-
摘要:
针对松桃地区的电解锰渣,采用页岩、石灰石和粉煤灰协同电解锰渣制备烧结砖。以松桃地区富含的页岩和石灰石及电厂粉煤灰为配矿原料,协同电解锰渣进行了成型、预热、焙烧实验。结果表明,电解锰渣掺量可为50%~70%,其掺量过高或过低均降低坯块强度。烧制过程中可通过调整温度和时间,使得固体颗粒之间形成有效固相和液相黏结,避免坯块内部应力聚集形成裂纹降低强度。冷却时应避免急冷产生的不均匀收缩和低强度玻璃相。综合考虑推荐配比为电解锰渣∶页岩∶石灰石∶粉煤灰=6∶2∶1∶1,热工制度为预热温度500 ℃,时间30 min。焙烧温度1 000 ℃,时间120 min,随炉冷却,可得平均抗压强度28.84 MPa的焙烧坯块,达到了烧结普通砖MU25的强度指标,坯块浸出毒性也满足污水综合排放标准。该研究为松桃地区电解锰渣的无害化和资源化提供了新的技术思路。
Abstract:Aiming at electrolytic manganese residue in Songtao, sintered bricks were prepared by using shale, limestone and fly ash in coordination with electrolytic manganese residue. With the shale and limestone which are rich in Songtao and the fly ash from the local power plant as ore blending materials in coordination with electrolytic manganese residue, the experiments of briquetting, preheating and roasting were carried out. The results show that the dosage of electrolytic manganese residue can be 50%~70%, and the briquet strength will be reduced when the dosage is too high or too low. In the firing process, the effective solid binding and liquid binding can be obtained, and the briquet cracks due to internal stress gathering can be avoided by adjusting the firing temperature and time. The uneven shrinkage and glass phase of low strength resulting from rapid cooling should be avoided during cooling down. The recommended ratio iselectrolytic manganese residue∶shale∶limestone∶fly ash= 6∶2∶1∶1, and the firing system is as follows: preheating temperature 500 ℃, preheating time 30 min, roasting temperature 1 000 ℃, roasting time 120 min, cooling down in a furnace. At this condition, the roasted briquets with the average strength of 28.84 MPa can be obtained, which reaches the MU25 strength index of common sintered brick, and its leaching toxicity also meets the comprehensive standards of sewage discharge. This study provides a new technical idea for the detoxification and recycle of electrolytic manganese residue in Songtao.
-
-
表 1 主要元素组成/%
Table 1. Composition of major elements
原料 Al2O3 CaO Fe2O3 MgO MnO SO42- SiO2 K2O Na2O LOI 电解锰渣 12.39 5.12 4.82 2.38 3.07 19.86 47.48 2.66 1.19 23.23 页岩 12.22 2.83 3.75 1.43 5.56 7.13 57.30 2.67 1.90 10.52 石灰石 0.093 54.53 0.095 0.419 0.030 0.067 0.309 0.011 0.054 43.04 粉煤灰 33.54 5.13 4.86 0.76 0.041 0.447 50.21 0.730 0.245 3.58 表 2 原料配比
Table 2. Ratio of raw materials
序号 电解锰渣 页岩 石灰石 粉煤灰 1 7 1 1 1 2 6 2 1 1 3 6 1 2 1 4 5 3 1 1 5 5 2 2 1 6 4 4 1 1 7 4 1 4 1 8 4 2 3 1 9 4 3 2 1 10 7 1.5 0 1.5 表 3 不同原料配比对焙烧坯块强度的影响
Table 3. Effect of different raw material ratio on strength of roasted briquet
序号 原料配比 焙烧块
抗压强度/
MPa焙烧过程
中失重率/
%电解锰渣 页岩 石灰石 粉煤灰 1 7 1 1 1 21.06 26.27 2 6 2 1 1 28.84 23.96 3 6 1 2 1 27.79 21.67 4 5 3 1 1 40.25 22.21 5 5 2 2 1 29.08 21.68 6 4 4 1 1 37.03 20.73 7 4 1 4 1 8.21 26.47 8 4 2 3 1 16.66 24.08 9 4 3 2 1 32.27 21.27 10 7 1.5 0 1.5 14.42 27.60 表 4 不同配比的烧结坯块浸出毒性检测结果/%
Table 4. Test results of leaching toxicity of sintered briquet with different raw material ratio
序号 砷 镉 钴 铬 铜 铁 汞 锰 镍 铅 硒 锌 硫化物 氨氮 SO42- 0 0.115 1 0.001 9 1.257 4 0.048 3 0.064 5 0.167 6 0.000 2 1 439.363 1 0.713 3 0.005 8 0.130 3 0.730 3 <0.02 613.2 10 280 1 0.058 1 0.000 3 0.002 6 0.001 4 0.000 5 0.287 8 0.001 4 0.314 6 0.064 1 0.003 6 0.012 0 0.047 9 0.05 0.05 1 250 2 0.029 7 0.000 4 0.002 4 0.001 8 0.000 4 0.261 5 0.001 3 0.016 2 0.046 3 0.000 6 0.010 9 0.065 0 0.04 <0.02 1 282 3 0.002 7 0.000 2 0.002 5 0.013 3 0.001 3 0.252 9 0.000 9 0.004 1 0.0505 0.001 0 0.008 0 0.026 5 <0.02 <0.02 1 372 4 0.026 8 0.000 5 0.002 4 0.003 2 0.004 1 0.228 5 0.001 2 0.007 4 0.053 3 0.001 7 0.006 9 0.088 2 <0.02 <0.02 1 156 5 0.002 4 0.000 3 0.002 6 0.014 2 0.005 6 0.225 2 0.000 9 0.000 1 0.050 1 0.001 8 0.006 6 0.027 6 <0.02 0.221 1 200 6 0.019 0 0.000 4 0.002 3 0.004 9 0.002 4 0.201 7 0.001 2 0.006 3 0.047 8 0.001 1 0.008 9 0.314 3 <0.02 <0.02 1 180 7 0.000 3 0.000 2 0.005 1 0.181 5 0.016 3 0.513 5 0.000 1 0.000 9 0.140 5 0.009 9 0.060 9 0.019 4 <0.02 0.12 936 8 0.000 3 0.000 3 0.005 1 0.128 9 0.020 7 0.487 6 0.000 1 0.020 1 0.130 2 0.009 2 0.027 2 0.026 7 <0.02 0.06 1 232 9 0.002 4 0.000 4 0.002 7 0.021 2 0.001 4 0.217 1 0.001 0 0.006 6 0.048 4 0.000 6 0.010 0 0.106 3 <0.02 0.06 1 326 10 0.458 7 0.000 8 0.004 4 0.001 1 0.012 1 0.122 9 0.000 8 5.595 9 0.037 4 0.003 3 0.002 9 0.062 0 <0.02 0.06 956 表 5 固相反应开始温度
Table 5. Starting temperature of solid phase reaction
反应物 固相反应产物 开始反应的温度/℃ 2CaO+SiO2 2CaO·SiO2 500,510,690 2MgO+SiO2 2MgO·SiO2 680 SiO2+Fe2O3 Fe2O3在SiO2中的固溶体 575 MgO+Fe2O3 MgO·Fe2O3 600 -
[1] 代典,梁欢,何东升,等. 湘西地区微细粒级难选菱锰矿浮选实验研究[J]. 矿产综合利用, 2020(4):76-81.DAI D,LIANG H,HE D S,et al. Experimental study on the flotation of a micro-grained refractory rhodochrosite in western Hunan area[J]. Multipurpose Utilization of Mineral Resources, 2020(4):76-81. doi: 10.3969/j.issn.1000-6532.2020.04.012
DAI D,LIANG H,HE D S,et al. Experimental study on the flotation of a micro-grained refractory rhodochrosite in western Hunan area[J]. Multipurpose Utilization of Mineral Resources, 2020(4):76-81. doi: 10.3969/j.issn.1000-6532.2020.04.012
[2] 李勇,罗星,夏瑜. 广西某氧化锰矿选矿试验研究[J]. 矿产综合利用, 2020(5):58-62.LI Y,LUO X,XIA Y. Experimental research on mineral processing of a manganese oxide ore in Guangxi[J]. Multipurpose Utilization of mineral Resources, 2020(5):58-62.
LI Y,LUO X,XIA Y. Experimental research on mineral processing of a manganese oxide ore in Guangxi[J]. Multipurpose Utilization of mineral Resources, 2020(5):58-62.
[3] 谢庭芳,罗永光,焦志良,等. 提高锌电积阳极泥中锰利用率的研究[J]. 矿产综合利用, 2021(2):137-140.XIE T F,LUO Y Z,JIAO Z L,et al. Study on improving the utilization of manganese zinc electroposition anode slime[J]. Multipurpose Utilization of Mineral Resources, 2021(2):137-140. doi: 10.3969/j.issn.1000-6532.2021.02.023
XIE T F,LUO Y Z,JIAO Z L,et al. Study on improving the utilization of manganese zinc electroposition anode slime[J]. Multipurpose Utilization of Mineral Resources, 2021(2):137-140. doi: 10.3969/j.issn.1000-6532.2021.02.023
[4] 孙煜琳,李杰瑞,苏向东,等. 电解锰渣性质的研究进展及资源化利用展望[J]. 山东化工, 2022, 51(1):102-105.SUN Y L, LI R J, SU X D, et al. Research progress on properties on electrolytic manganese slag and prospect of resource utilization[J]. Shandong Chemical Industry, 2022, 51(1):102-105. doi: 10.3969/j.issn.1008-021X.2022.01.027
SUN Y L, LI R J, SU X D, et al. Research progress on properties on electrolytic manganese slag and prospect of resource utilization[J]. Shandong Chemical Industry, 2022, 51(1):102-105. doi: 10.3969/j.issn.1008-021X.2022.01.027
[5] 杨远平,龙小东,何柳群. 电解金属锰渣CCD 逆流洗涤工艺研究及可行性分析[J]. 矿产综合利用, 2020(4):163-166.YANG Y P,LONG X D,HE L Q. Study on CCD countercurrent washing process of electrolytic manganese slag and its feasibility analysis[J]. Multipurpose Utilization of Mineral Resources, 2020(4):163-166. doi: 10.3969/j.issn.1000-6532.2020.04.028
YANG Y P,LONG X D,HE L Q. Study on CCD countercurrent washing process of electrolytic manganese slag and its feasibility analysis[J]. Multipurpose Utilization of Mineral Resources, 2020(4):163-166. doi: 10.3969/j.issn.1000-6532.2020.04.028
[6] 杨晓红,赵东雨,薛希仕,等. 电解锰渣中锰的浸出实验研究[J]. 湿法冶金, 2022, 41(2):133-136.YANG X H, ZHAO D Y, XUE X S, et al. Leaching of manganese from electrolytic manganese residue[J]. Hydrometallurgy of China, 2022, 41(2):133-136.
YANG X H, ZHAO D Y, XUE X S, et al. Leaching of manganese from electrolytic manganese residue[J]. Hydrometallurgy of China, 2022, 41(2):133-136.
[7] 刘士朋,张欢欢,程金科. 电解锰渣中氨氮的草酸浸取工艺及机理研究[J]. 硅酸盐通报, 2022, 41(2):715-724.LIU S P, ZHANG H H, CHENG J K. Technology and mechanism of leaching ammonia nitrogen from electrolytic manganese residue with oxalic acid[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(2):715-724. doi: 10.3969/j.issn.1001-1625.2022.2.gsytb202202040
LIU S P, ZHANG H H, CHENG J K. Technology and mechanism of leaching ammonia nitrogen from electrolytic manganese residue with oxalic acid[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(2):715-724. doi: 10.3969/j.issn.1001-1625.2022.2.gsytb202202040
[8] 裴鑫雨,冯晓. 电解锰渣及其固化体作路基填土工程特性研究[J]. 中国锰业, 2021, 39(6):51-53+60.PEI X Y, FENG X. A study on engineering characteristics of electrolytic manganese slag and its solidified body as subgrade fill[J]. China Manganese Industry, 2021, 39(6):51-53+60.
PEI X Y, FENG X. A study on engineering characteristics of electrolytic manganese slag and its solidified body as subgrade fill[J]. China Manganese Industry, 2021, 39(6):51-53+60.
[9] 赵世珍,韩凤兰,王亚光. 电解锰渣-镁制备复合矿渣硫铝酸盐水泥熟料的研究[J]. 硅酸盐通报, 2017, 36(5):1766-1722.ZHAO S Z, HAN F L, WANG Y G. Preperation of composite slag sulphoalu minate cement clinker from electrolytic manganese-magnesium[J]. Bulletin of the Chinese Ceramic Society, 2017, 36(5):1766-1722.
ZHAO S Z, HAN F L, WANG Y G. Preperation of composite slag sulphoalu minate cement clinker from electrolytic manganese-magnesium[J]. Bulletin of the Chinese Ceramic Society, 2017, 36(5):1766-1722.
[10] 刘荣进,陈平,丁庆军. 锰渣掺和料对海工混凝土耐久性的影响[J]. 桂林理工大学学报, 2012, 32(2):233-239.LIU R J, CHEN P, DING Q J. Effect of manganese ferroalloy slag on marine concrete durability[J]. Journal of Guilin University of Technology., 2012, 32(2):233-239. doi: 10.3969/j.issn.1674-9057.2012.02.015
LIU R J, CHEN P, DING Q J. Effect of manganese ferroalloy slag on marine concrete durability[J]. Journal of Guilin University of Technology., 2012, 32(2):233-239. doi: 10.3969/j.issn.1674-9057.2012.02.015
[11] 罗学维,石朝军,陈上,等. 电解锰渣制备轻质发泡陶瓷保温板工艺及性能研究[J]. 中国锰业, 2016, 34(6):125-129.LUO X W, SHI C J, CHEN S, et al. A process and performance research on preparation of lightweight foamed ceramic insulation boards with the EMM slag[J]. China's Manganese Industry, 2016, 34(6):125-129
LUO X W, SHI C J, CHEN S, et al. A process and performance research on preparation of lightweight foamed ceramic insulation boards with the EMM slag[J]. China's Manganese Industry, 2016, 34(6):125-129
[12] 任学洪. 电解锰渣制备锰肥技术研究[J]. 中国锰业, 2017, 35(3):145-147.REN X H. A study of preparation of manganese fertilizer from EMM slag[J]. China's Manganese Industry, 2017, 35(3):145-147.
REN X H. A study of preparation of manganese fertilizer from EMM slag[J]. China's Manganese Industry, 2017, 35(3):145-147.
[13] 杨震,阴泽江,杨金玉,等. 预烧温度对电解锰渣坯块烧结性能的影响[J]. 铜仁学院学报, 2018, 20(9):36-40.YANG Z, YIN Z J, YANG J Y, et al. Effect of pre-firing temperatures on sintering properties of electrolytic manganese residue compacts[J]. Journal of Tongren University, 2018, 20(9):36-40. doi: 10.3969/j.issn.1673-9639.2018.09.009
YANG Z, YIN Z J, YANG J Y, et al. Effect of pre-firing temperatures on sintering properties of electrolytic manganese residue compacts[J]. Journal of Tongren University, 2018, 20(9):36-40. doi: 10.3969/j.issn.1673-9639.2018.09.009
[14] 庞泳喻,肖远祥,郭宇,等. 电解锰渣掺量及烧结温度对烧结砖试样的物理性能影响[J]. 砖瓦, 2016(3):10-14.PANG Y Y, XIAO Y X, GUO Y, et al. Effect of the content of electrolytic manganese residue and firing temperature on the properties of fired brick[J]. Brick & Tile, 2016(3):10-14. doi: 10.3969/j.issn.1001-6945.2016.03.003
PANG Y Y, XIAO Y X, GUO Y, et al. Effect of the content of electrolytic manganese residue and firing temperature on the properties of fired brick[J]. Brick & Tile, 2016(3):10-14. doi: 10.3969/j.issn.1001-6945.2016.03.003
[15] 曹世璞.烧结砖生产实用技术[M].北京:中国建材工业出版社,2012:25-30.CAO S P. Practical technology of sintered brick production [M]. Beijing: China Building Materials Industry Press, 2012:25-30.
CAO S P. Practical technology of sintered brick production [M]. Beijing: China Building Materials Industry Press, 2012:25-30.
[16] 傅菊英,姜涛,朱德庆.烧结球团学[M]. 长沙:中南大学出版社,1996.FU J Y, JIANG T, ZHU D Q. Sintering and pelletizing [M]. Changsha: Central South University Press, 1996.
FU J Y, JIANG T, ZHU D Q. Sintering and pelletizing [M]. Changsha: Central South University Press, 1996.
-