Status of Carbon Dioxide Utilization Technology and Analysis of Coal-based Solid Waste Mineralization Utilization
-
摘要:
碳减排和碳中和技术成为当前研究人员关注的热点,综述了国内外二氧化碳利用技术,介绍了二氧化碳地质封存利用技术,阐述了二氧化碳生物应用技术,论述了以二氧化碳为原料生产一系列高附加值产品的技术路径,重点论述了二氧化碳与煤基固废综合利用技术。电石渣、煤矸石、气化渣、粉煤灰等通过矿化技术,可生产优质环保型建筑材料,以及代替蒸汽养护。借助二氧化碳矿化能够生产一系列满足强度和耐久性要求的绿色建材产品,将煤基固废和二氧化碳结合,实现废弃物的资源化利用,对保障未来经济社会的可持续发展具有非常重要的意义。
Abstract:Carbon emission reduction and carbon neutralization technology have become the focus of current researchers. This paper summarizes the utilization technology of carbon dioxide at home and abroad, introduces the geological storage and utilization technology of carbon dioxide, expounds the biological application technology of carbon dioxide, discusses the technical path of producing a series of high value-added products with carbon dioxide as raw materials, and focuses on the comprehensive utilization technology of carbon dioxide and coal-based solid waste.Through mineralization technology, carbide slag, coal gangue, gasification slags, fly ash, etc. can produce high-quality environment-friendly building materials and replace steam curing. With the help of carbon dioxide mineralization, a series of green building materials products that meet the requirements of strength and durability can be produced, and coal-based solid waste and carbon dioxide can be combined to realize the resource utilization of waste, which is of great significance to ensure the sustainable development of the future economy and society.
-
-
表 1 CCUS技术地质能源利用
Table 1. CCUS technical geological energy utilization
技术途径 减碳容量/×108 t 产品名称 P50产量 P10 P50 P90 P10 P50 P90 CO2强化石油开采 — 47.6 — 原油(亿t) — 14.4 — CO2驱替煤层气 65 114 148 煤层气(m3) 2 880 5 080 6 590 CO2强化天然气开采 — 40.2 — 天然气(m3) 647 CO2强化页岩气开采 393 693 899 页岩气(m3) 66 300 117 000 152 000 CO2强化地热开采 8.1 29 106 地热(亿J) 2.2×107 5.8×107 1.5×108 CO2铀矿地浸开采 0.457 1.577 5.463 铀(万t) 6.5 7.8 9.1 CO2强化深部咸水开采 12 090 24 170 41 300 咸水(万t) 12 100 31 400 66 100 表 2 混凝土养护方法对比
Table 2. Comparison of concrete curing methods
养护方法 养护压力/
MPa养护温度/
℃时间 备注 自然养护 0.1 20~25 7~28 d 过程缓慢 蒸压养护 0.8 175 ≥5 h 能耗高 矿化养护 1~1.5 40 2~4 h 二氧化碳资源化利用 -
[1] 周天军,陈梓明,陈晓龙,等. IPCC AR6报告解读:未来的全球气候-基于情景的预估和近期信息[J]. 气候变化研究进展, 2021, 17(6):652-663.ZHOU T J, CHEN Z M, CHEN X L, et al. Interpreting IPCC AR6: future global climate based on projection under scenarios and on near-term information[J]. Climate Change Research., 2021, 17(6):652-663.
ZHOU T J, CHEN Z M, CHEN X L, et al. Interpreting IPCC AR6: future global climate based on projection under scenarios and on near-term information[J]. Climate Change Research., 2021, 17(6):652-663.
[2] 李政,陈思源,董文娟,等. 现实可行且成本可负担的中国电力低碳转型路径[J]. 洁净煤技术, 2021(2):1-7.LI Z, CHEN S Y, DONG W J, et al. Feasible and affordable pathways to low-carbon power transition in China[J]. Clean Coal Technology, 2021(2):1-7.
LI Z, CHEN S Y, DONG W J, et al. Feasible and affordable pathways to low-carbon power transition in China[J]. Clean Coal Technology, 2021(2):1-7.
[3] 周天军,陈晓龙. 《巴黎协定》温控目标下未来碳排放空间的准确估算问题辨析[J]. 中国科学院院刊, 2022(2):216-229.ZHOU T J, CHEN X L. Perspective on challenges in accurately estimating remaining carbon budget for climate targets of paris agreement[J]. Bulletin of Chinese Academy of Sciences, 2022(2):216-229.
ZHOU T J, CHEN X L. Perspective on challenges in accurately estimating remaining carbon budget for climate targets of paris agreement[J]. Bulletin of Chinese Academy of Sciences, 2022(2):216-229.
[4] 苏健,梁英波,丁麟,等. 碳中和目标下我国能源发展战略探讨[J]. 中国科学院院刊, 2021, 36(9):1001-1009.SU J, LIANG Y B, DING L, et al. Research on China's energy development strategy under carbon neutrality[J]. Bulletin of the Chinese Academy of Sciences, 2021, 36(9):1001-1009.
SU J, LIANG Y B, DING L, et al. Research on China's energy development strategy under carbon neutrality[J]. Bulletin of the Chinese Academy of Sciences, 2021, 36(9):1001-1009.
[5] 舒印彪,张丽英,张运洲,等. 我国电力碳达峰、碳中和路径研究[J]. 中国工程科学, 2021(6):1-14.SHU Y B, ZHANG L Y, ZHANG Y Z, et al. Carbon peak and carbon neutrality path for China’s power industry[J]. Strategic Study of CAE, 2021(6):1-14.
SHU Y B, ZHANG L Y, ZHANG Y Z, et al. Carbon peak and carbon neutrality path for China’s power industry[J]. Strategic Study of CAE, 2021(6):1-14.
[6] 魏宁,刘胜男,李桂菊,等. CCUS对中国粗钢生产的碳减排潜力评估[J]. 中国环境科学, 2021(12):5866-5874.WEI N, LIU S N, LI G J, et al. Mitigation potential evaluation of CO2 capture and storage in crude steel industries of China[J]. China Environmental Science, 2021(12):5866-5874. doi: 10.3969/j.issn.1000-6923.2021.12.043
WEI N, LIU S N, LI G J, et al. Mitigation potential evaluation of CO2 capture and storage in crude steel industries of China[J]. China Environmental Science, 2021(12):5866-5874. doi: 10.3969/j.issn.1000-6923.2021.12.043
[7] 袁闪闪,陈潇君,杜艳春,等. 中国建筑领域CO2排放达峰路径研究[J]. 环境科学研究, 2022(2):394-404.YUAN S S, CHEN X J, DU Y C, et al. Pathway of carbon emission peak of China's building sector[J]. Research of Environmental Sciences, 2022(2):394-404.
YUAN S S, CHEN X J, DU Y C, et al. Pathway of carbon emission peak of China's building sector[J]. Research of Environmental Sciences, 2022(2):394-404.
[8] 何振嘉,罗林涛,杜宜春,等. 碳中和背景下矿区生态修复减排增汇实现对策[J]. 矿产综合利用, 2022(2):9-14.HE Z J, LUO L T, DU Y C, et al. Countermeasures to realize ecological restoration and emission reduction and increase of sinks in mining areas under the background of carbon neutrality[J]. Multipurpose Utilization of Mineral Resources, 2022(2):9-14. doi: 10.3969/j.issn.1000-6532.2022.02.002
HE Z J, LUO L T, DU Y C, et al. Countermeasures to realize ecological restoration and emission reduction and increase of sinks in mining areas under the background of carbon neutrality[J]. Multipurpose Utilization of Mineral Resources, 2022(2):9-14. doi: 10.3969/j.issn.1000-6532.2022.02.002
[9] 江涛,魏小娟,王胜平,等. 固体吸附剂捕集CO2的研究进展[J]. 洁净煤技术, 2022(1):42-57.JIANG T, WEI X J, WANG S P, et al. Research progress on solid sorbents for CO2 capture[J]. Clean Coal Technology, 2022(1):42-57.
JIANG T, WEI X J, WANG S P, et al. Research progress on solid sorbents for CO2 capture[J]. Clean Coal Technology, 2022(1):42-57.
[10] 曾荣树,石晓闪,肖建新,等. 煤化工产业与二氧化碳地质封存[J]. 洁净煤技术, 2014(5):1-5,8.ZENG R S, SHI X S, XIAO J X, et al. Coal chemical industry and geological storage of carbon dioxide in China[J]. Clean Coal Technology, 2014(5):1-5,8.
ZENG R S, SHI X S, XIAO J X, et al. Coal chemical industry and geological storage of carbon dioxide in China[J]. Clean Coal Technology, 2014(5):1-5,8.
[11] 刘道杰,史英,轩玲玲,等. 特高含水油藏开发后期深部调驱+二氧化碳吞吐技术[J]. 特种油气藏, 2018(2):65-69.LIU D J, SHI Y, XUAN L L, et al. In-depth profile control and carbon dioxide huff-puff in the late stage of ultra-high water-cut oil reservoir development[J]. Special Oil & Gas Reservoirs, 2018(2):65-69. doi: 10.3969/j.issn.1006-6535.2018.02.012
LIU D J, SHI Y, XUAN L L, et al. In-depth profile control and carbon dioxide huff-puff in the late stage of ultra-high water-cut oil reservoir development[J]. Special Oil & Gas Reservoirs, 2018(2):65-69. doi: 10.3969/j.issn.1006-6535.2018.02.012
[12] 叶航,刘琦,彭勃. 基于二氧化碳驱油技术的碳封存潜力评估研究进展[J]. 洁净煤技术, 2021(2):107-116.YE H, LIU Q, PENG B. Research progress in evaluation of carbon storage potential based on CO2 flooding technology[J]. Clean Coal Technology, 2021(2):107-116.
YE H, LIU Q, PENG B. Research progress in evaluation of carbon storage potential based on CO2 flooding technology[J]. Clean Coal Technology, 2021(2):107-116.
[13] 苏佳纯,肖钢. 利用微生物促进煤层间CO2甲烷化的新方法[J]. 煤炭转化, 2013(4):90-93.SU J C, XIAO G. A proposed pathway to stimulate biogenic methane production from coal and injected carbon dioxide[J]. Coal Conversion, 2013(4):90-93. doi: 10.3969/j.issn.1004-4248.2013.04.020
SU J C, XIAO G. A proposed pathway to stimulate biogenic methane production from coal and injected carbon dioxide[J]. Coal Conversion, 2013(4):90-93. doi: 10.3969/j.issn.1004-4248.2013.04.020
[14] 张青林,周义朋,穆志军,等. CO2+O2地浸采铀强化浸出试验[J]. 有色金属(冶炼部分), 2020(12):48-53.ZHANG Q L, ZHOU Y P, MU Z J, et al. Field trial on enhanced in-situ leaching of uranium by CO2+O2 leaching[J]. Nonferrous Metals(Extractive Metallurgy), 2020(12):48-53.
ZHANG Q L, ZHOU Y P, MU Z J, et al. Field trial on enhanced in-situ leaching of uranium by CO2+O2 leaching[J]. Nonferrous Metals(Extractive Metallurgy), 2020(12):48-53.
[15] 张骞,夏彧,伍皓,等. 云南煤系铀资源潜力分析与典型矿床铀赋存状态研究[J]. 矿产综合利用, 2021(5):106-112.ZHANG Q,XIA Y,WU H,et al. Potential analysis of uranium resources in coal measures and study on uranium occurrences of typical ore deposits in Yunnan Province[J]. Multipurpose Utilization of Mineral Resources, 2021(5):106-112. doi: 10.3969/j.issn.1000-6532.2021.05.016
ZHANG Q,XIA Y,WU H,et al. Potential analysis of uranium resources in coal measures and study on uranium occurrences of typical ore deposits in Yunnan Province[J]. Multipurpose Utilization of Mineral Resources, 2021(5):106-112. doi: 10.3969/j.issn.1000-6532.2021.05.016
[16] 樊贵县. 二氧化碳地质封存大气监测系统及监测分析研究[D]. 西安:西安科技大学, 2016.FAN G X.Research on atmospheric monitoring system and monitoring analysis of carbon dioxide geological storage [D]. Xi'an: Xi'an University of Science and Technology, 2016.
FAN G X.Research on atmospheric monitoring system and monitoring analysis of carbon dioxide geological storage [D]. Xi'an: Xi'an University of Science and Technology, 2016.
[17] 周颖,蔡博峰,曹丽斌,等. 中国碳封存项目的环境应急管理研究[J]. 环境工程, 2018(2):1-5.ZHOU Y, CAI B F, CAO L B. Study on environmental emergency management of China's carbon sequestration projects[J]. Environmental Engineering, 2018(2):1-5.
ZHOU Y, CAI B F, CAO L B. Study on environmental emergency management of China's carbon sequestration projects[J]. Environmental Engineering, 2018(2):1-5.
[18] 李煦,荣峻峰,宗保宁. 微藻碳减排与生物质利用技术研究进展[J]. 石油炼制与化工, 2021(10):62-71.LI X, RONG J F, ZONG B N. Research progress of carbon emmision reduction by microalgae and biomass utilization[J]. Petroleum Processing and Petrochemicals, 2021(10):62-71. doi: 10.3969/j.issn.1005-2399.2021.10.011
LI X, RONG J F, ZONG B N. Research progress of carbon emmision reduction by microalgae and biomass utilization[J]. Petroleum Processing and Petrochemicals, 2021(10):62-71. doi: 10.3969/j.issn.1005-2399.2021.10.011
[19] 刘立明, 胡贵鹏, 陈修来,等. 一株固定CO2产苹果酸的大肠杆菌工程菌的构建及应用, CN110951660A[P]. 2020.LIU L M, HU G P, CHEN X L, et al. Construction and application of an engineering strain of Escherichia coli that immobilizes CO2 to produce malic acid, CN110951660A [P]. 2020.
LIU L M, HU G P, CHEN X L, et al. Construction and application of an engineering strain of Escherichia coli that immobilizes CO2 to produce malic acid, CN110951660A [P]. 2020.
[20] 陈倩倩,顾宇,唐志永,等. 以二氧化碳规模化利用技术为核心的碳减排方案[J]. 中国科学院院刊, 2019(4):478-487.CHEN Q Q, GU Y, TANG Z Y, et al. Carbon dioxide sizable utilization technology based carbon reduction solutions[J]. Bulletin of the Chinese Academy of Sciences, 2019(4):478-487.
CHEN Q Q, GU Y, TANG Z Y, et al. Carbon dioxide sizable utilization technology based carbon reduction solutions[J]. Bulletin of the Chinese Academy of Sciences, 2019(4):478-487.
[21] 白建伟,廖霞,李光宪. 用超临界二氧化碳技术制备硅橡胶/碳纳米管/炭黑复合导电泡沫材料[J]. 高分子材料科学与工程, 2017(7):155-160+166.BAI J W, LIAO X, LI G X. Preparation of silicone rubber/carbon nanotubes/carbon blacks composite generated foam by supercritical carbon dioxide[J]. Polymer Materials Science & Engineering, 2017(7):155-160+166.
BAI J W, LIAO X, LI G X. Preparation of silicone rubber/carbon nanotubes/carbon blacks composite generated foam by supercritical carbon dioxide[J]. Polymer Materials Science & Engineering, 2017(7):155-160+166.
[22] 吴红军,刘悦,毛前军,等. 一种高温电解CO2制碳纳米管系统的改进方法[P]:CN105386076A,2016-03-09.WU H J, LIU Y, MAO Q J, et al. An improved method for the preparation of carbon nanotubes by high temperature electrolysis of CO2 [P]: CN105386076A, 2016-03-09.
WU H J, LIU Y, MAO Q J, et al. An improved method for the preparation of carbon nanotubes by high temperature electrolysis of CO2 [P]: CN105386076A, 2016-03-09.
[23] 张文勇. 电极材质对熔盐电解制备碳纳米管的影响试验研究[J]. 当代化工, 2020(11):2477-2481.ZHANG W Y. Experimental study on the effect of electrode materials on the preparation of carbon nanotubes by molten salts electrolysis[J]. Contemporary Chemical Industry, 2020(11):2477-2481. doi: 10.3969/j.issn.1671-0460.2020.11.025
ZHANG W Y. Experimental study on the effect of electrode materials on the preparation of carbon nanotubes by molten salts electrolysis[J]. Contemporary Chemical Industry, 2020(11):2477-2481. doi: 10.3969/j.issn.1671-0460.2020.11.025
[24] 黄浩. 基于水化惰性胶凝材料的CO2矿化养护建材机制研究[D].杭州:浙江大学,2019.HUANG H. Research on the mechanism of CO2 mineralized maintenance building materials based on hydrated inert cementitious materials [D]. Hangzhou: Zhejiang University, 2019.
HUANG H. Research on the mechanism of CO2 mineralized maintenance building materials based on hydrated inert cementitious materials [D]. Hangzhou: Zhejiang University, 2019.
[25] 胡戌涛. 固体废弃物轻质混凝土的二氧化碳矿化养护研究[D].杭州:浙江大学,2019.HU S T. Research on carbon dioxide mineralization curing of solid waste lightweight concrete [D]. Hangzhou: Zhejiang University, 2019.
HU S T. Research on carbon dioxide mineralization curing of solid waste lightweight concrete [D]. Hangzhou: Zhejiang University, 2019.
[26] 李杰锋. 矿区煤矸石堆对土壤重金属污染时空特征研究[J]. 矿产综合利用, 2022(2):181-186.LI J F. Study on Temporal and Spatial characteristics of heavy metal pollution in coal gangue piles in mining area[J]. Multipurpose Utilization of Mineral Resources, 2022(2):181-186. doi: 10.3969/j.issn.1000-6532.2022.02.032
LI J F. Study on Temporal and Spatial characteristics of heavy metal pollution in coal gangue piles in mining area[J]. Multipurpose Utilization of Mineral Resources, 2022(2):181-186. doi: 10.3969/j.issn.1000-6532.2022.02.032
[27] 贾敏,杨磊. 煤矸石煅烧活化提取氧化铝技术研究[J]. 矿产综合利用, 2020(2):140-144.JIA M,YANG L. Study on technology of alumina extraction from coal gangue activated by calcination[J]. Multipurpose Utilization of Mineral Resources, 2020(2):140-144. doi: 10.3969/j.issn.1000-6532.2020.02.025
JIA M,YANG L. Study on technology of alumina extraction from coal gangue activated by calcination[J]. Multipurpose Utilization of Mineral Resources, 2020(2):140-144. doi: 10.3969/j.issn.1000-6532.2020.02.025
[28] 李慧婉,和东芹,谢娟,等. SnO2-ZnO/煤矸石复合物光催化降解有机磷农药的性能研究[J]. 矿产综合利用, 2020(4):185-190.LI H W,HE D Q, XIE J, et al. Study on the photocatalytic degradation of organophosphorus pesticides by SnO2-ZnO/coal cangue composite[J]. Multipurpose Utilization of Mineral Resources, 2020(4):185-190. doi: 10.3969/j.issn.1000-6532.2020.04.032
LI H W,HE D Q, XIE J, et al. Study on the photocatalytic degradation of organophosphorus pesticides by SnO2-ZnO/coal cangue composite[J]. Multipurpose Utilization of Mineral Resources, 2020(4):185-190. doi: 10.3969/j.issn.1000-6532.2020.04.032
[29] 李沛伦,胡真,王成行,等. 酸改性粉煤灰的制备及其降解选矿废水COD研究[J]. 矿产综合利用, 2019(2):103-108.LI P L,HU Z,WANG C X,et al. Experimental study on preparation of acid modified fly ash and its degradation of COD in mineral processing wastewater[J]. Multipurpose Utilization of Mineral Resources, 2019(2):103-108. doi: 10.3969/j.issn.1000-6532.2019.02.021
LI P L,HU Z,WANG C X,et al. Experimental study on preparation of acid modified fly ash and its degradation of COD in mineral processing wastewater[J]. Multipurpose Utilization of Mineral Resources, 2019(2):103-108. doi: 10.3969/j.issn.1000-6532.2019.02.021
[30] 闫玉兵. 改性粉煤灰对含磷废水的处理研究进展[J]. 矿产综合利用, 2020(5):34-44.YAN Y B. Research on modified fly ash treats for phosphorus wastewater[J]. Multipurpose Utilization of Mineral Resources, 2020(5):34-44. doi: 10.3969/j.issn.1000-6532.2020.05.004
YAN Y B. Research on modified fly ash treats for phosphorus wastewater[J]. Multipurpose Utilization of Mineral Resources, 2020(5):34-44. doi: 10.3969/j.issn.1000-6532.2020.05.004
[31] 巩睿鹏. 酒钢集团某电厂低铝粉煤灰综合利用技术研究[D].西安:长安大学,2018.GONG R P.Research on comprehensive utilization technology of low aluminum fly ash in a power plant of Jiuquan Iron and Steel Group [D]. Xi'an: Chang'an University, 2018.
GONG R P.Research on comprehensive utilization technology of low aluminum fly ash in a power plant of Jiuquan Iron and Steel Group [D]. Xi'an: Chang'an University, 2018.
[32] 欧彦君. 粉煤灰基新型多功能土壤调理剂增产提质机理[D].北京:中国科学院大学(中国科学院过程工程研究所),2021. OUY J.Mechanism of yield increase and quality improvement of new multifunctional soil conditioner based on fly ash [D]. Beijing: University of Chinese Academy of Sciences (Institute of Process Engineering, Chinese Academy of Sciences), 2021.
OUY J.Mechanism of yield increase and quality improvement of new multifunctional soil conditioner based on fly ash [D]. Beijing: University of Chinese Academy of Sciences (Institute of Process Engineering, Chinese Academy of Sciences), 2021.
[33] 饶玲丽. 粉煤灰理化性质分析及粉煤灰透水砖的制备研究[D].贵阳:贵州大学,2006.RAO L L. Analysis of physical and chemical properties of fly ash and study on preparation of fly ash permeable brick [D]. Guiyang: Guizhou University, 2006.
RAO L L. Analysis of physical and chemical properties of fly ash and study on preparation of fly ash permeable brick [D]. Guiyang: Guizhou University, 2006.
[34] 谢娟,夏润南,赵树春,等. ZnO/煤矸石复合光催化剂的制备与性能研究[J]. 矿产综合利用, 2019(4):126-129.XIE J ,XIA R N,ZHAO S C,et al. Preparation and properties of ZnO/coal gangue composite photocatalysts[J]. Multipurpose Utilization of Mineral Resources, 2019(4):126-129. doi: 10.3969/j.issn.1000-6532.2019.04.027
XIE J ,XIA R N,ZHAO S C,et al. Preparation and properties of ZnO/coal gangue composite photocatalysts[J]. Multipurpose Utilization of Mineral Resources, 2019(4):126-129. doi: 10.3969/j.issn.1000-6532.2019.04.027
[35] 尚丽,刘双,沈群,等. 典型二氧化碳利用技术的低碳成效综合评估[J]. 化工进展, 2022(3):1199-120.SHANG L, LIU S, SHEN Q, et al. Comprehensive evaluation of low carbon performance of typical carbon dioxide utilization technologies[J]. Chemical Industry and Engineering Progress, 2022(3):1199-120.
SHANG L, LIU S, SHEN Q, et al. Comprehensive evaluation of low carbon performance of typical carbon dioxide utilization technologies[J]. Chemical Industry and Engineering Progress, 2022(3):1199-120.
[36] Zhang Duo, Ghoulehzaid, Shao Yixin. Review on carbonation curing of cement-based materials[J]. Journal of CO2 Utilization, 2017, 21:119-131. doi: 10.1016/j.jcou.2017.07.003
[37] 孙一夫,李凤军,何文,等. 二氧化碳矿化养护加气混凝土试验研究[J]. 洁净煤技术, 2021(2):237-245.SUN Y F, LI F J, HE W, et al. Investigation on CO2 mineralization curing of aerated concretes[J]. Clean Coal Technology, 2021(2):237-245.
SUN Y F, LI F J, HE W, et al. Investigation on CO2 mineralization curing of aerated concretes[J]. Clean Coal Technology, 2021(2):237-245.
[38] SHICJ, WUYZ. Studies on some factors affecting CO2 curing of lightweight concrete products[J]. Resources, Conservation and Recycling, 2008(8/9):1087-1092.
[39] 左骁遥,房晓红,曾凡桂. 二氧化碳在高岭石孔隙中吸附的分子模拟[J]. 矿产综合利用, 2020(1):163-167.ZUO X Y,FANG X H,ZENG F G. Molecular simulation of carbon dioxide adsorption in kaolinite pores[J]. Multipurpose Utilization of Mineral Resources, 2020(1):163-167. doi: 10.3969/j.issn.1000-6532.2020.01.033
ZUO X Y,FANG X H,ZENG F G. Molecular simulation of carbon dioxide adsorption in kaolinite pores[J]. Multipurpose Utilization of Mineral Resources, 2020(1):163-167. doi: 10.3969/j.issn.1000-6532.2020.01.033
[40] Duo Zhang, Xinhua Cai, Yixin Shao. Carbonation curing of precast fly ash concrete[J]. Journal of Materials in Civil Engineering, 2016(11):04016127
[41] 陈铁锋.水泥基材料碳化养护及其对透水混凝土的改性机理[D]. 哈尔滨:哈尔滨工业大学,2020.CHEN T F. Carbonization curing of cement-based materials and its modification mechanism for permeable concrete [D]. Harbin: Harbin University of Technology, 2020
CHEN T F. Carbonization curing of cement-based materials and its modification mechanism for permeable concrete [D]. Harbin: Harbin University of Technology, 2020
[42] Tonolighd, Pizzolvd, Urreag, et al. Rationalizing the impact of aging on fiber-matrix interface and stability of cement-based composites submitted to carbonation at early ages[J]. Journal of Materials Science, 2016(17):7929-7943.
[43] 宋佳奕. 碳酸化养护固废免烧砖配方优化研究及工业示范[D]. 杭州:浙江大学, 2021.SONG J Y.Optimization research and industrial demonstration of carbonated curing solid waste unburned brick formula [D]. Hangzhou: Zhejiang University, 2021.
SONG J Y.Optimization research and industrial demonstration of carbonated curing solid waste unburned brick formula [D]. Hangzhou: Zhejiang University, 2021.
[44] 刘洋,张春霞. 钢铁渣的综合利用现状及发展趋势[J]. 矿产综合利用, 2019(2):21-25.LIU Y,ZHANG C X. Comprehensive utilization situation and development trend of iron and steel slag in China and abroad[J]. Multipurpose Utilization of Mineral Resources, 2019(2):21-25. doi: 10.3969/j.issn.1000-6532.2019.02.004
LIU Y,ZHANG C X. Comprehensive utilization situation and development trend of iron and steel slag in China and abroad[J]. Multipurpose Utilization of Mineral Resources, 2019(2):21-25. doi: 10.3969/j.issn.1000-6532.2019.02.004
[45] 赵礼兵,王帅,李国峰,等. 透水砖研究现状及影响因素[J]. 矿产综合利用, 2019(5):6-8.ZHAO L B,WANG S,LI G F,et al. Current situation and influencing factors of permeable brick[J]. Multipurpose Utilization of Mineral Resources, 2019(5):6-8. doi: 10.3969/j.issn.1000-6532.2019.05.002
ZHAO L B,WANG S,LI G F,et al. Current situation and influencing factors of permeable brick[J]. Multipurpose Utilization of Mineral Resources, 2019(5):6-8. doi: 10.3969/j.issn.1000-6532.2019.05.002
[46] 席向峰,冯浩,詹敬杰. 一种矿化二氧化碳制砖工艺[P]. 四川省:CN113336514A,2021-09-03.XI X F, FENG H, ZHAN J J. A brick making process of mineralized carbon dioxide [P]. Sichuan Province: CN113336514A, 2021-09-03.
XI X F, FENG H, ZHAN J J. A brick making process of mineralized carbon dioxide [P]. Sichuan Province: CN113336514A, 2021-09-03.
[47] Wei Z , Wang B , Falzone G , et al. Clinkering-free cementation by fly ash carbonation[J]. Journal of CO2 Utilization, 2018, 23:117-127. doi: 10.1016/j.jcou.2017.11.005
-