松桃地区电解锰渣制备烧结砖的实验研究

周友连, 黄雷鸣, 姬云波, 左金星, 魏祥松. 松桃地区电解锰渣制备烧结砖的实验研究[J]. 矿产综合利用, 2025, 46(3): 57-64, 96. doi: 10.12476/kczhly.202210200665
引用本文: 周友连, 黄雷鸣, 姬云波, 左金星, 魏祥松. 松桃地区电解锰渣制备烧结砖的实验研究[J]. 矿产综合利用, 2025, 46(3): 57-64, 96. doi: 10.12476/kczhly.202210200665
ZHOU Youlian, HUANG Leiming, JI Yunbo, ZUO Jinxing, WEI Xiangsong. Preparation of Sintered Brick from Electrolytic Manganese Residue in Songtao[J]. Multipurpose Utilization of Mineral Resources, 2025, 46(3): 57-64, 96. doi: 10.12476/kczhly.202210200665
Citation: ZHOU Youlian, HUANG Leiming, JI Yunbo, ZUO Jinxing, WEI Xiangsong. Preparation of Sintered Brick from Electrolytic Manganese Residue in Songtao[J]. Multipurpose Utilization of Mineral Resources, 2025, 46(3): 57-64, 96. doi: 10.12476/kczhly.202210200665

松桃地区电解锰渣制备烧结砖的实验研究

  • 基金项目: 国家自然科学基金(52104282);自然资源部矿区生态修复工程技术创新中心、中化地质矿山总局资源高效清洁利用技术研究团队联合基金(ZHTD202104)
详细信息
    作者简介: 周友连(1985-),女,高级工程师,主要从事矿产资源综合利用研究
    通讯作者: 魏祥松(1963-),男,教授级高工,主要从事选矿技术研究
  • 中图分类号: TD985;X7

Preparation of Sintered Brick from Electrolytic Manganese Residue in Songtao

More Information
  • 针对松桃地区的电解锰渣,采用页岩、石灰石和粉煤灰协同电解锰渣制备烧结砖。以松桃地区富含的页岩和石灰石及电厂粉煤灰为配矿原料,协同电解锰渣进行了成型、预热、焙烧实验。结果表明,电解锰渣掺量可为50%~70%,其掺量过高或过低均降低坯块强度。烧制过程中可通过调整温度和时间,使得固体颗粒之间形成有效固相和液相黏结,避免坯块内部应力聚集形成裂纹降低强度。冷却时应避免急冷产生的不均匀收缩和低强度玻璃相。综合考虑推荐配比为电解锰渣∶页岩∶石灰石∶粉煤灰=6∶2∶1∶1,热工制度为预热温度500 ℃,时间30 min。焙烧温度1 000 ℃,时间120 min,随炉冷却,可得平均抗压强度28.84 MPa的焙烧坯块,达到了烧结普通砖MU25的强度指标,坯块浸出毒性也满足污水综合排放标准。该研究为松桃地区电解锰渣的无害化和资源化提供了新的技术思路。

  • 加载中
  • 图 1  电解锰渣SEM

    Figure 1. 

    图 2  电解锰渣热重分析结果

    Figure 2. 

    图 3  电解锰渣掺量对焙烧坯块抗压强度的影响

    Figure 3. 

    图 4  电解锰渣掺量与焙烧坯块失重率的关系

    Figure 4. 

    图 5  预热温度对焙烧坯块抗压强度的影响

    Figure 5. 

    图 6  预热时间对焙烧坯块抗压强度的影响

    Figure 6. 

    图 7  焙烧温度对焙烧坯块抗压强度的影响

    Figure 7. 

    图 8  焙烧时间对焙烧坯块抗压强度的影响

    Figure 8. 

    图 9  冷却方式对焙烧坯块抗压强度的影响

    Figure 9. 

    表 1  主要元素组成/%

    Table 1.  Composition of major elements

    原料Al2O3CaOFe2O3MgOMnOSO42-SiO2K2ONa2OLOI
    电解锰渣12.395.124.822.383.0719.8647.482.661.1923.23
    页岩12.222.833.751.435.567.1357.302.671.9010.52
    石灰石0.09354.530.0950.4190.0300.0670.3090.0110.05443.04
    粉煤灰33.545.134.860.760.0410.44750.210.7300.2453.58
    下载: 导出CSV

    表 2  原料配比

    Table 2.  Ratio of raw materials

    序号电解锰渣页岩石灰石粉煤灰
    17111
    26211
    36121
    45311
    55221
    64411
    74141
    84231
    94321
    1071.501.5
    下载: 导出CSV

    表 3  不同原料配比对焙烧坯块强度的影响

    Table 3.  Effect of different raw material ratio on strength of roasted briquet

    序号 原料配比 焙烧块
    抗压强度/
    MPa
    焙烧过程
    中失重率/
    %
    电解锰渣 页岩 石灰石 粉煤灰
    1 7 1 1 1 21.06 26.27
    2 6 2 1 1 28.84 23.96
    3 6 1 2 1 27.79 21.67
    4 5 3 1 1 40.25 22.21
    5 5 2 2 1 29.08 21.68
    6 4 4 1 1 37.03 20.73
    7 4 1 4 1 8.21 26.47
    8 4 2 3 1 16.66 24.08
    9 4 3 2 1 32.27 21.27
    10 7 1.5 0 1.5 14.42 27.60
    下载: 导出CSV

    表 4  不同配比的烧结坯块浸出毒性检测结果/%

    Table 4.  Test results of leaching toxicity of sintered briquet with different raw material ratio

    序号硫化物氨氮SO42-
    00.115 10.001 91.257 40.048 30.064 50.167 60.000 21 439.363 10.713 30.005 80.130 30.730 3<0.02613.210 280
    10.058 10.000 30.002 60.001 40.000 50.287 80.001 40.314 60.064 10.003 60.012 00.047 90.050.051 250
    20.029 70.000 40.002 40.001 80.000 40.261 50.001 30.016 20.046 30.000 60.010 90.065 00.04<0.021 282
    30.002 70.000 20.002 50.013 30.001 30.252 90.000 90.004 10.05050.001 00.008 00.026 5<0.02<0.021 372
    40.026 80.000 50.002 40.003 20.004 10.228 50.001 20.007 40.053 30.001 70.006 90.088 2<0.02<0.021 156
    50.002 40.000 30.002 60.014 20.005 60.225 20.000 90.000 10.050 10.001 80.006 60.027 6<0.020.2211 200
    60.019 00.000 40.002 30.004 90.002 40.201 70.001 20.006 30.047 80.001 10.008 90.314 3<0.02<0.021 180
    70.000 30.000 20.005 10.181 50.016 30.513 50.000 10.000 90.140 50.009 90.060 90.019 4<0.020.12936
    80.000 30.000 30.005 10.128 90.020 70.487 60.000 10.020 10.130 20.009 20.027 20.026 7<0.020.061 232
    90.002 40.000 40.002 70.021 20.001 40.217 10.001 00.006 60.048 40.000 60.010 00.106 3<0.020.061 326
    100.458 70.000 80.004 40.001 10.012 10.122 90.000 85.595 90.037 40.003 30.002 90.062 0<0.020.06956
    下载: 导出CSV

    表 5  固相反应开始温度

    Table 5.  Starting temperature of solid phase reaction

    反应物固相反应产物开始反应的温度/℃
    2CaO+SiO22CaO·SiO2500,510,690
    2MgO+SiO22MgO·SiO2680
    SiO2+Fe2O3Fe2O3在SiO2中的固溶体575
    MgO+Fe2O3MgO·Fe2O3600
    下载: 导出CSV
  • [1]

    代典,梁欢,何东升,等. 湘西地区微细粒级难选菱锰矿浮选实验研究[J]. 矿产综合利用, 2020(4):76-81.DAI D,LIANG H,HE D S,et al. Experimental study on the flotation of a micro-grained refractory rhodochrosite in western Hunan area[J]. Multipurpose Utilization of Mineral Resources, 2020(4):76-81. doi: 10.3969/j.issn.1000-6532.2020.04.012

    DAI D,LIANG H,HE D S,et al. Experimental study on the flotation of a micro-grained refractory rhodochrosite in western Hunan area[J]. Multipurpose Utilization of Mineral Resources, 2020(4):76-81. doi: 10.3969/j.issn.1000-6532.2020.04.012

    [2]

    李勇,罗星,夏瑜. 广西某氧化锰矿选矿试验研究[J]. 矿产综合利用, 2020(5):58-62.LI Y,LUO X,XIA Y. Experimental research on mineral processing of a manganese oxide ore in Guangxi[J]. Multipurpose Utilization of mineral Resources, 2020(5):58-62.

    LI Y,LUO X,XIA Y. Experimental research on mineral processing of a manganese oxide ore in Guangxi[J]. Multipurpose Utilization of mineral Resources, 2020(5):58-62.

    [3]

    谢庭芳,罗永光,焦志良,等. 提高锌电积阳极泥中锰利用率的研究[J]. 矿产综合利用, 2021(2):137-140.XIE T F,LUO Y Z,JIAO Z L,et al. Study on improving the utilization of manganese zinc electroposition anode slime[J]. Multipurpose Utilization of Mineral Resources, 2021(2):137-140. doi: 10.3969/j.issn.1000-6532.2021.02.023

    XIE T F,LUO Y Z,JIAO Z L,et al. Study on improving the utilization of manganese zinc electroposition anode slime[J]. Multipurpose Utilization of Mineral Resources, 2021(2):137-140. doi: 10.3969/j.issn.1000-6532.2021.02.023

    [4]

    孙煜琳,李杰瑞,苏向东,等. 电解锰渣性质的研究进展及资源化利用展望[J]. 山东化工, 2022, 51(1):102-105.SUN Y L, LI R J, SU X D, et al. Research progress on properties on electrolytic manganese slag and prospect of resource utilization[J]. Shandong Chemical Industry, 2022, 51(1):102-105. doi: 10.3969/j.issn.1008-021X.2022.01.027

    SUN Y L, LI R J, SU X D, et al. Research progress on properties on electrolytic manganese slag and prospect of resource utilization[J]. Shandong Chemical Industry, 2022, 51(1):102-105. doi: 10.3969/j.issn.1008-021X.2022.01.027

    [5]

    杨远平,龙小东,何柳群. 电解金属锰渣CCD 逆流洗涤工艺研究及可行性分析[J]. 矿产综合利用, 2020(4):163-166.YANG Y P,LONG X D,HE L Q. Study on CCD countercurrent washing process of electrolytic manganese slag and its feasibility analysis[J]. Multipurpose Utilization of Mineral Resources, 2020(4):163-166. doi: 10.3969/j.issn.1000-6532.2020.04.028

    YANG Y P,LONG X D,HE L Q. Study on CCD countercurrent washing process of electrolytic manganese slag and its feasibility analysis[J]. Multipurpose Utilization of Mineral Resources, 2020(4):163-166. doi: 10.3969/j.issn.1000-6532.2020.04.028

    [6]

    杨晓红,赵东雨,薛希仕,等. 电解锰渣中锰的浸出实验研究[J]. 湿法冶金, 2022, 41(2):133-136.YANG X H, ZHAO D Y, XUE X S, et al. Leaching of manganese from electrolytic manganese residue[J]. Hydrometallurgy of China, 2022, 41(2):133-136.

    YANG X H, ZHAO D Y, XUE X S, et al. Leaching of manganese from electrolytic manganese residue[J]. Hydrometallurgy of China, 2022, 41(2):133-136.

    [7]

    刘士朋,张欢欢,程金科. 电解锰渣中氨氮的草酸浸取工艺及机理研究[J]. 硅酸盐通报, 2022, 41(2):715-724.LIU S P, ZHANG H H, CHENG J K. Technology and mechanism of leaching ammonia nitrogen from electrolytic manganese residue with oxalic acid[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(2):715-724. doi: 10.3969/j.issn.1001-1625.2022.2.gsytb202202040

    LIU S P, ZHANG H H, CHENG J K. Technology and mechanism of leaching ammonia nitrogen from electrolytic manganese residue with oxalic acid[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(2):715-724. doi: 10.3969/j.issn.1001-1625.2022.2.gsytb202202040

    [8]

    裴鑫雨,冯晓. 电解锰渣及其固化体作路基填土工程特性研究[J]. 中国锰业, 2021, 39(6):51-53+60.PEI X Y, FENG X. A study on engineering characteristics of electrolytic manganese slag and its solidified body as subgrade fill[J]. China Manganese Industry, 2021, 39(6):51-53+60.

    PEI X Y, FENG X. A study on engineering characteristics of electrolytic manganese slag and its solidified body as subgrade fill[J]. China Manganese Industry, 2021, 39(6):51-53+60.

    [9]

    赵世珍,韩凤兰,王亚光. 电解锰渣-镁制备复合矿渣硫铝酸盐水泥熟料的研究[J]. 硅酸盐通报, 2017, 36(5):1766-1722.ZHAO S Z, HAN F L, WANG Y G. Preperation of composite slag sulphoalu minate cement clinker from electrolytic manganese-magnesium[J]. Bulletin of the Chinese Ceramic Society, 2017, 36(5):1766-1722.

    ZHAO S Z, HAN F L, WANG Y G. Preperation of composite slag sulphoalu minate cement clinker from electrolytic manganese-magnesium[J]. Bulletin of the Chinese Ceramic Society, 2017, 36(5):1766-1722.

    [10]

    刘荣进,陈平,丁庆军. 锰渣掺和料对海工混凝土耐久性的影响[J]. 桂林理工大学学报, 2012, 32(2):233-239.LIU R J, CHEN P, DING Q J. Effect of manganese ferroalloy slag on marine concrete durability[J]. Journal of Guilin University of Technology., 2012, 32(2):233-239. doi: 10.3969/j.issn.1674-9057.2012.02.015

    LIU R J, CHEN P, DING Q J. Effect of manganese ferroalloy slag on marine concrete durability[J]. Journal of Guilin University of Technology., 2012, 32(2):233-239. doi: 10.3969/j.issn.1674-9057.2012.02.015

    [11]

    罗学维,石朝军,陈上,等. 电解锰渣制备轻质发泡陶瓷保温板工艺及性能研究[J]. 中国锰业, 2016, 34(6):125-129.LUO X W, SHI C J, CHEN S, et al. A process and performance research on preparation of lightweight foamed ceramic insulation boards with the EMM slag[J]. China's Manganese Industry, 2016, 34(6):125-129

    LUO X W, SHI C J, CHEN S, et al. A process and performance research on preparation of lightweight foamed ceramic insulation boards with the EMM slag[J]. China's Manganese Industry, 2016, 34(6):125-129

    [12]

    任学洪. 电解锰渣制备锰肥技术研究[J]. 中国锰业, 2017, 35(3):145-147.REN X H. A study of preparation of manganese fertilizer from EMM slag[J]. China's Manganese Industry, 2017, 35(3):145-147.

    REN X H. A study of preparation of manganese fertilizer from EMM slag[J]. China's Manganese Industry, 2017, 35(3):145-147.

    [13]

    杨震,阴泽江,杨金玉,等. 预烧温度对电解锰渣坯块烧结性能的影响[J]. 铜仁学院学报, 2018, 20(9):36-40.YANG Z, YIN Z J, YANG J Y, et al. Effect of pre-firing temperatures on sintering properties of electrolytic manganese residue compacts[J]. Journal of Tongren University, 2018, 20(9):36-40. doi: 10.3969/j.issn.1673-9639.2018.09.009

    YANG Z, YIN Z J, YANG J Y, et al. Effect of pre-firing temperatures on sintering properties of electrolytic manganese residue compacts[J]. Journal of Tongren University, 2018, 20(9):36-40. doi: 10.3969/j.issn.1673-9639.2018.09.009

    [14]

    庞泳喻,肖远祥,郭宇,等. 电解锰渣掺量及烧结温度对烧结砖试样的物理性能影响[J]. 砖瓦, 2016(3):10-14.PANG Y Y, XIAO Y X, GUO Y, et al. Effect of the content of electrolytic manganese residue and firing temperature on the properties of fired brick[J]. Brick & Tile, 2016(3):10-14. doi: 10.3969/j.issn.1001-6945.2016.03.003

    PANG Y Y, XIAO Y X, GUO Y, et al. Effect of the content of electrolytic manganese residue and firing temperature on the properties of fired brick[J]. Brick & Tile, 2016(3):10-14. doi: 10.3969/j.issn.1001-6945.2016.03.003

    [15]

    曹世璞.烧结砖生产实用技术[M].北京:中国建材工业出版社,2012:25-30.CAO S P. Practical technology of sintered brick production [M]. Beijing: China Building Materials Industry Press, 2012:25-30.

    CAO S P. Practical technology of sintered brick production [M]. Beijing: China Building Materials Industry Press, 2012:25-30.

    [16]

    傅菊英,姜涛,朱德庆.烧结球团学[M]. 长沙:中南大学出版社,1996.FU J Y, JIANG T, ZHU D Q. Sintering and pelletizing [M]. Changsha: Central South University Press, 1996.

    FU J Y, JIANG T, ZHU D Q. Sintering and pelletizing [M]. Changsha: Central South University Press, 1996.

  • 加载中

(9)

(5)

计量
  • 文章访问数:  81
  • PDF下载数:  8
  • 施引文献:  0
出版历程
收稿日期:  2022-10-20
刊出日期:  2025-06-25

目录