Research Progress of Deep Eutectic Solvents in the Recycling of Spent Lithium-ion Batteries
-
摘要:
随着电动汽车、储能等产业的快速发展,锂离子电池需求快速增长,随之而来其报废量也日益增长,高效资源化回收废旧锂离子电池成为我国目前亟须解决的重大问题。废旧锂离子电池目前主要采用的火法冶金、湿法冶金和修复再生等方法都存在各自的不足,亟须更加绿色高效的回收处理方法。低共熔溶剂因具备热稳定性、易合成和毒性弱等优点,在废锂离子电池回收方面展现出独特优势。详细介绍了低共熔溶剂在废旧锂离子电池正极材料浸出、解离和修复再生方面的研究进展,阐述了有价金属的浸出机理,最后展望了低共熔溶剂在废旧锂离子电池资源化回收方面的发展趋势。
Abstract:With the rapid development of electric vehicles, energy storage and other industries, the demand for lithium-ion batteries is growing rapidly, and the amount of their disposal is also increasing, and the efficient resource recovery of spent lithium-ion batteries has become a major problem that needs to be solved in China. The current methods of pyrometallurgy, hydrometallurgy and repair and regeneration of spent lithium-ion batteries have their own shortcomings, and there is an urgent need for greener and more efficient recycling and treatment methods. Deep eutectic solvents have unique advantages in the recycling of spent lithium-ion batteries due to their thermal stability, easy synthesis and low toxicity. In this paper, the research progress of deep eutectic solvents in leaching, dissociation and repair and regeneration of cathode materials of spent lithium-ion batteries is introduced in detail, the leaching mechanism of valuable metals is elaborated, and finally the development trend of deepeutectic solvents in the resource recycling of spent lithium-ion batteries is anticipated.
-
-
表 1 季铵盐型DES浸出有价金属对比
Table 1. Comparison of quaternary ammonium DES leaching of valuable metals
DES 浸出对象 浸出条件 浸出率/% 参考文献 Li Ni Mn Co ChCl/EG LCO 220 ℃,24 h - - - 99.3 [16] ChCl/urea/EG NCM 100 ℃,L/S=9.69 92.8 0.72 0.42 1.61 [24] ChCl/PTSA·2H2O/EG NCM 70 ℃、10 min 97.9 98 .5 96.9 98.9 [25] ChCl/OA LCO 90 ℃,2 h - - - 100 [26] ChCl/CA LCO 40 ℃,60 min,S/L=20 - - - 98 [27] ChCl/BSA/EG LCO 90 ℃,2 h,S/L=20 99 - - 98 [28] ChCl/LA LCO 105 ℃,24 h 100 - - 100 [29] ChCl/PA LCO 100 ℃ 98.7 - - 98.6 [30] ChCl/LAA NCM 50 ℃,1 h,S/L=1:20 >96 [31] ChCl/TA NCM 70 ℃ 77 >98.5 [32] *urea:尿素;BSA:苯磺酸;LA:乳酸;PA:丙二酸;TA:酒石酸 表 2 不同DES浸出金属离子对比
Table 2. Comparison of different DES leaching metal ions
DES 浸出对象 浸出条件 浸出率/% 参考文献 Li Ni Mn Co BeCl/EG NCM 140 ℃,20 min 90.9 93.0 93.0 82.4 [33] BeCl/CA NCM 80 ℃,30 min 99.8 99.1 99.2 98.8 [34] PEG200/IP6 LCO 80 ℃,24 h 98.0 - - 98.0 [35] EG/CA NCM 90 ℃,10 h,S/L=15 99.1 97.6 98.3 96.2 [36] EG/TA NCM 120 ℃,12 h,20 g/L 98.3 3.6 3.0 1.9 [37] EG/SAD LCO 110 ℃,6 h,S/L=40 98.3 - - 93.5 [38] NCM 100.0 99.1 100.0 94.8 注:IP6为植酸。 -
[1] Cerrillo-Gonzalez M M, Villen-Guzman M, Vereda-Alonso C, et al. Acid leaching of LiCoO2 enhanced by reducing agent. Model formulation and validation[J]. Chemosphere, 2022, 287:132020. doi: 10.1016/j.chemosphere.2021.132020
[2] Or T, Gourley S W D, Kaliyappan K, et al. Recycling of mixed cathode lithium‐ion batteries for electric vehicles: Current status and future outlook[J]. Carbon Energy, 2020, 2(1):6-43. doi: 10.1002/cey2.29
[3] Niu B, Xiao J, Xu Z. Advances and challenges in anode graphite recycling from spent lithium-ion batteries[J]. Journal of Hazardous Materials, 2022, 439:129678. doi: 10.1016/j.jhazmat.2022.129678
[4] Chitre A, Freake D, Lander L, et al. Towards a more sustainable lithium‐ion battery future: recycling libs from electric vehicles[J]. Batteries & Supercaps, 2020, 3(11):1126-1136.
[5] Zhou R, Shen S, Zhong Y, et al. Co-construction of advanced sulfur host by implanting titanium carbide into Aspergillus niger spore carbon[J]. Chinese Chemical Letters, 2022, 33(8):3981-3986. doi: 10.1016/j.cclet.2021.11.032
[6] Wang C, Li Y, Zhang Y, et al. Integrating a 3D porous carbon fiber network containing cobalt with artificial solid electrolyte interphase to consummate advanced electrodes for lithium–sulfur batteries[J]. Materials Today Energy, 2022, 24:100930. doi: 10.1016/j.mtener.2021.100930
[7] Ren G, Liao C, Liu Z, et al. Lithium and manganese extraction from manganese-rich slag originated from pyrometallurgy of spent lithium-ion battery[J]. Transactions of Nonferrous Metals Society of China, 2022, 32(8):2746-2756. doi: 10.1016/S1003-6326(22)65981-8
[8] Li S, Wu X, Jiang Y, et al. Novel electrochemically driven and internal circulation process for valuable metals recycling from spent lithium-ion batteries[J]. Waste Management, 2021, 136:18-27. doi: 10.1016/j.wasman.2021.09.023
[9] 关杰, 张韬, 苏瑞景, 等. 废弃PVC辅助氯化焙烧高效回收废旧锂离子电池正极材料[J]. 环境工程, 2021, 39(6):122-127+136.GUAN J, ZHANG T, SU R J, et al. Efficient recovery of used lithium-ion battery cathode materials by assisted chlorination roasting of waste PVC[J]. Environmental Engineering, 2021, 39(6):122-127+136.
GUAN J, ZHANG T, SU R J, et al. Efficient recovery of used lithium-ion battery cathode materials by assisted chlorination roasting of waste PVC[J]. Environmental Engineering, 2021, 39(6):122-127+136.
[10] Vieceli N, Nogueira C A, Guimarães C, et al. Hydrometallurgical recycling of lithium-ion batteries by reductive leaching with sodium metabisulphite[J]. Waste Management, 2018, 71:350-361. doi: 10.1016/j.wasman.2017.09.032
[11] 张笑天, 徐璐, 黄斌, 等. 废旧磷酸铁锂电池回收利用研究与产业化现状[J]. 矿产综合利用, 2023(4):95-102+113.ZHANG X T, XU L, HUANG B, et al. Current status of research and industrialization of recycling of waste lithium iron phosphate batteries[J]. Multipurpose Utilization of Mineral Resources, 2023(4):95-102+113. doi: 10.3969/j.issn.1000-6532.2023.04.015
ZHANG X T, XU L, HUANG B, et al. Current status of research and industrialization of recycling of waste lithium iron phosphate batteries[J]. Multipurpose Utilization of Mineral Resources, 2023(4):95-102+113. doi: 10.3969/j.issn.1000-6532.2023.04.015
[12] Wu Z, Soh T, Chan J J, et al. Repurposing of fruit peel waste as a green reductant for recycling of spent lithium-ion batteries[J]. Environmental Science & Technology, 2020, 54(15):9681-9692.
[13] Neumann J, Petranikova M, Meeus M, et al. Recycling of lithium‐ion batteriescurrent state of the art, circular economy, and next generation recycling[J]. Advanced Energy Materials, 2022, 12(17):2102917. doi: 10.1002/aenm.202102917
[14] Shi Y, Chen G, Chen Z. Effective regeneration of LiCoO2 from spent lithium-ion batteries: a direct approach towards high-performance active particles[J]. Green Chemistry, 2018, 20(4):851-862. doi: 10.1039/C7GC02831H
[15] Sloop S, Crandon L, Allen M, et al. A direct recycling case study from a lithium-ion battery recall[J]. Sustainable Materials and Technologies, 2020, 25:e00152. doi: 10.1016/j.susmat.2020.e00152
[16] Tran M K, Rodrigues M T F, Kato K, et al. Deep eutectic solvents for cathode recycling of Li-ion batteries[J]. Nature Energy, 2019, 4(4):339-345. doi: 10.1038/s41560-019-0368-4
[17] Abbott A P, Capper G, Davies D L, et al. Novel solvent properties of choline chloride/urea mixtures[J]. Chemical Communications, 2003(1):70-71. doi: 10.1039/b210714g
[18] Pateli I M, Abbott A P, Jenkin G R T, et al. Electrochemical oxidation as alternative for dissolution of metal oxides in deep eutectic solvents[J]. Green Chemistry, 2020, 22(23):8360-8368. doi: 10.1039/D0GC03491F
[19] Hansen B B, Spittle S, Chen B, et al. Deep eutectic solvents: A review of fundamentals and applications[J]. Chemical Reviews, 2020, 121(3):1232-1285.
[20] Zhang Q, Vigier K D O, Royer S, et al. Deep eutectic solvents: syntheses, properties and applications[J]. Chemical Society Reviews, 2012, 41(21):7108-7146. doi: 10.1039/c2cs35178a
[21] Zhang Y, Zhu C, Fu T, et al. CO2 absorption performance of ChCl-MEA deep eutectic solvent in microchannel[J]. Journal of Environmental Chemical Engineering, 2022, 10(6):108792. doi: 10.1016/j.jece.2022.108792
[22] Jiang J, Yan C, Zhao X, et al. A PEGylated deep eutectic solvent for controllable solvothermal synthesis of porous NiCo2S4 for efficient oxygen evolution reaction[J]. Green Chemistry, 2017, 19(13):3023-3031. doi: 10.1039/C7GC01012E
[23] Smith E L, Abbott A P, Ryder K S. Deep eutectic solvents (DESs) and their applications[J]. Chemical Reviews, 2014, 114(21):11060-11082. doi: 10.1021/cr300162p
[24] Jafari M, Shafaie S Z, Abdollahi H, et al. A green approach for selective ionometallurgical separation of lithium from spent Li-ion batteries by deep eutectic solvent (DES): Process optimization and kinetics modeling[J]. Mineral Processing and Extractive Metallurgy Review, 2023, 44(3):218-230. doi: 10.1080/08827508.2022.2042282
[25] Chen L, Chao Y, Li X, et al. Engineering a tandem leaching system for the highly selective recycling of valuable metals from spent Li-ion batteries[J]. Green Chemistry, 2021, 23(5):2177-2184. doi: 10.1039/D0GC03820B
[26] Li T, Xiong Y, Yan X, et al. Closed-loop cobalt recycling from spent lithium-ion batteries based on a deep eutectic solvent (DES) with easy solvent recovery[J]. Journal of Energy Chemistry, 2022, 72:532-538. doi: 10.1016/j.jechem.2022.05.008
[27] Peeters N, Binnemans K, Riaño S. Solvometallurgical recovery of cobalt from lithium-ion battery cathode materials using deep-eutectic solvents[J]. Green Chemistry, 2020, 22(13):4210-4221. doi: 10.1039/D0GC00940G
[28] Liao Y, Gong S, Wang G, et al. A novel ternary deep eutectic solvent for efficient recovery of critical metals from spent lithium-ion batteries under mild conditions[J]. Journal of Environmental Chemical Engineering, 2022, 10(6):108627. doi: 10.1016/j.jece.2022.108627
[29] Morina R, Callegari D, Merli D, et al. Cathode active material recycling from spent lithium batteries: a green (circular) approach based on deep eutectic solvents[J]. ChemSusChem, 2022, 15(2):e202102080. doi: 10.1002/cssc.202102080
[30] Lu B, Du R, Wang G, et al. High-efficiency leaching of valuable metals from waste Li-ion batteries using deep eutectic solvents[J]. Environmental Research, 2022, 212:113286. doi: 10.1016/j.envres.2022.113286
[31] Hua Y, Sun Y, Yan F, et al. Ionization potential-based design of deep eutectic solvent for recycling of spent lithium ion batteries[J]. Chemical Engineering Journal, 2022, 436:133200. doi: 10.1016/j.cej.2021.133200
[32] Ma C, Svärd M, Forsberg K. Recycling cathode material LiCo1/3Ni1/3Mn1/3O2 by leaching with a deep eutectic solvent and metal recovery with antisolvent crystallization[J]. Resources, Conservation and Recycling, 2022, 186:106579. doi: 10.1016/j.resconrec.2022.106579
[33] Luo Y, Ou L, Yin C. A green and efficient combination process for recycling spent lithium-ion batteries[J]. Journal of Cleaner Production, 2023, 396:136552. doi: 10.1016/j.jclepro.2023.136552
[34] Luo Y, Ou L, Yin C. Extraction of precious metals from used lithium-ion batteries by a natural deep eutectic solvent with synergistic effects[J]. Waste Management, 2023, 164:1-8. doi: 10.1016/j.wasman.2023.03.031
[35] 陈钰, 赵娣, 郭雨婷, 等. 一种利用植酸型低共熔溶剂温和高效溶解锂离子电池正极材料的方法: 中国, CN202210215151.3[P].CHEN Y, ZHAO D, GUO Y T, et al. A method of mildly and efficiently dissolving lithium-ion battery cathode materials using a phytic acid-type low eutectic solvent: China, CN202210215151.3 [P].
CHEN Y, ZHAO D, GUO Y T, et al. A method of mildly and efficiently dissolving lithium-ion battery cathode materials using a phytic acid-type low eutectic solvent: China, CN202210215151.3 [P].
[36] Zeng G, Yao J, Liu C, et al. Simultaneous recycling of critical metals and aluminum foil from waste LiNi1/3Co1/3Mn1/3O2 cathode via ethylene glycol–citric acid system[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(48):16133-16142.
[37] Yang Z, Tang S, Huo X, et al. A novel green deep eutectic solvent for one-step selective separation of valuable metals from spent lithium batteries: Bifunctional effect and mechanism[J]. Environmental Research, 2023: 116337.
[38] Tang S, Zhang M, Guo M. A novel deep-eutectic solvent with strong coordination ability and low viscosity for efficient extraction of valuable metals from spent lithium-ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(2):975-985.
[39] Wang K, Hu T, Shi P, et al. Efficient recovery of value metals from spent lithium-ion batteries by combining deep eutectic solvents and coextraction[J]. ACS Sustainable Chemistry & Engineering, 2021, 10(3):1149-1159.
[40] Wang S, Zhang Z, Lu Z, et al. A novel method for screening deep eutectic solvent to recycle the cathode of Li-ion batteries[J]. Green Chemistry, 2020, 22(14):4473-4482. doi: 10.1039/D0GC00701C
[41] 蔡玉荣, 何 涛, 甄爱钢, 等. 一种浸出废旧三元锂离子电池正极材料中有价金属的低共熔溶剂及制备方法和浸出方法: 中国, 202310083115.0[P].CAI Y R, HE T, ZHEN A G, et al. A low eutectic solvent for leaching valent metals from cathode materials of used ternary lithium-ion batteries and a preparation method and leaching method: China, 202310083115.0[P].
CAI Y R, HE T, ZHEN A G, et al. A low eutectic solvent for leaching valent metals from cathode materials of used ternary lithium-ion batteries and a preparation method and leaching method: China, 202310083115.0[P].
[42] Huang F, Li T, Yan X, et al. Ternary deep eutectic solvent (DES) with a regulated rate-determining step for efficient recycling of lithium cobalt oxide[J]. Acs Omega, 2022, 7(13):11452-11459. doi: 10.1021/acsomega.2c00742
[43] He X, Wen Y, Wang X, et al. Leaching NCM cathode materials of spent lithium-ion batteries with phosphate acid-based deep eutectic solvent[J]. Waste Management, 2023, 157:8-16. doi: 10.1016/j.wasman.2022.11.044
[44] Luo Y, Yin C, Ou L. Recycling of waste lithium-ion batteries via a one-step process using a novel deep eutectic solvent[J]. Science of The Total Environment, 2023: 166095.
[45] Chen Y, Lu Y, Liu Z, et al. Efficient dissolution of lithium-ion batteries cathode LiCoO2 by polyethylene glycol-based deep eutectic solvents at mild temperature[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(31):11713-11720.
[46] Tang S, Feng J, Su R, et al. New bifunctional deep-eutectic solvent for in situ selective extraction of valuable metals from spent lithium batteries[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(26):8423-8432.
[47] Padwal C, Pham H D, Jadhav S, et al. Deep eutectic solvents: green approach for cathode recycling of li‐ion batteries[J]. Advanced Energy and Sustainability Research, 2022, 3(1):2100133. doi: 10.1002/aesr.202100133
[48] Luo Y, Yin C, Ou L, et al. Highly efficient dissolution of the cathode materials of spent Ni–Co–Mn lithium batteries using deep eutectic solvents[J]. Green Chemistry, 2022, 24(17):6562-6570. doi: 10.1039/D2GC01431A
[49] Tian Y, Chen W, Zhang B, et al. A Weak Acidic and Strong Coordinated Deep Eutectic Solvent for Recycling of Cathode from Spent Lithium-Ion Batteries[J]. ChemSusChem, 2022, 15(16):e202200524. doi: 10.1002/cssc.202200524
[50] Wang M, Tan Q, Liu L, et al. A low-toxicity and high-efficiency deep eutectic solvent for the separation of aluminum foil and cathode materials from spent lithium-ion batteries[J]. Journal of Hazardous Materials, 2019, 380:120846. doi: 10.1016/j.jhazmat.2019.120846
[51] 王海锋, 牛家慧, 郝娟, 等. 采用低共熔溶剂分离废旧锂离子电池正极材料的回收方法: 中国, CN202211088095.8[P].WANG H F, NIU J H, HAO J, et al. Recycling method for separating cathode materials of used lithium ion batteries using low eutectic solvents: China, CN202211088095.8 [P].
WANG H F, NIU J H, HAO J, et al. Recycling method for separating cathode materials of used lithium ion batteries using low eutectic solvents: China, CN202211088095.8 [P].
[52] Hua Y, Xu Z, Zhao B, et al. Efficient separation of electrode active materials and current collector metal foils from spent lithium-ion batteries by a green deep eutectic solvent[J]. Green Chemistry, 2022, 24(20):8131-8141. doi: 10.1039/D2GC02844A
[53] 周光敏, 梁正, 王俊雄, 等. 失效锂离子电池正极材料修复方法、再生正极材料及应用: 中国, CN202110691278.8[P].ZHOU G M, LIANG Z, WANG J X, et al. Failed lithium ion battery cathode material repair method, regenerated cathode material and application: China, CN202110691278.8[P].
ZHOU G M, LIANG Z, WANG J X, et al. Failed lithium ion battery cathode material repair method, regenerated cathode material and application: China, CN202110691278.8[P].
[54] Wang J, Zhang Q, Sheng J, et al. Direct and green repairing of degraded LiCoO2 for reuse in lithium-ion batteries[J]. National Science Review, 2022, 9(8):nwac097. doi: 10.1093/nsr/nwac097
[55] Fei Z, Su Y, Meng Q, et al. Direct regeneration of spent cathode materials by deep eutectic solvent[J]. Energy Storage Materials, 2023: 102833.
-