Flotation Separation of Sulfur and Silver-bearing Minerals from a Residue Produced by Oxygen-pressure Leaching Process of a Zinc Sulfide Ore
-
摘要:
呼伦贝尔驰宏矿业有限公司的硫化锌矿氧压浸出渣堆存量和产量大,其中含硫44.33%,含银192 g/t;硫主要以硫黄(75.24%)的形式存在,银主要呈微细粒分布于铅矾和铅铁矾中,是极具价值的二次资源,有效地分选富集浸出渣中的硫和含银矿物对后续提高浸出渣有价元素的综合提取效率具有重要意义。根据浸出渣的性质,结合当前的硫浮选生产工艺,开展硫-银浮选分离实验研究。在优化的实验条件下,小型闭路实验获得精矿硫品位86.24%,硫回收率93.35%;精矿含银67 g/t,银回收率14.93%。工业实验最终获得了含硫81.52%,含银75 g/t,硫和银回收率分别为91.71%和17.37%的精矿;尾矿含硫9.02%,银和铅在尾矿得到了良好富集,品位分别为银436.63 g/t,铅5.74%,实验指标较之前生产得到了显著提高。
Abstract:A large of leaching residue was left unprocessed after it was produced from Hulunbeier Chihong Mining Co., Ltd. using the oxygen-pressure acid leaching process, and it contains 44.33% sulfur and 192 g/t silver, in which 75.24% sulfur exists in the form of elemental sulfur and the silver is mainly distributed in angle site and plumbojaro site with ultra-fine particle size. As a result, the residue is proposed as a valuable-secondary resource. Effective separation and enrichment of sulfur and sliver-bearing minerals prior to metallurgy is commonly required for improving the extraction efficiency of values in the residue, due to the technological and economic constraints of direct metallurgy. In this work, according to the properties of the leaching residue and sulfur flotation process used in practice, the sulfur-silver flotation separation tests were performed. At the optimized operation conditions, a concentrate with grades of 86.24% sulfur and 67 g/t silver at recoveries of 93.35% sulfur and 14.93% sliver was obtained via the bench-scale circuit flotation test. Correspondingly, an industrial-scale test achieved for the effective separation of sulfur and silver-bearing minerals in the residue. It produced a concentrate assaying 81.52% sulfur and 75 g/t silver with 91.71% sulfur and 17.37% silver recoveries. The tailing assays 9.02% sulfur, 436.63 g/t silver and 5.74% lead. The industrial index has been significantly improved compared with the previous production.
-
-
表 1 浸出渣化学多元素分析结果/%
Table 1. Multi-element analysis results of leaching residues
S Fe Si Ca Mg As Zn Pb Ag* Au* Cu 44.33 14.33 2.04 0.89 0.60 0.02 4.24 2.65 192.00 0.12 0.36 *单位为g/t。 表 2 硫物相化学分析结果
Table 2. Analysis results of sulfur phase
项目 单质硫 硫酸盐 硫化物 总硫 含量/% 33.61 6.35 4.71 44.67 分布率/% 75.24 14.22 10.54 100.00 表 3 锌浸出渣粒级组成和元素分布分析结果
Table 3. Analysis results of particle size composition and element distribution of zinc leaching residues
粒级/μm 产率/% 品位/% 分布率/% S Ag S Ag +75 2.26 46.06 120.20 2.17 1.25 -75+43 0.41 54.25 98.20 0.46 0.18 -43+37 0.31 54.74 84.70 0.36 0.12 -37+20 19.21 69.80 54.40 27.95 4.80 -20+10 23.47 76.16 66.60 37.25 7.18 -10 54.33 28.09 346.50 31.81 86.47 合计 100.00 47.98 217.73 100.00 100.00 表 4 小型闭路实验与工业实验结果
Table 4. Results of the small closed-circuit and industrial test
实验类型 名称 产率/% 品位/% 回收率/% S Ag* S Ag 小型实验 精矿 52.95 86.24 67.00 93.35 14.93 尾矿 47.05 6.91 429.63 6.65 85.07 原矿 100.00 48.92 237.60 100.00 100.00 工业实验 精矿 55.04 81.52 75.00 91.71 17.37 尾矿 44.96 9.02 436.63 8.29 82.63 原矿 100.00 48.92 237.60 100.00 100.00 *单位为g/t。 表 5 精矿化学多元素分析/%
Table 5. Chemical multielement analysis of concentrate
S S0 Ag* Pb Zn Cu Si As Fe Au* Ca Mg 81.52 64.43 75.00 0.60 3.60 0.48 1.02 <0.05 1.23 0.29 0.12 0.15 *单位为g/t。 表 6 尾矿化学多元素分析/%
Table 6. Chemical multi-element analysis of tailings
S S0 Ag* Pb Zn Cu Si As Fe Au* Ca Mg 9.02 7.82 436.63 5.74 0.89 0.22 4.46 0.28 21.47 <0.05 1.55 0.34 *单位为g/t。 -
[1] 顾丝雨,刘维,韩俊伟,等. 含锌冶炼渣综合利用现状及发展趋势[J]. 矿产综合利用, 2022, 43(5):1-8.GU S Y, LIU W, HAN J W, et al. Current situation and development trend of comprehensive utilization of zinc smelting slag[J]. Multipurpose Utilization of Mineral Resources, 2022, 43(5):1-8.
GU S Y, LIU W, HAN J W, et al. Current situation and development trend of comprehensive utilization of zinc smelting slag[J]. Multipurpose Utilization of Mineral Resources, 2022, 43(5):1-8.
[2] 李东波,蒋继穆. 国内外锌冶炼技术现状和发展趋势[J]. 中国金属通报, 2015(6):44-46.LI D B, JIANG J M. Current statusand development trend of zinc smelting technology at home and abroad[J]. China Metal Bulletin, 2015(6):44-46.
LI D B, JIANG J M. Current statusand development trend of zinc smelting technology at home and abroad[J]. China Metal Bulletin, 2015(6):44-46.
[3] 陈龙义. 锌常规法—氧压浸出联合冶炼技术研究[J]. 世界有色金属, 2021(19):182-184.CHEN L Y. Study of zinc smelting technology combing conventional method with oxygen pressure leaching[J]. World Nonferrous Metals, 2021(19):182-184. doi: 10.3969/j.issn.1002-5065.2021.19.089
CHEN L Y. Study of zinc smelting technology combing conventional method with oxygen pressure leaching[J]. World Nonferrous Metals, 2021(19):182-184. doi: 10.3969/j.issn.1002-5065.2021.19.089
[4] GU Y, ZHANG T A, LIU Y, et al. Pressure acid leaching of zinc sulfide concentrate[J]. Transactions of Nonferrous Metals Society of China, 2010, 20:S136-S140. doi: 10.1016/S1003-6326(10)60028-3
[5] 仝一喆. 锌氧压浸出工艺的应用及推广[J]. 矿冶, 2011, 20(4):94-97.TONG Y Z. Application and popularization of zinc pressure leach process[J]. Mining and Metallurgy, 2011, 20(4):94-97. doi: 10.3969/j.issn.1005-7854.2011.04.022
TONG Y Z. Application and popularization of zinc pressure leach process[J]. Mining and Metallurgy, 2011, 20(4):94-97. doi: 10.3969/j.issn.1005-7854.2011.04.022
[6] 刘贵清,王芳,解雪,等. 锌氧压浸出高硫渣定向浮选回收硫黄工艺研究[J]. 中国资源综合利用, 2022, 40(1):35-43.LIU G Q, WANG F, XIE X, et al. Study on the process of recovering sulfur by directional flotation of zinc oxygen pressure leaching high sulfur residue[J]. China Resources Comprehensive Utilization, 2022, 40(1):35-43. doi: 10.3969/j.issn.1008-9500.2022.01.011
LIU G Q, WANG F, XIE X, et al. Study on the process of recovering sulfur by directional flotation of zinc oxygen pressure leaching high sulfur residue[J]. China Resources Comprehensive Utilization, 2022, 40(1):35-43. doi: 10.3969/j.issn.1008-9500.2022.01.011
[7] 汪金钟. 国内硫黄市场现状分析与展望[J]. 石油化工管理干部学院学报, 2019, 21(3):44-49.WANG J Z. Analysis on the domestic sulfur market and outlook[J]. Journal of Sinopec Management Institute, 2019, 21(3):44-49. doi: 10.3969/j.issn.1008-4282.2019.03.012
WANG J Z. Analysis on the domestic sulfur market and outlook[J]. Journal of Sinopec Management Institute, 2019, 21(3):44-49. doi: 10.3969/j.issn.1008-4282.2019.03.012
[8] LU J M, DREISINGER D. Pressure oxidation of ferrous ions by oxygen and hematite precipitation from concentrated solution of calcium, copper and iron chlorides[J]. Hydrometallurgy, 2013, 140:59-65. doi: 10.1016/j.hydromet.2013.09.001
[9] XU H S, WEI C, LI C X, et al. Leaching of a complex sulfidic, silicate-containing zinc ore in sulfuric acid solution under oxygen pressure[J]. Separation and Purification Technology, 2011, 85:206-212.
[10] LI C X, WEI C, XU H S, et al. Oxidative pressure leaching of sphalerite concentrate with high indium and iron content in sulfuric acid medium[J]. Hydrometallurgy, 2010, 102(1):91-94.
[11] JIN B J, YANG X W, SHEN Q F. Pressure oxidative leaching of lead-containing copper matte[J]. Hydrometallurgy, 2008, 96(1):57-61.
[12] 胡熙庚,黄和慰,毛忂凡. 浮选理论与工艺[J].长沙:中南工业大学出版社,1990:408-409.HU X G, HUANG H W, MAO Q F. Flotation theory and process[J].Changsha: China University of Technology Press, 1990:408-409.
HU X G, HUANG H W, MAO Q F. Flotation theory and process[J].Changsha: China University of Technology Press, 1990:408-409.
-