Analysis and Research on Associated Elements Nb, Zr, Ga and Sc in Sedimentary Rare Earth Ores
-
摘要:
通过对滇黔相邻区的不同矿点,不同品位的5个样品不同溶矿方式的对比、分析过程中仪器参数的优化以及分析方法的准确度和精密度实验,详细研究了沉积型稀土矿中共伴生元素Nb、Zr、Ga、Sc的分析方法,同时对它们在选择性浸出流程中的大致走向进行初步探讨。结果表明采用高压密闭酸溶,结合ICP-MS,沉积型稀土矿中共伴生元素Nb、Zr、Ga、Sc的相对标准偏差(RSD)均低于5%,且回收率都在96.2%~103.6%之间,方法具有良好的精密度和准确度;同时在选择性浸取试验中发现Al2O3和Ga2O3的浸出存在较为强烈的正相关关系,对沉积型稀土中镓的综合利用具有一定指导意义。
Abstract:Through comparative studies of different digestion methods for five ore samples with varying grades collected from adjacent mining areas in Yunnan and Guizhou Provinces, combined with optimization of instrumental parameters and accuracy precision tests of analytical methods, this research systematically investigated the analytical techniques for associated elements (Nb, Zr, Ga, Sc) in sedimentary rare earth ores. A preliminary exploration of their distribution patterns during selective leaching processes was also conducted. The results indicate that high-pressure sealed acid dissolution combined with ICP-MS analysis achieved excellent performance, with relative standard deviations (RSD) below 5% and recovery rates ranging from 96.2% to 103.6% for all target elements (Nb, Zr, Ga, Sc), demonstrating high precision and accuracy of the proposed method. Furthermore, selective leaching experiments revealed a strong positive correlation between the leaching behaviors of Al2O3 and Ga2O3, which provides valuable guidance for the comprehensive utilization of gallium in sedimentary rare earth ores.
-
-
表 1 ICP-MS仪器工作参数
Table 1. The working parameters of ICP-MS
射频功率/W 雾化器流量/(L/min) 冷却气流量/(L/min) 辅助气流量/(L/min) 采样深度/步 采样锥/截取锥/mm 1400 1.0 16 1.2 88 1.1/0.7 扫描方式 测量点/峰 重复测定次数 停留时间/(ms.) 扫描次数 测量时间/s 跳峰 3 3 10 40 60 表 2 不同溶矿方式下稀土总量及共伴生元素的测定值 单位:g/t
Table 2. Determination values of total rare earth and associated elements by different ore dissolution methods
元素 四酸敞开体系 四酸+硫酸敞开体系 CJ-1 CJ-2 CJ-3 CJ-4 CJ-5 CJ-1 CJ-2 CJ-3 CJ-4 CJ-5 TREO 2 800 3 546 2 762 2 053 1 135 3 021 3 896 2 871 2 308 1 238 Nb 228 265 269 258 277 235 260 268 258 271 Sc 27 30 45 18 23 30 27 48 19 23 Ga 57 63 66 54 74 64 60 67 55 71 Zr 1 147 1 787 1 850 1 207 1 763 1 353 1 508 1 920 1 463 1 820 元素 四酸密闭体系 碱熔体系 CJ-1 CJ-2 CJ-3 CJ-4 CJ-5 CJ-1 CJ-2 CJ-3 CJ-4 CJ-5 TREO 3 071 4 085 3 158 2 533 1 295 2 974 3 970 2 884 2 470 1 244 Nb 242 258 271 261 279 226 240 256 240 276 Sc 35 32 52 24 25 32 30 48 24 23 Ga 62 60 72 55 78 60 57 72 54 76 Zr 1 668 1 961 2 016 1 908 2 071 1 589 1 898 1 950 1 895 2 012 表 3 分析同位素、内标元素的选择
Table 3. Selection of measurement isotopes and internal standard
待测元素 同位素 内标元素 Ga 71 103Rh Sc 45 103Rh Nb 93 103Rh Zr 90 103Rh 表 4 共伴生元素同位素内标及干扰校正
Table 4. Internal standards of isotopes of associated and co-occurring elements and interference correction
同位数 内标 潜在干扰 模式(*) 45Sc 103Rh BO2、CaH、SiO、C02 、AlO 标准 71Ga 103Rh ArCl、ClO2、ArP、Ce++、Nd++ 标准 90Zr 103Rh 标准 93Nb 103Rh AsO 标准 表 5 方法的精密度和准确度试验
Table 5. Tests on the precision and accuracy of the method
样品 元素 测定值/(g/t) RSD/% 回收率/% CJ-1 Ga 62 3.86 96.4 Sc 35 2.56 97.3 Nb 242 2.89 96.2 Zr 1 668 3.12 102.5 CJ-2 Ga 60 2.33 98.3 Sc 32 2.89 101.9 Nb 258 2.42 103.6 Zr 1 961 3.22 97.8 CJ-3 Ga 72 2.12 96.3 Sc 52 1.89 98.4 Nb 271 2.68 103.2 Zr 2 016 2.98 102.3 CJ-4 Ga 55 2.87 96.3 Sc 24 3.45 98.5 Nb 261 2.73 99.1 Zr 1 908 2.47 103.3 CJ-5 Ga 78 3.11 102.7 Sc 25 2.31 97.2 Nb 279 3.33 102.9 Zr 2 071 2.98 98.5 -
[1] 龚大兴,田恩源,肖斌,等. 川滇黔相邻区古陆相沉积型稀土的发现及意义[J]. 矿床地质, 2023, 42(5):1025-1033.GONG D X, TIAN E Y, XIAO B, et al. Significance and discovery of sedimentary REE deposits in adjacent areas of Sichuan,Yunnan and Guizhou[J]. Mineral Deposits, 2023, 42(5):1025-1033.
GONG D X, TIAN E Y, XIAO B, et al. Significance and discovery of sedimentary REE deposits in adjacent areas of Sichuan,Yunnan and Guizhou[J]. Mineral Deposits, 2023, 42(5):1025-1033.
[2] WANG P, YANG Y Y, HEIDRICH OLIVER, et al. Regional rare-earth element supply and demand balanced with circular economy strategies[J]. Nature Geoscience, 2024, 17(1):94-102. doi: 10.1038/s41561-023-01350-9
[3] 刘淑君,赵朝辉,龚大兴. ICP-MS 测定新类型沉积稀土矿中关键稀土元素方法研究[J]. 矿产综合利用, 2023(4):188-193.LIU S J,ZHAO C H,GONG D X. Determination of rare earth elements in a new type of sedimentary rare earth ore by ICP-MS[J]. Multipurpose Utilization of Mineral Resources, 2023(4):188-193. doi: 10.3969/j.issn.1000-6532.2023.04.029
LIU S J,ZHAO C H,GONG D X. Determination of rare earth elements in a new type of sedimentary rare earth ore by ICP-MS[J]. Multipurpose Utilization of Mineral Resources, 2023(4):188-193. doi: 10.3969/j.issn.1000-6532.2023.04.029
[4] 邵坤 ,余滔, 龚大兴. 高压密闭消解-ICP-AES法测定沉积型稀土矿中La、Ce、Pr、Nd、Y、Nb、Zr[J]. 稀土, 2024, 45(1):87-94.SHAO K, YU T, GONG D X. Determination of La, Ce, Pr, Nd, Y, Nb and Zr in sedimentary rare-earth ore by ICP-AES with Sealed Digestion[J]. Chinese Rare Earths, 2024, 45(1):87-94.
SHAO K, YU T, GONG D X. Determination of La, Ce, Pr, Nd, Y, Nb and Zr in sedimentary rare-earth ore by ICP-AES with Sealed Digestion[J]. Chinese Rare Earths, 2024, 45(1):87-94.
[5] 雷勇,勾钰霞,易建春,等. 密闭消解—电感耦合等离子体光谱法测定稀有金属矿选冶流程样品中锂、铍、铌和钽[J]. 矿产综合利用, 2023(4):205-210.LEI Y, GOU Y X, YI J C, et al. Inductively coupled plasma atomic emission spectrometric determination of lithium、beryllium、niobium and tantalum in sample of beneficiation process of rare metal ore after Closed Digestion[J]. Multipurpose Utilization of Mineral Resources, 2023(4):205-210. doi: 10.3969/j.issn.1000-6532.2023.04.032
LEI Y, GOU Y X, YI J C, et al. Inductively coupled plasma atomic emission spectrometric determination of lithium、beryllium、niobium and tantalum in sample of beneficiation process of rare metal ore after Closed Digestion[J]. Multipurpose Utilization of Mineral Resources, 2023(4):205-210. doi: 10.3969/j.issn.1000-6532.2023.04.032
[6] 胡兰基,霍成玉,马龙,等. 酸溶消解—质谱法测定地球化学样品及稀有、稀土矿中铌和钽[J]. 化学工程师, 2022, 36(11):23-27.HU L J, HUO C Y, MA L, et al. Determination of niobium and tantalum in geochemical samples and rare earth minerals by acid dissolution digestion-ICP-MS[J]. Chemical Engineer, 2022, 36(11):23-27.
HU L J, HUO C Y, MA L, et al. Determination of niobium and tantalum in geochemical samples and rare earth minerals by acid dissolution digestion-ICP-MS[J]. Chemical Engineer, 2022, 36(11):23-27.
[7] 蒋常菊, 雷占昌, 范志平. 某三水型铝土矿中镓和钪的浸出研究[J]. 矿产综合利用, 2024, 45(2):185-189.JIANG C J, LEI Z C, FAN Z P. Study on leaching of gallium and scandium from a gibbsite-type bauxite[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(2):185-189. doi: 10.3969/j.issn.1000-6532.2024.02.030
JIANG C J, LEI Z C, FAN Z P. Study on leaching of gallium and scandium from a gibbsite-type bauxite[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(2):185-189. doi: 10.3969/j.issn.1000-6532.2024.02.030
[8] 王晓慧,颜世强,梁友伟,等. 黔西北地区沉积型稀土资源回收稀土研究现状及选矿实验探讨[J]. 矿产综合利用, 2022(22):135-141.WANG X H, YAN S Q, LIANG Y W, et al. Research status of rare earth recovery from sedimentary rare earth ore and discussion on beneficiation test in northwest Guizhou[J]. Multipurpose Utilization of Mineral Resources, 2022(22):135-141. doi: 10.3969/j.issn.1000-6532.2022.02.025
WANG X H, YAN S Q, LIANG Y W, et al. Research status of rare earth recovery from sedimentary rare earth ore and discussion on beneficiation test in northwest Guizhou[J]. Multipurpose Utilization of Mineral Resources, 2022(22):135-141. doi: 10.3969/j.issn.1000-6532.2022.02.025
[9] 徐璐,龚大兴,胡久刚,等. 低品位沉积型稀土矿硫酸浸出液的水解除杂研究[J]. 金属材料与冶金工程, 2021, 49(2):35-40.XU L, GONG D X, HU J G, et al. Impurity removal from sulfuric acid leachates of low-grade sedimentary rare earth ores through hydrolysis precipitation[J]. Metal Materials and Metallurgy Engineering, 2021, 49(2):35-40.
XU L, GONG D X, HU J G, et al. Impurity removal from sulfuric acid leachates of low-grade sedimentary rare earth ores through hydrolysis precipitation[J]. Metal Materials and Metallurgy Engineering, 2021, 49(2):35-40.
[10] 杨林, 邹国庆,周武权,等. 微波消解-电感耦合等离子体质谱(ICP-MS)法测定稀有多金属矿中锂铍铌钽铷铯[J]. 中国无机分析化学, 2023(8):825-830.YANG L, ZOU G Q, ZHOU W Q, et al. Determination of Li,Be,Nb,Ta,Rb,Cs in rare polymetallic ores by inductively coupled plasma mass spectrometry(ICP-MS) with microwave digestion[J]. Chinese Journal of Inorganic Analytical Chemistry, 2023(8):825-830. doi: 10.3969/j.issn.2095-1035.2023.08.006
YANG L, ZOU G Q, ZHOU W Q, et al. Determination of Li,Be,Nb,Ta,Rb,Cs in rare polymetallic ores by inductively coupled plasma mass spectrometry(ICP-MS) with microwave digestion[J]. Chinese Journal of Inorganic Analytical Chemistry, 2023(8):825-830. doi: 10.3969/j.issn.2095-1035.2023.08.006
[11] 吴石头,王亚平,孙德忠,等. 电感耦合等离子体发射光谱法测定稀土矿石中15种稀土元素—四种前处理方法的比较[J]. 岩矿测试, 2014, 33(1):12-19.WU S T, WANG Y P, SUN D Z, et al. Determination of 15 rare earth elements in rare earth ores by inductively coupled plasma-atomic emission spectrometry:A comparison of four different pretreatment methods[J]. Rock and Mineral Analysis, 2014, 33(1):12-19. doi: 10.3969/j.issn.0254-5357.2014.01.003
WU S T, WANG Y P, SUN D Z, et al. Determination of 15 rare earth elements in rare earth ores by inductively coupled plasma-atomic emission spectrometry:A comparison of four different pretreatment methods[J]. Rock and Mineral Analysis, 2014, 33(1):12-19. doi: 10.3969/j.issn.0254-5357.2014.01.003
[12] 门倩妮,沈平,甘黎明,等. 敞开酸溶和偏硼酸锂碱熔ICP-MS法测定多金属矿中的稀土元素及铌钽锆铪[J]. 岩矿测试, 2020, 39(1):59-67.MEN Q N, SHEN P, GAN L M, et al. Determination of rare earth elements and Nb, Ta, Zr, Hf in polymetallic mineral samples by inductively coupled plasma-mass spectrometry coupled with open acid dissolution and lithium metaborate alkali fusion[J]. Rock and Mineral Analysis., 2020, 39(1):59-67.
MEN Q N, SHEN P, GAN L M, et al. Determination of rare earth elements and Nb, Ta, Zr, Hf in polymetallic mineral samples by inductively coupled plasma-mass spectrometry coupled with open acid dissolution and lithium metaborate alkali fusion[J]. Rock and Mineral Analysis., 2020, 39(1):59-67.
[13] 程祎,李志伟,于亚辉,等. 高压密闭消解-电感耦合等离子体质谱法测定地质样品中铌、钽、锆、铪和16种稀土元素[J]. 理化检验(化学分册), 2020, 56(7):782-787.CHENG Y, LI Z W, YU Y H ,et al. ICP-MS Determination of Nb, Ta, Zr, Hf and 16 rare earth elements in geological samples with high pressure closed digestion[J]. Physical Testing and Chemical Analysis(Part B: Chemical Analysis), 2020, 56(7):782-787.
CHENG Y, LI Z W, YU Y H ,et al. ICP-MS Determination of Nb, Ta, Zr, Hf and 16 rare earth elements in geological samples with high pressure closed digestion[J]. Physical Testing and Chemical Analysis(Part B: Chemical Analysis), 2020, 56(7):782-787.
-