Determination of Sulfate Ion in Ferric Oxide Powder by Ion Chromatography
-
摘要:
实验建立了一种抑制电导检测器离子色谱测定三氧化二铁粉中硫酸根含量的方法。实验采用浓盐酸分解样品, 3.2 mmol/L碳酸钠–1.0 mmol/L碳酸氢钠作为淋洗液,流速为0.7 mL/min,柱温35 ℃,进样体积为20 μL。结果表明,硫酸根离子在0.5~100 mg/L浓度范围内线性关系良好,线性方程为y=0.228 9x-0.038 3,线性相关系数R2=0.999 96。样品加标回收率为97.38%~104.42%,RSD为1.01%,检出限为0.002%。该方法操作简单、灵敏度高、重现性好,可作为三氧化二铁粉中硫酸根离子的定量检测方法。
Abstract:To establish a method for the determination of sulfate ion in ferric oxide powder by ion chromatography with suppression conductivity detector. The hydrochloric acid was used to decomposed samples, with 1.0 mmol/L sodium bicarbonate and 3.2 mmol/L sodium carbonate as mobile phase, and the flow rate was 0.7 mL/min, the colume temperature was 35 ℃, inject volumn was 20 μL. The results show that the sulfate had a good calibration linear ship in the range of 0.5~100 mg/L, the linear equation of sulfate was y=0.228 9x-0.038 3, R2=0.999 96. The recovery from 97.38% to 104.42%, RSD=1.01%, and the limit of detection was 0.002%. This method has the benefits of easy operation, highly sensitive, and good reproducibility. It can be used as a quality detection method of sulfate ion in ferric oxide powder.
-
Key words:
- mineral product analysis /
- ferric oxide powder /
- ion chromatography /
- sulfate ion
-
-
表 1 线性范围、回归方程、相关系数和检出限
Table 1. Linear range、regression equation、correlation of coefficient and detection limit
被检测
离子线性范围/
(mg/L)回归
方程相关
系数检出
限/%SO42- 0.5~100 y=0.228 9x-0.038 3 0.999 96 0.002 表 2 精密度实验结果
Table 2. Results of precision
硫酸根离子 保留时间/min 峰面积/((μs/cm.min) RSD/% 1 27.62 1.433 1.01 2 27.61 1.451 3 27.62 1.436 4 27.62 1.425 5 27.62 1.469 6 27.61 1.443 7 27.61 1.432 8 27.63 1.427 表 3 回收率
Table 3. Rate of recovery
样品 本底值/
(mg/L)加标量/
(mg/L)加标后测定值/
(mg/L)回收率/% 1 2.257 0.50 2.879 104.42 1 2.257 5.00 7.346 101.22 1 2.257 50.00 51.452 98.46 2 40.468 0.50 39.895 97.38 2 40.468 5.00 46.668 102.64 2 40.468 50.00 89.265 98.67 表 4 样品结果
Table 4. Results of samples
流程
样品本法/% SN/T 3323.2—2012/% GB/T 6730.16—2016/% 1 2.65 2.61 2 0.81 0.83 3 0.13 0.12 4 0.080 0.083 5 0.045 0.047 6 0.026 0.029 -
[1] 刘应冬, 魏友华, 陈超, 等. 攀枝花钒钛磁铁矿尾矿资源特征及综合利用建议[J]. 矿产综合利用, 2023(4):35-41.LIU Y D, WEI Y H, CHEN C, et al. Tailings resource characteristics and multipurpose utilization suggestions of Panzhihua vanadium-titanium magnetite, SW China[J]. Multipurpose Utilization of Mineral Resources, 2023(4):35-41.
LIU Y D, WEI Y H, CHEN C, et al. Tailings resource characteristics and multipurpose utilization suggestions of Panzhihua vanadium-titanium magnetite, SW China[J]. Multipurpose Utilization of Mineral Resources, 2023(4):35-41.
[2] 孙宁岳, 李国武, 申俊峰, 等. 黄铁矿精细结构与晶胞参数的关系及其标型意义[J]. 西北地质, 2022, 55(4):333-342.SUN N Y, LI G W, SHEN J F, et al. Relationship between fine structure and cell parameters of pyrite and its significance of labelling[J]. Northwest Geology, 2022, 55(4):333-342.
SUN N Y, LI G W, SHEN J F, et al. Relationship between fine structure and cell parameters of pyrite and its significance of labelling[J]. Northwest Geology, 2022, 55(4):333-342.
[3] 吴恩辉, 李军, 侯静, 等. 钒钛铁精矿钛白废酸浸出提钒实验[J]. 矿产综合利用, 2022(5):20-24.WU E H, LI J, HOU J, et al. Extraction of vanadium from vanadium titanomagnetite concentrates by leaching process with titanium white waste acid[J]. Multipurpose Utilization of Mineral Resources, 2022(5):20-24.
WU E H, LI J, HOU J, et al. Extraction of vanadium from vanadium titanomagnetite concentrates by leaching process with titanium white waste acid[J]. Multipurpose Utilization of Mineral Resources, 2022(5):20-24.
[4] 薛爱芬, 胡兴航, 王秋林, 等. 硫酸氧钛水解法制备重晶石/二氧化钛复合粉[J]. 矿产综合利用, 2022(5):135-139.XUE A F, HU X H, WANG Q L, et al. Preparation of barite/titanium dioxide composite powder by hydrolysis of titanium oxysulfate[J]. Multipurpose Utilization of Mineral Resources, 2022(5):135-139.
XUE A F, HU X H, WANG Q L, et al. Preparation of barite/titanium dioxide composite powder by hydrolysis of titanium oxysulfate[J]. Multipurpose Utilization of Mineral Resources, 2022(5):135-139.
[5] 中国国家标准化管理委员会. 铁氧体用氧化铁: GB/T 24244—2009[S] .北京:中国标准出版社,2010.National Standardization Administration of China. Iron oxide for ferrite: GB/T 24244—2009[S]. Beijing: China Standard Press, 2010.
National Standardization Administration of China. Iron oxide for ferrite: GB/T 24244—2009[S]. Beijing: China Standard Press, 2010.
[6] 闻向东, 曹宏燕, 杨芸. ICP-AES法测定氧化铁粉中的硅、铝、钙、锰和硫[J]. 钢铁研究, 2008(4):45-47.WEN X D, CAO H Y, YANG Y. Determination of oxides of silicon, aluminium, calcium, manganese and sulphur in iron oxide powder by ICP-AES[J]. Research on Iron and Steel, 2008(4):45-47.
WEN X D, CAO H Y, YANG Y. Determination of oxides of silicon, aluminium, calcium, manganese and sulphur in iron oxide powder by ICP-AES[J]. Research on Iron and Steel, 2008(4):45-47.
[7] 耿丽君, 毛敬伟, 刘信文, 等. 电感耦合等离子体原子发射光谱法测定氧化铁粉中11种微量组分[J]. 冶金分析, 2008, 28(6):72-75.GENG L J, MAO J W, LIU X W, et al. Determination of eleven trace components in iron oxide powder by inductively coupled plasma atomic emission spectrometry[J]. Metallurgical Analysis, 2008, 28(6):72-75.
GENG L J, MAO J W, LIU X W, et al. Determination of eleven trace components in iron oxide powder by inductively coupled plasma atomic emission spectrometry[J]. Metallurgical Analysis, 2008, 28(6):72-75.
[8] 杨丽荣, 于媛君, 顾继红. 微波消解ICP-AES法测定氧化铁粉中的微量元素[J]. 鞍钢技术, 2008(3):28-31.YANG L R, YU Y J, GU J H. Determination of trace element in iron oxide powder by ICP-AES with microwave digestion method[J]. Angang Technology, 2008(3):28-31.
YANG L R, YU Y J, GU J H. Determination of trace element in iron oxide powder by ICP-AES with microwave digestion method[J]. Angang Technology, 2008(3):28-31.
[9] 肖颖. 电感耦合等离子体发射光谱法测定选冶流程样品—高钛渣中杂质元素[J]. 矿产综合利用, 2019(3):89-92.XIAO Y. Determination of calcium oxide, magnesium oxide and aluminum trioxide in high titanium slag by ICP-AES[J]. Multipurpose Utilization of Mineral Resources, 2019(3):89-92.
XIAO Y. Determination of calcium oxide, magnesium oxide and aluminum trioxide in high titanium slag by ICP-AES[J]. Multipurpose Utilization of Mineral Resources, 2019(3):89-92.
[10] 张庆建, 张晓敏, 管嵩, 等. 高频燃烧红外吸收法测定氧化铁皮中的硫含量[J]. 冶金能源, 2019, 38(38):51-53.ZHANG Q J , ZHANG X M, GUAN S, et al. Determination of sulfur content in mill scale by high frequency combustion infrared-adsorption method[J]. Energy For Metallurgical Industry, 2019, 38(38):51-53.
ZHANG Q J , ZHANG X M, GUAN S, et al. Determination of sulfur content in mill scale by high frequency combustion infrared-adsorption method[J]. Energy For Metallurgical Industry, 2019, 38(38):51-53.
[11] 樊志刚. X 射线荧光光谱法测定氧化铁粉中的铁及杂质[J].岩矿测试,2002: 110-111.FAN Z G. Analysis offerric oxide by X-Ray fluorescence spectrometry[J]. Rock and Mineral Analysis, 2002:110-111.
FAN Z G. Analysis offerric oxide by X-Ray fluorescence spectrometry[J]. Rock and Mineral Analysis, 2002:110-111.
[12] 陈绯, 于媛君, 胡海滨. 离子色谱法测定氧化铁粉中痕量氯离子[J]. 理化检验·化学分册, 2009, 45(12):1391-1393.CHEN F, YU Y J, HU H B. Ion-chromatographic determination of trace amounts of chloride ion in ferric oxide powder[J]. Physical Testing and Chemical Analysis(Part B:Chemical Analysis), 2009, 45(12):1391-1393.
CHEN F, YU Y J, HU H B. Ion-chromatographic determination of trace amounts of chloride ion in ferric oxide powder[J]. Physical Testing and Chemical Analysis(Part B:Chemical Analysis), 2009, 45(12):1391-1393.
[13] 陈亦安. 燃烧碘量法测定氧化铁中硫酸根的含量[J]. 化学工程与装备, 1983(1):34-37.CHEN Y A. Combustion iodometric method to determine the sulfur content in ferric oxide powder[J]. Chemical Engineering & Equipment, 1983(1):34-37.
CHEN Y A. Combustion iodometric method to determine the sulfur content in ferric oxide powder[J]. Chemical Engineering & Equipment, 1983(1):34-37.
[14] 张丽英,李斌. 硫酸钡比浊法测定氧化铁中硫酸根[J]. 山东冶金, 2000(4):47-48.ZHANG L Y, LI B. Determining sulfate radical in iron oxide by barium sulfate nephelometry[J]. Shan Dong Metallurgy, 2000(4):47-48.
ZHANG L Y, LI B. Determining sulfate radical in iron oxide by barium sulfate nephelometry[J]. Shan Dong Metallurgy, 2000(4):47-48.
-