掺铁铝渣混凝土的抗压特性与微观结构

刘云兵, 吴非. 掺铁铝渣混凝土的抗压特性与微观结构[J]. 矿产综合利用, 2025, 46(3): 51-56. doi: 10.12476/kczhly.202209220608
引用本文: 刘云兵, 吴非. 掺铁铝渣混凝土的抗压特性与微观结构[J]. 矿产综合利用, 2025, 46(3): 51-56. doi: 10.12476/kczhly.202209220608
LIU Yunbing, WU Fei. Compression Characteristics and Microstructure of Ferric-aluminum Slag Modified Concrete[J]. Multipurpose Utilization of Mineral Resources, 2025, 46(3): 51-56. doi: 10.12476/kczhly.202209220608
Citation: LIU Yunbing, WU Fei. Compression Characteristics and Microstructure of Ferric-aluminum Slag Modified Concrete[J]. Multipurpose Utilization of Mineral Resources, 2025, 46(3): 51-56. doi: 10.12476/kczhly.202209220608

掺铁铝渣混凝土的抗压特性与微观结构

  • 基金项目: 国家自然科学基金(52078133);四川省教育厅创新创业项目(XM2-69)
详细信息
    作者简介: 刘云兵(1985-),男,硕士,讲师,研究方向为新型建筑材料
  • 中图分类号: TD983

Compression Characteristics and Microstructure of Ferric-aluminum Slag Modified Concrete

  • 通过将不同掺量的铁铝渣添加到砂浆中以制备改性混凝土。开展压缩实验、计算机断层(CT)扫描实验和电子显微镜扫描实验对掺铁铝渣混凝土进行力学性能和细观结构特征的探究。实验结果表明: 随铁铝渣掺量的增加,混凝土试件的抗压强度和弹性模量呈先升后降的变化趋势,确定铁铝渣掺量为15%是混凝土较佳改性掺量;根据混凝土的二维CT图像计算了材料的孔隙度,随着掺量增加,掺铁铝渣混凝土内孔隙度逐渐减小,孔隙度与抗压强度呈现负相关的线性关系;铁铝渣的改性作用促进了水泥砂浆的二次水化反应,使得混凝土中的Ca(OH)2含量减少,水化硅酸钙(C-S-H)的含量增加,最终引起骨料间的裂隙闭合,材料整体力学性能提升。

  • 加载中
  • 图 1  铁铝渣的矿物衍射图谱

    Figure 1. 

    图 2  混凝土应力-应变关系曲线

    Figure 2. 

    图 3  力学指标与掺量的关系

    Figure 3. 

    图 4  不同铁铝渣掺量条件下混凝土试件的灰度CT图像

    Figure 4. 

    图 5  不同铁铝渣掺量条件下的混凝土试件的彩色CT图像

    Figure 5. 

    图 6  混凝土孔隙度与掺量的关系曲线

    Figure 6. 

    图 7  混凝土抗压强度与孔隙度的关系曲线

    Figure 7. 

    图 8  混凝土中水泥砂浆的XRD

    Figure 8. 

    图 9  混凝土微观结构的SEM

    Figure 9. 

    图 10  混凝土的能谱分析结果

    Figure 10. 

    表 1  混凝土试件的配合比

    Table 1.  Mass proportion of concrete samples

    铁铝渣掺量/%单位体积的质量/(kg/m3)
    铁铝渣碎石水泥粉煤灰
    006501 050375125
    51106501 050375125
    102206501 050375125
    153306501 050355105
    204406501 050375125
    下载: 导出CSV
  • [1]

    李宇, 刘月明. 我国冶金固废大宗利用技术的研究进展及趋势[J]. 工程科学学报, 2021, 43(12):1713-1724.LI Y, LIU Y M. Progress and trend of bulk utilization technology of metallurgical solid wastes in China[J]. Journal of Engineering Science, 2021, 43(12):1713-1724. doi: 10.3321/j.issn.1001-053X.2021.12.bjkjdxxb202112012

    LI Y, LIU Y M. Progress and trend of bulk utilization technology of metallurgical solid wastes in China[J]. Journal of Engineering Science, 2021, 43(12):1713-1724. doi: 10.3321/j.issn.1001-053X.2021.12.bjkjdxxb202112012

    [2]

    郭江, 李荣. B2O3对高铝低镁渣稳定性影响研究[J]. 矿产综合利用, 2022(1):152-156.GUO J, LI R. Effect of B2O3 on high aluminum low magnesium slag stability[J]. Multipurpose Utilization of Mineral Resources, 2022(1):152-156. doi: 10.3969/j.issn.1000-6532.2022.01.020

    GUO J, LI R. Effect of B2O3 on high aluminum low magnesium slag stability[J]. Multipurpose Utilization of Mineral Resources, 2022(1):152-156. doi: 10.3969/j.issn.1000-6532.2022.01.020

    [3]

    ZHAO L H, LI Y, ZHOU Y Y, et al. Preparation of novel ceramics with high CaO content from steel slag[J]. Mater Des, 2014, 64:608. doi: 10.1016/j.matdes.2014.08.015

    [4]

    孙彦文, 郭持皓, 梁东东. 铝基废料焙烧浸出试验研究[J]. 中国资源综合利用, 2020, 38(4):13-15+21.SUN Y W, GUO C H, LIANG D D. Experimental study on roasting and leaching of aluminum base waste[J]. China Comprehensive Utilization of Resources, 2020, 38(4):13-15+21.

    SUN Y W, GUO C H, LIANG D D. Experimental study on roasting and leaching of aluminum base waste[J]. China Comprehensive Utilization of Resources, 2020, 38(4):13-15+21.

    [5]

    严照照, 张淑会, 董晓旭, 等. 高炉渣的化学成分对其微观结构影响的研究现状[J]. 矿产综合利用, 2019(1):22-27.YAN Z Z, ZHANG S H, DONG X X, et al. Research status of the influence of blast furnace slag chemical composition on its microstructure[J]. Multipurpose Utilization of Mineral Resources, 2019(1):22-27. doi: 10.3969/j.issn.1000-6532.2019.01.005

    YAN Z Z, ZHANG S H, DONG X X, et al. Research status of the influence of blast furnace slag chemical composition on its microstructure[J]. Multipurpose Utilization of Mineral Resources, 2019(1):22-27. doi: 10.3969/j.issn.1000-6532.2019.01.005

    [6]

    冯晓兰. 钠钙硅渣脱碱制备水化硅酸钙的研究[D]. 西安: 西安建筑科技大学, 2020.FENG X L. Study on preparation of calcium silicate hydrate from sodium calcium silicate slag by dealkalization [D]. Xi'an: Xi'an University of Architecture and Technology, 2020.

    FENG X L. Study on preparation of calcium silicate hydrate from sodium calcium silicate slag by dealkalization [D]. Xi'an: Xi'an University of Architecture and Technology, 2020.

    [7]

    肖颖, 雷勇. ICP-AES法测定高钛渣中氧化钙、氧化镁、三氧化二铝等元素[J]. 矿产综合利用, 2019(3):89-92.XIAO Y, LEI Y. Determination of calcium oxide, magnesium oxide and aluminum oxide in high titanium slag by ICP-AES[J]. Multipurpose Utilization of Mineral Resources, 2019(3):89-92. doi: 10.3969/j.issn.1000-6532.2019.03.020

    XIAO Y, LEI Y. Determination of calcium oxide, magnesium oxide and aluminum oxide in high titanium slag by ICP-AES[J]. Multipurpose Utilization of Mineral Resources, 2019(3):89-92. doi: 10.3969/j.issn.1000-6532.2019.03.020

    [8]

    薛守宁. 高碳铬铁渣替代天然骨料配制混凝土实验研究[J]. 人民长江, 2022, 53(S1):107-110+137.XUE S N. Experimental study on concrete preparation with high carbon ferrochrome slag instead of natural aggregate[J]. Yangtz River, 2022, 53(S1):107-110+137.

    XUE S N. Experimental study on concrete preparation with high carbon ferrochrome slag instead of natural aggregate[J]. Yangtz River, 2022, 53(S1):107-110+137.

    [9]

    刘宏敏. 铝渣骨材作为混凝土粗细骨材再利用的研究[J]. 硅酸盐通报, 2016, 35(2):655-659+669.LIU H M. Research on reuse of aluminum slag aggregate as thick and fine concrete aggregate[J]. Bulletin of the Chinese Ceramics, 2016, 35(2):655-659+669.

    LIU H M. Research on reuse of aluminum slag aggregate as thick and fine concrete aggregate[J]. Bulletin of the Chinese Ceramics, 2016, 35(2):655-659+669.

    [10]

    祁皑, 刘旭宏, 黄增楠, 等. 掺复合镍铁渣混凝土梁柱中节点承载力分析[J]. 混凝土, 2022(6):45-50.QI A, LIU X H, HUANG Z N, et al. Analysis of bearing capacity of middle joint of concrete beam and column mixed with composite nickel-iron slag[J]. Concrete, 2022(6):45-50. doi: 10.3969/j.issn.1002-3550.2022.06.009

    QI A, LIU X H, HUANG Z N, et al. Analysis of bearing capacity of middle joint of concrete beam and column mixed with composite nickel-iron slag[J]. Concrete, 2022(6):45-50. doi: 10.3969/j.issn.1002-3550.2022.06.009

    [11]

    丁先山, 宋凯强, 柳东. 镍铁渣微粉单掺及与粉煤灰复掺对混凝土性能的影响[J]. 水泥工程, 2016(2):83-86+90.DING X S, SONG K Q, LIU D. Effect of single addition of nickel-iron slag and fly ash on concrete performance[J]. Cement Engineering, 2016(2):83-86+90.

    DING X S, SONG K Q, LIU D. Effect of single addition of nickel-iron slag and fly ash on concrete performance[J]. Cement Engineering, 2016(2):83-86+90.

    [12]

    高艳宏. 含硼高炉钛渣粘性特征与结构的研究 [D]. 重庆: 重庆大学, 2012.GAO Y H. Study on viscosity characteristics and structure of titanium slag from BF containing boron[D]. Chongqing: Chongqing University, 2012.

    GAO Y H. Study on viscosity characteristics and structure of titanium slag from BF containing boron[D]. Chongqing: Chongqing University, 2012.

    [13]

    LI Y, DAI W B. Modifying hot slag and converting it into valueadded materials: A review[J]. J Clean Prod, 2018, 175:176. doi: 10.1016/j.jclepro.2017.11.171

    [14]

    崔自治, 陈东东, 张程. 镁渣粉煤灰复掺配制混凝土的自收缩特性[J]. 硅酸盐通报, 2017, 36(3):759-764.CUI Z Z, CHEN D D, ZHANG C. Self-shrinkage characteristics of concrete mixed with magnesium slag and fly ash[J]. Bulletin of the Chinese Ceramics, 2017, 36(3):759-764.

    CUI Z Z, CHEN D D, ZHANG C. Self-shrinkage characteristics of concrete mixed with magnesium slag and fly ash[J]. Bulletin of the Chinese Ceramics, 2017, 36(3):759-764.

  • 加载中

(10)

(1)

计量
  • 文章访问数:  50
  • PDF下载数:  16
  • 施引文献:  0
出版历程
收稿日期:  2022-09-22
刊出日期:  2025-06-25

目录