-
摘要:
为提高柴油对低阶煤泥浮选的捕收性能,本研究将柴油和油酸复配制备的二元混合捕收剂作为低阶煤泥浮选的捕收剂。并通过接触角测试和Zeta电位测试探究了柴油和油酸的协同作用对改善低阶煤泥浮选效果的机理。研究结果表明,当柴油和油酸的质量比为3∶2(3C2Y),捕收剂用量为1 kg/t时,精煤产率和可燃体回收率最高,分别为65.66%和88.91%。经过3段浮选后,精煤灰分降低到了24.44%。柴油和油酸的协同作用使得煤颗粒表面的接触角提高了25°,煤颗粒表面的Zeta电位值降低了63.73 mV。因此,二元混合捕收剂能够使煤颗粒具有良好的疏水性和分散性,并且能够明显的改善低阶煤泥的浮选效果。柴油和油酸复配制得的二元混合捕收剂可作为高效开发利用低阶煤泥的新型捕收剂。
Abstract:In order to improve the collection performance of diesel on low-rank slime flotation, the binary mixed collector prepared by compounding diesel and oleic acid was used as the collector for low-rank slime flotation in this study. The mechanism of the synergistic effect of diesel oil and oleic acid on improving the flotation of low-rank coal slime was explored by the contact angle test and Zeta potential test. The results show that when the mass ratio of diesel and oleic acid is 3∶2(3C2Y) and the amount of collector is 1 kg/t, the clean coal yield and combustible recovery rate are the highest, which are 65.66% and 88.91% respectively. After 3-stage flotation, the ash content of clean coal was reduced to 24.44%. The synergistic effect of diesel oil and oleic acid increases the contact angle of the coal particle surface by 25° and reduces the Zeta potential value of the coal particle surface by 63.73 mV. Therefore, the binary mixed collector can make the coal particles have good hydrophobicity and dispersibility, and can obviously improve the flotation effect of low-rank coal slime.The binary mixed collector prepared from diesel and oleic acid can be used as a new type of collector for the efficient development and utilization of low-rank coal slime.
-
Key words:
- diesel /
- oleic acid /
- low rank slime flotation /
- synergy
-
-
表 1 煤泥的工业分析和有机元素分析
Table 1. Industrial analysis and organic element analysis of coal slime
工业分析/% 元素分析/% Mad Aad Vad FCad C H O N S 1.66 56.91 15.84 25.59 32.27 2.59 9.21 0.92 0.23 表 2 原煤泥筛析结果
Table 2. Sieve analysis results of coal slime
粒级/mm 产率/% 灰分/% +0.5 1.70 52.43 -0.5+0.25 2.19 52.59 -0.25+0.125 10.21 52.95 -0.125+0.074 12.81 53.25 -0.074+0.045 35.45 56.93 -0.045 37.64 59.78 总计 100.00 56.91 -
[1] 程志红. “双碳目标”下表面改性与新型药剂在低阶煤浮选中的应用[J]. 矿产综合利用, 2022(2):15-21.CHENG Z H. Application of surface modification and new reagents in low-rank coal flotation under "Double Carbon Target"[J]. Multipurpose Utilization of Mineral Resources, 2022(2):15-21. doi: 10.3969/j.issn.1000-6532.2022.02.003
CHENG Z H. Application of surface modification and new reagents in low-rank coal flotation under "Double Carbon Target"[J]. Multipurpose Utilization of Mineral Resources, 2022(2):15-21. doi: 10.3969/j.issn.1000-6532.2022.02.003
[2] 刘旭, 韩华, 申世钰, 等. 动力煤煤泥高剪切调浆浮选提质研究[J]. 矿产综合利用, 2022(3):158-162.LIU X, HAN H, SHEN S Y, et al. Upgrading of steam coal slime using high intensity conditioning flotation[J]. Multipurpose Utilization of Mineral Resources, 2022(3):158-162. doi: 10.3969/j.issn.1000-6532.2022.03.028
LIU X, HAN H, SHEN S Y, et al. Upgrading of steam coal slime using high intensity conditioning flotation[J]. Multipurpose Utilization of Mineral Resources, 2022(3):158-162. doi: 10.3969/j.issn.1000-6532.2022.03.028
[3] He J, Zhu L, Liu C, et al. Optimization of the oil agglomeration for high-ash content coal slime based on design and analysis of response surface methodology (rsm)[J]. Fuel, 2019, 254.
[4] Wang L, Peng Y, Runge K. Entrainment in froth flotation: the degree of entrainment and its contributing factors[J]. Powder Technology, 2016, 288.
[5] 程万里, 邓政斌, 刘志红, 等. 煤泥浮选中矿物颗粒间相互作用力的研究进展[J]. 矿产综合利用, 2020(3):48-55.CHENG W L, DENG Z B, LIU Z H, et al. Research progress in interaction force between mineral particles in coal slurry flotation[J]. Multipurpose Utilization of Mineral Resources, 2020(3):48-55. doi: 10.3969/j.issn.1000-6532.2020.03.008
CHENG W L, DENG Z B, LIU Z H, et al. Research progress in interaction force between mineral particles in coal slurry flotation[J]. Multipurpose Utilization of Mineral Resources, 2020(3):48-55. doi: 10.3969/j.issn.1000-6532.2020.03.008
[6] 卢天燊, 邓政斌, 刘志红, 等. 高灰难选煤泥分级浮选降灰实验研究[J]. 矿产综合利用, 2022(2):142-149.LU T S, DENG Z B, LIU Z H, et al. Experimental study on ash reduction of high ash and refractory slime by fractional flotation[J]. Multipurpose Utilization of Mineral Resources, 2022(2):142-149. doi: 10.3969/j.issn.1000-6532.2022.02.026
LU T S, DENG Z B, LIU Z H, et al. Experimental study on ash reduction of high ash and refractory slime by fractional flotation[J]. Multipurpose Utilization of Mineral Resources, 2022(2):142-149. doi: 10.3969/j.issn.1000-6532.2022.02.026
[7] 郭丽敏, 王怀法. 非离子表面活性剂对高灰细粒难浮煤泥浮选促进作用研究[J]. 矿产综合利用, 2018(4):96-100.GUO L M, WANG H F. Promotion effect of nonionic surfactants on high ash fine coal flotation[J]. Multipurpose Utilization of Mineral Resources, 2018(4):96-100. doi: 10.3969/j.issn.1000-6532.2018.04.022
GUO L M, WANG H F. Promotion effect of nonionic surfactants on high ash fine coal flotation[J]. Multipurpose Utilization of Mineral Resources, 2018(4):96-100. doi: 10.3969/j.issn.1000-6532.2018.04.022
[8] 武乐鹏, 宋强, 张少飞, 等. 生物质柴油对朔州低阶煤的浮选研究[J]. 矿产综合利用, 2021(2):85-90.WU L P, SONG Q, ZHANG S F, et al. Study on flotation of Shuozhou low-rank coal with bio-diesel[J]. Multipurpose Utilization of Mineral Resources, 2021(2):85-90. doi: 10.3969/j.issn.1000-6532.2021.02.016
WU L P, SONG Q, ZHANG S F, et al. Study on flotation of Shuozhou low-rank coal with bio-diesel[J]. Multipurpose Utilization of Mineral Resources, 2021(2):85-90. doi: 10.3969/j.issn.1000-6532.2021.02.016
[9] 桂夏辉, 邢耀文, 王波, 等. 煤泥浮选过程强化之一——国内外研究现状篇[J]. 选煤技术, 2017(1):93-107.GUI X H, XING Y W, WANG B, et al. Fine coal flotation process intensification: part 1-A general overview of the state-of-the-art of the related research work conducted both within and abroad[J]. Coal Preparation Technology, 2017(1):93-107.
GUI X H, XING Y W, WANG B, et al. Fine coal flotation process intensification: part 1-A general overview of the state-of-the-art of the related research work conducted both within and abroad[J]. Coal Preparation Technology, 2017(1):93-107.
[10] CAI Y C, DU M L, WANG S L, et al. Flotation characteristics of oxidized coal slimes within low-rank metamorphic[J]. Powder Technology, 2018, 340.
[11] Shobhana D. Enhancement in hydrophobicity of low rank coal by surfactants — a critical overview[J]. Fuel Processing Technology, 2011, 94(1).
[12] WEN B, XIA W, Sokolovic J M. Recent advances in effective collectors for enhancing the flotation of low rank/oxidized coals[J]. Powder Technology, 2017, 319.
[13] 任聪, 樊民强, 李志红, 等. 复配药剂浮选低阶煤泥的效能研究[J]. 煤炭科学技术, 2020, 48(S1):242-247.REN C, FAN M Q, LI Z H, et al. Efficiency of compound reagents flotation of low-rank coal slime[J]. Coal Science and Technology, 2020, 48(S1):242-247.
REN C, FAN M Q, LI Z H, et al. Efficiency of compound reagents flotation of low-rank coal slime[J]. Coal Science and Technology, 2020, 48(S1):242-247.
[14] 王市委, 陶秀祥, 陈松降, 等. 低阶煤的油泡浮选研究进展[J]. 矿产综合利用, 2020(4):48-58.WANG S W, TAO X X, CHEN S J, et al. Development of oily bubble flotation research for low-rank coal[J]. Multipurpose Utilization of Mineral Resources, 2020(4):48-58. doi: 10.3969/j.issn.1000-6532.2020.04.008
WANG S W, TAO X X, CHEN S J, et al. Development of oily bubble flotation research for low-rank coal[J]. Multipurpose Utilization of Mineral Resources, 2020(4):48-58. doi: 10.3969/j.issn.1000-6532.2020.04.008
[15] 郝晓栋. 复配捕收剂诱导的油泡形成机制及对低阶煤浮选的影响研究[D]. 徐州:中国矿业大学, 2021.HAO X D. Formation mechanism of oil bubble induced by compound collector and its effect on flotation of low rank coal[D]. Xuzhou: China University of Mining and Technology, 2021.
HAO X D. Formation mechanism of oil bubble induced by compound collector and its effect on flotation of low rank coal[D]. Xuzhou: China University of Mining and Technology, 2021.
[16] Kasongo T, ZHOU Z, XU Z, et al. Effect of clays and calcium ions on bitumen extraction from athabasca oil sands using flotation[J]. The Canadian Journal of Chemical Engineering, 2000, 78(4).
[17] CHEN S, YANG Z, CHEN L, et al. Wetting thermodynamics of low rank coal and attachment in flotation[J]. Fuel, 2017, 207.
[18] 王东岳. 极性复配捕收剂对低阶煤浮选的研究[D]. 徐州:中国矿业大学, 2018.WANG D Y. Compound polar collector in low rank coal flotation[D]. Xuzhou:China University of Mining and Technology, 2018.
WANG D Y. Compound polar collector in low rank coal flotation[D]. Xuzhou:China University of Mining and Technology, 2018.
[19] 赵通林. 浮选[M]. 北京: 冶金工业出版社, 2018: 206.ZHAO T L. Select flotation[M]. Beijing: Metallurgical Industry Press, 2018: 206.
ZHAO T L. Select flotation[M]. Beijing: Metallurgical Industry Press, 2018: 206.
[20] 梁龙, 李强, 胡鹏飞, 等. 细泥罩盖对煤炭可浮性的影响规律[J]. 煤炭学报, 2021, 46(9):2793-2803.LIANG L, LI Q, HU P F, et al. Influence law of slime coating on coal floatability[J]. Journal of China Coal Society, 2021, 46(9):2793-2803.
LIANG L, LI Q, HU P F, et al. Influence law of slime coating on coal floatability[J]. Journal of China Coal Society, 2021, 46(9):2793-2803.
[21] 王成勇, 陈鹏, 潘东, 等. 疏水引力在煤泥浮选过程中的作用机理及应用[J]. 矿产综合利用, 2020(3):105-110.WANG C Y, CHEN P, PAN D, et al. Mechanism and application of hydrophobic attraction in coal flotation process[J]. Multipurpose Utilization of Mineral Resources, 2020(3):105-110. doi: 10.3969/j.issn.1000-6532.2020.03.017
WANG C Y, CHEN P, PAN D, et al. Mechanism and application of hydrophobic attraction in coal flotation process[J]. Multipurpose Utilization of Mineral Resources, 2020(3):105-110. doi: 10.3969/j.issn.1000-6532.2020.03.017
[22] 郭姚. 新型分散剂强化含泥菱锌矿浮选行为的研究[D]. 赣州:江西理工大学, 2022.GUO Y. Study on enhancing flotation behavior of argillaceous smithsonite with novle dispersant[D]. Ganzhou:Jiangxi University of Science and Technology, 2022.
GUO Y. Study on enhancing flotation behavior of argillaceous smithsonite with novle dispersant[D]. Ganzhou:Jiangxi University of Science and Technology, 2022.
[23] 谢广元. 选矿学[M]. 徐州: 中国矿业大学出版社, 2001: 635.XIE G Y. Mineral separation[M]. XuZhou: China University of Mining and Technology Press, 2001: 635.
XIE G Y. Mineral separation[M]. XuZhou: China University of Mining and Technology Press, 2001: 635.
[24] 王晖. 基于难浮煤泥表面性质的浮选药剂优化研究[D]. 太原:太原理工大学, 2021.WANG H. Optimization of flotation reagents based on surface properties of hard-to-float fine coal[D]. Taiyuan: Taiyuan University of Technology, 2021.
WANG H. Optimization of flotation reagents based on surface properties of hard-to-float fine coal[D]. Taiyuan: Taiyuan University of Technology, 2021.
[25] 王力强. 油酸与煤油复配作捕收剂对难浮煤泥浮选提质的探究[J]. 煤炭加工与综合利用, 2018(11):41-43.WANG L Q. Study on the concentrate quality improvement of difficult-to-float slime flotation using the compounding collector of oleic acid and kerosene[J]. Coal Processing & Comprehensive Utilization, 2018(11):41-43.
WANG L Q. Study on the concentrate quality improvement of difficult-to-float slime flotation using the compounding collector of oleic acid and kerosene[J]. Coal Processing & Comprehensive Utilization, 2018(11):41-43.
[26] YU Y, MA L, XU H, et al. Dlvo theoretical analyses between montmorillonite and fine coal under different ph and divalent cations[J]. Powder Technology, 2018, 330.
[27] 陈俊. 煤浮选脱硫降灰工艺的研究[D]. 合肥:合肥工业大学, 2021.CHEN J. The desulfuriz ation and ash reduction of coal by flotation process[D]. Hefei:Hefei University of Technology, 2021.
CHEN J. The desulfuriz ation and ash reduction of coal by flotation process[D]. Hefei:Hefei University of Technology, 2021.
-