654/jaes.2018-0606
[37] Davis JA, Meece DE, Kohler M, et al. Approaches to surface com-plexation modeling of uranium (Ⅵ) adsorption on aquifer sediments[J]. Geochimica Et Cosmochimica Acta, 2004, 68(18):3621-3641. doi: 10.1016/j.gca.2004.03.003
[38] Elzinga EJ, Van Grinsven JJM, Swartjes FA. General purpose Freundlich isotherms for cadmium, copper and zinc in soils[J]. Euro-pean Journal of Soil Science, 1999, 50(1):139-149.
[39] Sauvé S, Manna S, Turmel MC, et al. Solid-solution partitioning of Cd, Cu, Ni, Pb, and Zn in the organic horizons of a forest soil[J]. Envi-ronmental Science & Technology, 2003, 37(22):5191-5196.
[40] Chong K H, Volesky B. Description of 2-metal biosorption equilibria by langmuir-type models[J]. Biotechnology and Bioengineering, 1995, 47(4):451-460. doi: 10.1002/bit.260470406
[41] Tjisse Hiemstra, Willem H. Van Riemsdijk. On the relationship between charge distribution, surface hydration, and the structure of the interface of metal hydroxides[J].Journal of Colloid And Interface Science, 2006, 301(1).
[42] Ponthieu M, Juillot F, Hiemstraa T, et al. Metal ion binding to iron oxides[J]. Geochimica Et Cosmochimica Acta, 2006, 70(11):2679-2698. doi: 10.1016/j.gca.2006.02.021
[43] Koopal LK, Saito T, Pinheiro JP, et al. Ion binding to natural organic matter: General considerations and the NICA-Donnan model[J]. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 2005, 265(1/2/3):40-54.
[44] Tipping E. Humic ion-binding model Ⅵ: An improved description of the interactions of protons and metal ions with humic substances[J]. Aquatic Geochemistry, 1998, 4(1):3-47. doi: 10.1023/A:1009627214459
[45] Weng L P, Temminghoff E J M, Lofts S, et al. Complexation with dissolved organic matter and solubility control of heavy metals in a sandy soil[J]. Environmental Science & Technology, 2002, 36(22):4804-4810.
[46] 赵晓鹏, 顾雪元. 地球化学模型在土壤重金属形态研究中的应用进展[J]. 环境化学, 2019, 38(1):59-70.ZHAO X P, GU X Y. Application of geochemical models in heavy metals speciation in soils:A review[J]. Environmental Chemistry, 2019, 38(1):59-70.
ZHAO X P, GU X Y. Application of geochemical models in heavy metals speciation in soils:A review[J]. Environmental Chemistry, 2019, 38(1):59-70.
[47] KEIZER M G, VAN RIEMSDIJK W H.ECOSAT:A computer program for the calculation of speciation and transport in soil-water systems[Z].Wageningen University, The Netherlands, 2009.
[48] Peter Venema, Tjisse Hiemstra, Willem H. van Riemsdijk. Interaction of Cadmium with Phosphate on Goethite[J].Journal of Colloid And Interface Science, 1997, 192(1).
[49] TIPPING E. WHAM-A chemical equilibrium model and computer code for waters, sediments, and soils incorporating a discrete site electrostatic model of ion-binding by humic substances[J]. Computers & Geosciences, 1994, 20:973-1023.
[50] PARKHURST D L, APPELO C A J.PHREEQC-A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations[Z]. USGS, Denver, Colorado, 2013.
[51] GUSTAFSSON J P.Visual MINTEQ [Z].Department of land and water resources engineering, KTH, Sweden, 2012.
[52] MEEUSSEN J C. ORCHESTRA:An object-oriented framework for implementing chemical equilibrium models[J]. Environmental Science & Technology, 2003, 37:1175-1182.
[53] Rennert T, Rabus W, Rinklebe J. Modelling the concentrations of dissolved contaminants (Cd, Cu, Ni, Pb, Zn) in floodplain soils[J]. Environmental Geochemistry and Health, 2017, 39:331-344. doi: 10.1007/s10653-016-9859-4
[54] Bonten L T, Groenenberg JE, Weng L, van Riemsdijk WH. Use of speciation and complexation models to estimate heavy metal sorption in soils[J]. Geoderma, 2008, 146:303-310. doi: 10.1016/j.geoderma.2008.06.005
[55] Almås Å, Lofts S, Mulder J, Tipping E. Solubility of major cations and Cu, Zn and Cd in soil extracts of some contaminated agricultural soils near a zinc smelter in Norway: Modelling with a multisurface extension of WHAM[J]. European Journal of Soil Science, 2007(58):1074-1086.
[56] Duffner A, Weng L, Hoffland E, van der Zee SE. Multi-surface modeling to predict free zinc ion concentrations in low-zinc soils[J]. Environmental Science & Technology, 2014, 48:5700-5708.
-